
185

Dydaktyka Informatyki 20(2025)

ISSN 2083-3156; e-ISSN 2543-9847

DOI: 10.15584/di.2025.20.16

https://www.journals.ur.edu.pl/di

Uniwersytet Rzeszowski

Jacek WOŁOSZYN 1, Michał WOŁOSZYN2

1 ORCID: 0000-0003-4340-9853. Dr inż., Uniwersytet Radomski, Wydział Informatyki

i Matematyki, Katedra Informatyki, ul. Malczewskiego 20A, 26-600 Radom,

e-mail: jacek.woloszyn@uthrad.pl
2 BSc, student,Goldsmiths, University of London, 8 Lewisham Way, London SE 14 6NW,

e-mail: mwolo001@gold.ac.uk

data złożenia tekstu do Redakcji DI: 18.05.2025; data wstępnej oceny artykułu: 27.05.2025

THEORETICAL CONSIDERATIONS ON ARTIFICIAL

INTELLIGENCE AND CYBERSECURITY, ONE-CLASS SVM

FOR ANOMALY DETECTION IN NETWORK TRAFFIC

ROZWAŻANIA TEORETYCZNE NA TEMAT SZTUCZNEJ

INTELIGENCJI I CYBERBEZPIECZEŃSTWA, ONE-CLASS SVM

DO WYKRYWANIA ANOMALII W RUCHU SIECIOWYM

Keywords: Python, artificial intelligence, cybersecurity, One-Class SVM.

Słowa kluczowe: Python, sztuczna inteligencja, cyberbezpieczeństwo, One-Class SVM.

Abstract

In this article, One-Class SVM has been highlighted as a particularly valuable approach, as it

does not require collecting large datasets of labeled attack samples. Instead, it effectively models

normal behavior and identifies significant deviations from the expected pattern.

Both theoretical considerations and a Python code example have been presented, demonstrat-

ing how such a model can be trained on real or synthetic network data and subsequently used to

detect potential anomalies.

Additionally, the text includes guidelines for data preparation, covering collection, cleaning,

normalization, and potential dimensionality reduction, as well as hyperparameter optimization

(including nu and gamma).

Furthermore, a mathematical perspective is provided, explaining the role of the weight vector

(𝑤), the threshold value (𝑅), and the kernel function, which enables nonlinear mapping and the

separation of normal samples from outliers.

http://dx.doi.org/10.15584/di.2025.20.16
mailto:jacek.woloszyn@uthrad.pl
https://orcid.org/0000-0003-4340-9853

186

Streszczenie

W niniejszym artykule skupiono się na One-Class SVM jako szczególnie wartościowym

podejściu, gdyż nie wymaga ono gromadzenia dużych zbiorów etykietowanych próbek ataków,

natomiast potrafi opisać normalne zachowania i rozpoznać każde istotne odchylenie od wzorca.

Przedstawiono rozważania teoretyczne i zaprezentowano przykład kodu w Pythonie de-

monstrujący, w jaki sposób można w praktyce trenować taki model na rzeczywistych lub syn-

tetycznych danych sieciowych, a następnie wykorzystywać go do oznaczania potencjalnych

anomalii.

W tekście zawarto ponadto wskazówki dotyczące przygotowania danych (od zbierania po-

przez czyszczenie, normalizację i ewentualną redukcję wymiarowości), jak również optymalizacji

hiperparametrów (m.in. nu, gamma).

Omówiono też, w ujęciu matematycznym, na czym polega rola wektora 𝑤, wartości progowej

𝑅 oraz funkcji jądra (kernel), która umożliwia nieliniowe odwzorowanie i oddzielenie normalnych

próbek od odstających.

Introduction

In the article “Advanced Artificial Intelligence Methods in Cybersecurity,

Threat and Anomaly Detection Using Unsupervised Learning Techniques”, the

importance of anomaly detection in the context of cybersecurity is discussed,

along with various approaches and algorithms, including unsupervised learning

techniques such as One-Class SVM and Isolation Forest. It is highlighted that

these tools can be particularly effective when there is an insufficient number of

attack samples available or when an attack has a completely new, previously

unknown nature (zero-day attacks).

This text presents the transition from theory to practice by demonstrating

a detailed example focusing on One-Class SVM as an anomaly detection model

for network traffic.

One-Class SVM has gained popularity in network security applications

because it does not require access to labeled attack samples. It only needs

a sample of “normal” network traffic, and the model learns the characteristic

behavioral patterns. Subsequently, anything that deviates from the boundary

established by the algorithm is marked as a potential anomaly.

This approach is particularly effective in environments1 where many

resources and processes undergo continuous evolution, and attacks take on ever-

changing forms.

1 Hu, Jing, et al., A Deep Learning Approach for Intrusion Detection Using Recurrent Neural

Networks, IEEE Access, Vol. 6, 2018; Ngo, Quang-Hung, et al., Unsupervised Deep Learning for

Real-Time Cyber Anomaly Detection, IEEE Access, Vol. 7, 2019.

187

1. Environment and Data Preparation

Environment and data preparation2 begins with selecting the appropriate tool

for experiments and providing a representative dataset of network traffic

information. Typically, work is conducted in a Python 3 environment with

support from popular libraries such as NumPy, Pandas, and Scikit-learn, as they

offer comprehensive functionalities for data loading, preprocessing, and

analysis, as well as implementing machine learning algorithms.

The first step is ensuring that all necessary packages are installed. This can

be done using the pip package manager or Anaconda, which helps maintain

consistent library versions and minimizes conflicts between dependencies.

On the data side, the initial task is to collect or acquire a dataset describing

both normal network traffic and potential anomalies. The easiest approach is to

use publicly available datasets, such as KDD Cup ’99, UNSW-NB15, or other

benchmark datasets containing recorded traffic traces with annotations indicating

normal or attack-related activity. If public datasets cannot be used, or if there is

a need to train the algorithm on a specific environment, it is necessary to

generate custom logs and metadata from network monitoring systems like Zeek

(formerly Bro), Suricata, or firewall log analysis tools.

Once data is gathered, it should be standardized, which includes format

conversion—usually to CSV or Parquet, where each column represents a single

feature. At this stage, attention should be paid to the range and scale of

attributes, such as packet count per flow, session duration, or protocol type. It is

often useful to handle missing values or remove erroneous records (e.g., those

containing invalid source port values).

After eliminating undesirable entries, preprocessing is performed, applying

normalization or standardization techniques such as MinMaxScaler or

StandardScaler to ensure that features have similar value ranges and prevent the

model from being biased toward attributes with large scales. The next step may

involve dimensionality reduction (e.g., PCA), especially if the dataset contains

dozens or hundreds of columns, which can complicate One-Class SVM training.

For large datasets, sampling techniques are often applied, selecting

a random subset of observations to accelerate training and facilitate concept

validation. Finally, the dataset should be split into training, validation, and test

2 I. Goodfellow, P. McDaniel, N. Papernot, Making Machine Learning Robust Against

Adversarial Inputs, Communications of the ACM, Vol. 61, No. 7, 2018; M. López-Martín, B. Carro,

A. Sánchez-Esguevillas, J. Lloret, Network Traffic Classifier With Convolutional and Recurrent

Neural Networks for Internet of Things, IEEE Access, Vol. 5, 2017 (updated online in 2018);

I. Sarker, et al., IntrudTree: A Machine Learning Based Cyber Security Intrusion Detection Model,

“Symmetry” 2021, Vol. 13, No. 4.

188

sets, enabling both optimal parameter selection for One-Class SVM3 and

evaluating its effectiveness on unseen samples.

This logical sequence of steps, from environment setup, data collection, and

preprocessing to proper segmentation, provides a solid foundation for further

work on anomaly detection in network traffic.

2. Model One-Class

One-Class SVM is designed as an anomaly detection method in which we

learn only from "normal" examples, and treat each new, abnormal observation as

a potential anomaly. Its basis is the idea of determining the boundary in the

space of features in such a way as to best separate normal data from the rest (in

a sense from the "emptiness"). Mathematically, given the training set, we want to

find such a vector {𝑥𝑖}𝑖=1
𝑛 w and a threshold value R that the values are at least

equal to 𝑤 ⋅ 𝛷(𝑥𝑖)R for as many normal samples as possible (here 𝛷(⋅)

Φ(⋅) means a mapping to the most often nonlinear feature space, which can

be multivariate. In the classic formulation, it is usually written as follows:

min𝑤,𝜀,𝑅

1

2
||𝑤||2 − 𝑅 +

1

𝑣𝑛
∑ 𝜀𝑖

𝑛

𝑖=1

with conditions:

𝑤 ∅(𝑥𝑖) ≥ 𝑅 − 𝜀𝑖, 𝜀𝑖 ≥ 0, 𝑖 = 1, … , 𝑛

The expression ξi are the so-called slack variables, which allow for some

acceptable "errors" in matching, and ν is an important hyperparameter that

controls the proportion of outliers that the model may consider an anomaly. In

practice, ν determines the (approximate) percentage of samples that the model

can "reject" (i.e. consider outliers), and at the same time affects the flexibility of

the boundary that fits the normal data. The larger the value of ν, the more the

model is inclined to determine a smaller area of "normality" and thus increases

the number of potential anomalies.

To solve a problem in a space of very high dimensionality (or even infinite),

the kernel trick is used. Thanks to it, we do not have to explicitly use the Φ

projection. Instead, we introduce a kernel function 𝐾(𝑥𝑖, 𝑥𝑗) = 〈Φ(𝑥𝑖), Φ(𝑥𝑗)〉

3 B. Al-Duwairi, A. Razaque, A Survey of AI-Based Intrusion Detection Systems for Cloud

Computing Environments, “International Journal of Cloud Applications and Computing” (IJCAC),

2019, Vol. 9, No. 3, R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (2nd Edi-

tion), MIT Press, 2018.

189

which indirectly expresses the dot product in the feature space.4 The most

commonly adopted kernel is the RBF (Radial Basis Function), defined as

𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝(−𝛾 ∥ 𝑥𝑖 − 𝑥𝑗 ∥ 2)

where γ is a parameter that determines the “range” of the influence of individual

samples on the shape of the boundary. At a higher γ value, the boundary may

become more jagged (more closely aligned with local data irregularities), and at

too small, it may become too smooth, which may not capture subtle anomalies.

The key is that after training the One-Class SVM, we get the decision

function f(x) = w⋅Φ(x)−R. If f(x) is positive, the point x is considered to be. If

the function value is positive, the instance is classified as “normal”, whereas if it

is negative, it is classified as “anomalous”. From a cybersecurity perspective,

this model is trained exclusively on those segments of network traffic or log

records that can be reliably assumed to represent normal behavior. As a result,

any new traffic that deviates from the learned patterns produces a negative

decision function value and is flagged as a potential threat.

This approach has several practical advantages. It does not require large

labeled attack datasets5 (which are often rare or difficult to collect), while still

being able to effectively identify previously unseen situations that did not occur

during the system's normal operation period. In the real world, this means that

One-Class SVM can often detect a wide range of previously unknown attacks

(zero-day attacks), whose signatures cannot be predefined in advance.

Of course, the model is not without limitations. If 𝜈, γ, or the kernel type is

not chosen appropriately, it may either generate too many false alarms or fail to

detect subtle anomalies. Nevertheless, One-Class SVM has become one of the

most popular anomaly detection tools in network environments, offering a useful

combination of conceptual simplicity, reliable performance in many cases, and

broad support in machine learning libraries such as Scikit-learn.

3. Example Illustrating the Basic Calculations in One-Class SVM on

Two Points in a 2-Dimensional Space

This is only an overview diagram that shows what the calculations might

look like and how to confirm them in Python. In practice, One-Class SVM

usually operates on a larger number of samples and in higher dimensionality and

4 N. Kshetri, Artificial Intelligence in Cyber Security, “IT Professional” 2018, Vol. 20, No. 3.
5 Yi Chen, Wang Ding, Isolation Forest for Anomaly Detection, Mathematical Problems in

Engineering, 2018; S. Shalev-Shwartz, S. Ben-David, Understanding Machine Learning: From

Theory to Algorithms, Cambridge University Press, 2019.

190

additionally introduces the so-called slack variables (ξ) and more extensive

optimization conditions. Nevertheless, this example will allow you to see “in

a nutshell” where some values come from.

Assumptions and data

Let us assume that we have 2 points considered “normal”

𝑥1 = (0,0), 𝑥2 = (1,1)

We choose the RBF (Radial Basis Function) kernel function with γ = 1, ν = 0.5.

In One-Class SVM (in the version with the dual optimization form), we aim

to determine, for m.in example, the αi coefficients and the threshold value ρ

In simplified conditions (ignoring slack ξ) we have, among others,

∑ 𝛼𝑖

𝑛

𝑖=1

=
1

𝑣𝑛

n=2 (number of points), and ν=0.5, so

∑ 𝛼𝑖

𝑛

𝑖=1

=
1

0.5 ∗ 2
= 1

To solve the problem of minimization (or maximization in dual form), we

also need to use the kernel matrix

Kernel matrix calculations

For γ=1

1 𝐾(𝑥1, 𝑥1) = 𝑒𝑥𝑝(−1 ×∥ (0,0) − (0,0) ∥ 2) = 𝑒𝑥𝑝(0) = 1

2 𝐾(𝑥1, 𝑥2) = exp(−1 ×∥ (0,0) − (1,1) ∥ 2) = exp(−1 × 2) = exp(−2)

3 𝐾(𝑥2, 𝑥1) = exp(−1 ×∥ (1,1) − (0,0) ∥ 2) = exp(−2)

4 𝐾(𝑥2, 𝑥2) = exp(−1 ×∥ (1,1) − (1,1) ∥ 2) = exp(0) = 1

Thus, the kernel matrix K (2×2) looks like this

𝐾 = [1 𝑒−2

𝑒−2 1
]

4. Estimating

In the full formulation of the One-Class SVM, we are looking for a solution

(in the dual version) to the problem

𝑚𝑎𝑥𝛼 −
1

2
∑

𝑛

𝑖=1

∑ 𝛼𝑖𝛼𝑗 𝐾(𝑥𝑖 , 𝑥𝑗)

𝑛

𝑗=1

191

Under the conditions of

0 ≤ 𝛼 ≤
1

𝑛𝑣
, ∑ 𝛼𝑖 =

1

𝑣𝑛

𝑛

𝑖=1

For the mini-example under consideration and ν=0.5, it is common (but not

always) to obtain a solution in which α1=α2 When α1+α2=1α, the natural
candidate is α1=0.5 and α2 =0.5. Then, based on αi, we determine ρ. After

omitting the slacks and simplifying the conditions, typically ρ is equal to
αi×K(xi,xi) for those xithat lie on the boundary. In practice, however, it may

turn out that ρ requires minimal corrections, especially if the boundary
conditions αiare violated. However, in such a small example, where the data is

perfectly "clean", a solution like this is possible.

After finding αiand ρ, the decision function takes the form:

𝑓(𝑥) = ∑ 𝛼𝑖𝐾(𝑥𝑖, 𝑥) − 𝜌
2

𝑖=1

If f(x) ≥ 0, the point x x is considered "normal" (the model says: +1), and if

f(x)< 0 is considered an anomaly (-1).

5. Example Implementation

Below is a Python code that confirms that in practice (for such a small set)

One-Class SVM will train quickly and give results indicating that both points are

"normal". The script will also display the value of dual_coef_ (corresponds to

α coefficients) and intercept_ (corresponds to – ρin the decision function)

calculated by the library.

Code

import numpy as np

from sklearn.svm import OneClassSVM

Nasze dwie próbki

X = np.array([

 [0.0, 0.0],

 [1.0, 1.0]

])

Inicjalizujemy One-Class SVM

192

Ustawiamy gamma=1 i nu=0.5 (tak jak w założeniach)

model = OneClassSVM(kernel='rbf', gamma=1.0, nu=0.5)

Uczymy model na podstawie wyłącznie tych 2 punktów

model.fit(X)

Podglądamy kluczowe atrybuty

print("Alfa (dual_coef_):", model.dual_coef_)

print("Intercept_ (odpowiada -rho):", model.intercept_)

Sprawdzamy predykcję dla obu punktów

predictions = model.predict(X)

print("Predykcje:", predictions)

Code Result

Alfa (dual_coef_): [[0.5 0.5]]

Intercept_ (odpowiada -rho): [-0.56766764]

Predykcje: [1 1]

Explanation of the most important elements

model.dual_coef_ – a matrix containing αi from a dual solution. In scikit-

learn, it is written as a 2D array, usually [1 x n_samples].

model.intercept_ is a free term in the decision-making function,

corresponding to −ρ.

model.predict(X) – for each point in X, it returns +1 (normal) or -1

(anomalous).

With such a small example (only two points), one would expect both to be

considered normal, since science proceeds solely on these two observations. As

a rule, dual_coef_ will indicate that α1 +α2α1 = 1/(ν⋅n)

The exact values may differ slightly from the intuitive 0.5 / 0.5, due to

implementation details and possible regularization terms in the solver.

The diagram above shows how the main ideas of One-Class SVM work on

a microscale

The kernel matrix determines the similarity between points and allows for

a non-linear demarcation of the area of normality.

The α coefficients affect how much each point “pushes” the border in its

vicinity.

The ν parameter controls how much of the samples can be considered

outliers, and

γ in RBF determines how local (or global) the match will be.

193

In real-world applications (with hundreds or thousands of points), solving

equations is too complex for manual calculation, but it is based on the same

principles. The implementation in scikit-learn allows you to quickly check what

values αand ρ have been determined by the solver, as well as verify which

samples will be considered anomalous.

Summary

The presented considerations lead to the conclusion that One-Class SVM

algorithms, complemented by additional methods such as Isolation Forest or

autoencoders, form the foundation of a modern approach to threat detection in

computer networks. They are particularly effective in situations where traditional

signature-based systems do not provide suitable attack patterns or when

cybercriminals employ unique, previously unknown techniques.

However, the preparation of high-quality data is crucial, ensuring that it is

both representative of normal traffic and, if possible, includes various examples

of suspicious behavior to verify and calibrate the model (although One-Class

SVM itself learns from normal samples).

Deploying such solutions in a production environment requires careful

integration with SIEM systems, continuous performance monitoring (especially

in terms of false alarm rates), and periodic parameter tuning, which helps adapt

to changing network traffic patterns.

The article concludes by emphasizing that, in an era of rapidly evolving

threats and highly dynamic IT systems, combining machine learning with good

network security practices can significantly enhance protection levels and enable

a more proactive defense against attacks.

Bibliography

Al-Duwairi B., Razaque A., A Survey of AI-Based Intrusion Detection Systems for Cloud

Computing Environments, “International Journal of Cloud Applications and Computing”

(IJCAC) 2019, Vol. 9, No. 3.

Chen Yi, Ding Wang, Isolation Forest for Anomaly Detection, Mathematical Problems in

Engineering, 2018.

Goodfellow I., McDaniel P., Papernot N., Making Machine Learning Robust Against Adversarial

Inputs, “Communications of the ACM” 2018, Vol. 61, No. 7.

Hu Jing, et al., A Deep Learning Approach for Intrusion Detection Using Recurrent Neural

Networks, IEEE Access, Vol. 6, 2018.

Kshetri N., Artificial Intelligence in Cyber Security, “IT Professional” 2018, Vol. 20, No. 3.

194

López-Martín M., Carro B., Sánchez-Esguevillas A., Lloret J., Network Traffic Classifier With

Convolutional and Recurrent Neural Networks for Internet of Things, IEEE Access, Vol. 5,

2017 (updated online in 2018).

Ngo Quang-Hung, et al., Unsupervised Deep Learning for Real-Time Cyber Anomaly Detection,

IEEE Access, Vol. 7, 2019.

Sarker I., et al., IntrudTree: A Machine Learning Based Cyber Security Intrusion Detection Model,

“Symmetry” 2021, Vol. 13, No. 4.

Shalev-Shwartz S., Ben-David S., Understanding Machine Learning: From Theory to Algorithms,

Cambridge University Press, 2019.

Sutton R.S., Barto A.G., Reinforcement Learning: An Introduction (2nd Edition), MIT Press, 2018.

