Dydaktyka Informatyki 20(2025) Uniwersytet Rzeszowski

®
d I ISSN 2083-3156; e-ISSN 2543-9847
DOI: 10.15584/di.2025.20.16

dydaktyka

informatyki https://www.journals.ur.edu.pl/di

Jacek WOLOSZYN"“'!, Michal WOLOSZYN?

"ORCID: 0000-0003-4340-9853. Dr inz., Uniwersytet Radomski, Wydziat Informatyki
i Matematyki, Katedra Informatyki, ul. Malczewskiego 204, 26-600 Radom,
e-mail: jacek.woloszyn@uthrad.pl
2 BSe, student, Goldsmiths, University of London, 8 Lewisham Way, London SE 14 6NW,
e-mail: mwolo001@gold.ac.uk

data zlozenia tekstu do Redakcji DI: 18.05.2025; data wstgpnej oceny artykutu: 27.05.2025

THEORETICAL CONSIDERATIONS ON ARTIFICIAL
INTELLIGENCE AND CYBERSECURITY, ONE-CLASS SVM
FOR ANOMALY DETECTION IN NETWORK TRAFFIC

ROZWAZANIA TEORETYCZNE NA TEMAT SZTUCZNEJ
INTELIGENCJI I CYBERBEZPIECZENSTWA, ONE-CLASS SVM
DO WYKRYWANIA ANOMALII W RUCHU SIECIOWYM

Keywords: Python, artificial intelligence, cybersecurity, One-Class SVM.
Stowa kluczowe: Python, sztuczna inteligencja, cyberbezpieczenstwo, One-Class SVM.

Abstract

In this article, One-Class SVM has been highlighted as a particularly valuable approach, as it
does not require collecting large datasets of labeled attack samples. Instead, it effectively models
normal behavior and identifies significant deviations from the expected pattern.

Both theoretical considerations and a Python code example have been presented, demonstrat-
ing how such a model can be trained on real or synthetic network data and subsequently used to
detect potential anomalies.

Additionally, the text includes guidelines for data preparation, covering collection, cleaning,
normalization, and potential dimensionality reduction, as well as hyperparameter optimization
(including nu and gamma).

Furthermore, a mathematical perspective is provided, explaining the role of the weight vector
(w), the threshold value (R), and the kernel function, which enables nonlinear mapping and the
separation of normal samples from outliers.

185

http://dx.doi.org/10.15584/di.2025.20.16
mailto:jacek.woloszyn@uthrad.pl
https://orcid.org/0000-0003-4340-9853

Streszczenie

W niniejszym artykule skupiono si¢ na One-Class SVM jako szczegélnie wartosciowym
podejsciu, gdyz nie wymaga ono gromadzenia duzych zbioréow etykietowanych probek atakow,
natomiast potrafi opisa¢ normalne zachowania i rozpoznaé kazde istotne odchylenie od wzorca.

Przedstawiono rozwazania teoretyczne i zaprezentowano przyktad kodu w Pythonie de-
monstrujacy, w jaki sposob mozna w praktyce trenowac taki model na rzeczywistych lub syn-
tetycznych danych sieciowych, a nastgpnie wykorzystywaé go do oznaczania potencjalnych
anomalii.

W tekscie zawarto ponadto wskazéwki dotyczace przygotowania danych (od zbierania po-
przez czyszczenie, normalizacje i ewentualng redukcje wymiarowosci), jak rowniez optymalizacji
hiperparametréw (m.in. nu, gamma).

Omowiono tez, w ujgciu matematycznym, na czym polega rola wektora w, warto$ci progowej
R oraz funkcji jadra (kernel), ktéra umozliwia nieliniowe odwzorowanie i oddzielenie normalnych
probek od odstajacych.

Introduction

In the article “Advanced Artificial Intelligence Methods in Cybersecurity,
Threat and Anomaly Detection Using Unsupervised Learning Techniques”, the
importance of anomaly detection in the context of cybersecurity is discussed,
along with various approaches and algorithms, including unsupervised learning
techniques such as One-Class SVM and Isolation Forest. It is highlighted that
these tools can be particularly effective when there is an insufficient number of
attack samples available or when an attack has a completely new, previously
unknown nature (zero-day attacks).

This text presents the transition from theory to practice by demonstrating
a detailed example focusing on One-Class SVM as an anomaly detection model
for network traffic.

One-Class SVM has gained popularity in network security applications
because it does not require access to labeled attack samples. It only needs
a sample of “normal” network traffic, and the model learns the characteristic
behavioral patterns. Subsequently, anything that deviates from the boundary
established by the algorithm is marked as a potential anomaly.

This approach is particularly effective in environments' where many
resources and processes undergo continuous evolution, and attacks take on ever-
changing forms.

' Hu, Jing, et al., 4 Deep Learning Approach for Intrusion Detection Using Recurrent Neural
Networks, IEEE Access, Vol. 6, 2018; Ngo, Quang-Hung, et al., Unsupervised Deep Learning for
Real-Time Cyber Anomaly Detection, IEEE Access, Vol. 7, 2019.

186

1. Environment and Data Preparation

Environment and data preparation® begins with selecting the appropriate tool
for experiments and providing a representative dataset of network traffic
information. Typically, work is conducted in a Python 3 environment with
support from popular libraries such as NumPy, Pandas, and Scikit-learn, as they
offer comprehensive functionalities for data loading, preprocessing, and
analysis, as well as implementing machine learning algorithms.

The first step is ensuring that all necessary packages are installed. This can
be done using the pip package manager or Anaconda, which helps maintain
consistent library versions and minimizes conflicts between dependencies.

On the data side, the initial task is to collect or acquire a dataset describing
both normal network traffic and potential anomalies. The easiest approach is to
use publicly available datasets, such as KDD Cup 99, UNSW-NBI15, or other
benchmark datasets containing recorded traffic traces with annotations indicating
normal or attack-related activity. If public datasets cannot be used, or if there is
aneed to train the algorithm on a specific environment, it is necessary to
generate custom logs and metadata from network monitoring systems like Zeek
(formerly Bro), Suricata, or firewall log analysis tools.

Once data is gathered, it should be standardized, which includes format
conversion—usually to CSV or Parquet, where each column represents a single
feature. At this stage, attention should be paid to the range and scale of
attributes, such as packet count per flow, session duration, or protocol type. It is
often useful to handle missing values or remove erroneous records (e.g., those
containing invalid source port values).

After eliminating undesirable entries, preprocessing is performed, applying
normalization or standardization techniques such as MinMaxScaler or
StandardScaler to ensure that features have similar value ranges and prevent the
model from being biased toward attributes with large scales. The next step may
involve dimensionality reduction (e.g., PCA), especially if the dataset contains
dozens or hundreds of columns, which can complicate One-Class SVM training.

For large datasets, sampling techniques are often applied, selecting
arandom subset of observations to accelerate training and facilitate concept
validation. Finally, the dataset should be split into training, validation, and test

2 I. Goodfellow, P. McDaniel, N. Papernot, Making Machine Learning Robust Against
Adversarial Inputs, Communications of the ACM, Vol. 61, No. 7, 2018; M. Lopez-Martin, B. Carro,
A. Sanchez-Esguevillas, J. Lloret, Network Traffic Classifier With Convolutional and Recurrent
Neural Networks for Internet of Things, IEEE Access, Vol. 5, 2017 (updated online in 2018);
I. Sarker, et al., IntrudTree: A Machine Learning Based Cyber Security Intrusion Detection Model,
“Symmetry” 2021, Vol. 13, No. 4.

187

sets, enabling both optimal parameter selection for One-Class SVM?® and
evaluating its effectiveness on unseen samples.

This logical sequence of steps, from environment setup, data collection, and
preprocessing to proper segmentation, provides a solid foundation for further
work on anomaly detection in network traffic.

2. Model One-Class

One-Class SVM is designed as an anomaly detection method in which we
learn only from "normal" examples, and treat each new, abnormal observation as
a potential anomaly. Its basis is the idea of determining the boundary in the
space of features in such a way as to best separate normal data from the rest (in
a sense from the "emptiness"). Mathematically, given the training set, we want to
find such a vector {x;}]=;w and a threshold value R that the values are at least
equal to w - @(xi)R for as many normal samples as possible (here @(-)

®() means a mapping to the most often nonlinear feature space, which can
be multivariate. In the classic formulation, it is usually written as follows:

n
) 1) 1
mmw,s,REHW” - R+ %Z‘Si
i=1

with conditions:
wo(x)=R—- ¢, =20,i=1,..,n

The expression &i are the so-called slack variables, which allow for some
acceptable "errors" in matching, and v is an important hyperparameter that
controls the proportion of outliers that the model may consider an anomaly. In
practice, v determines the (approximate) percentage of samples that the model
can "reject" (i.e. consider outliers), and at the same time affects the flexibility of
the boundary that fits the normal data. The larger the value of v, the more the
model is inclined to determine a smaller area of "normality" and thus increases
the number of potential anomalies.

To solve a problem in a space of very high dimensionality (or even infinite),
the kernel trick is used. Thanks to it, we do not have to explicitly use the @
projection. Instead, we introduce a kernel function K(xi, xj) = (P(xi), ®(xj))

3 B. Al-Duwairi, A. Razaque, 4 Survey of Al-Based Intrusion Detection Systems for Cloud
Computing Environments, “International Journal of Cloud Applications and Computing” (IICAC),
2019, Vol. 9, No. 3, R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (2nd Edi-
tion), MIT Press, 2018.

188

which indirectly expresses the dot product in the feature space.* The most
commonly adopted kernel is the RBF (Radial Basis Function), defined as

K(xi,xj) = exp(—=y l xi — xj Il 2)

where y is a parameter that determines the “range” of the influence of individual
samples on the shape of the boundary. At a higher y value, the boundary may
become more jagged (more closely aligned with local data irregularities), and at
too small, it may become too smooth, which may not capture subtle anomalies.

The key is that after training the One-Class SVM, we get the decision
function f(x) = w-®(x)—R. If f(x) is positive, the point x is considered to be. If
the function value is positive, the instance is classified as “normal”, whereas if it
is negative, it is classified as “anomalous”. From a cybersecurity perspective,
this model is trained exclusively on those segments of network traffic or log
records that can be reliably assumed to represent normal behavior. As a result,
any new traffic that deviates from the learned patterns produces a negative
decision function value and is flagged as a potential threat.

This approach has several practical advantages. It does not require large
labeled attack datasets® (which are often rare or difficult to collect), while still
being able to effectively identify previously unseen situations that did not occur
during the system's normal operation period. In the real world, this means that
One-Class SVM can often detect a wide range of previously unknown attacks
(zero-day attacks), whose signatures cannot be predefined in advance.

Of course, the model is not without limitations. If v, y, or the kernel type is
not chosen appropriately, it may either generate too many false alarms or fail to
detect subtle anomalies. Nevertheless, One-Class SVM has become one of the
most popular anomaly detection tools in network environments, offering a useful
combination of conceptual simplicity, reliable performance in many cases, and
broad support in machine learning libraries such as Scikit-learn.

3. Example Illustrating the Basic Calculations in One-Class SVM on
Two Points in a 2-Dimensional Space

This is only an overview diagram that shows what the calculations might
look like and how to confirm them in Python. In practice, One-Class SVM
usually operates on a larger number of samples and in higher dimensionality and

4 N. Kshetri, Artificial Intelligence in Cyber Security, “IT Professional” 2018, Vol. 20, No. 3.

5 Yi Chen, Wang Ding, Isolation Forest for Anomaly Detection, Mathematical Problems in
Engineering, 2018; S. Shalev-Shwartz, S. Ben-David, Understanding Machine Learning: From
Theory to Algorithms, Cambridge University Press, 2019.

189

additionally introduces the so-called slack variables (§) and more extensive
optimization conditions. Nevertheless, this example will allow you to see “in
a nutshell” where some values come from.

Assumptions and data

Let us assume that we have 2 points considered “normal”

x1 = (0,0),x2 = (1,1)

We choose the RBF (Radial Basis Function) kernel function with y=1,v=0.5.
In One-Class SVM (in the version with the dual optimization form), we aim
to determine, for m.in example, the ai coefficients and the threshold value p
In simplified conditions (ignoring slack &) we have, among others,
n

Z 1

2%

i=1

n=2 (number of points), and v=0.5, so

n
o sz
: ai_0.5*2_
i=1

To solve the problem of minimization (or maximization in dual form), we
also need to use the kernel matrix

Kernel matrix calculations

For y=1

1 K(x1,x1) = exp(—=1 x|l (0,0) —(0,0) I 2) = exp(0) =1

2 K(x1,x2) = exp(—1 xIl (0,0) — (1,1) Il 2) = exp(—1 X 2) = exp(—2)

3 K(x2,x1) = exp(—1 x|l (1,1) — (0,0) Il 2) = exp(—2)

4 K(x2,x2) = exp(—1 x|l (1,1) = (1,1) | 2) = exp(0) =1

Thus, the kernel matrix K (2x2) looks like this

1 e
K=[
o2

-2

1

4. Estimating

In the full formulation of the One-Class SVM, we are looking for a solution
(in the dual version) to the problem

n n
Z Zal-a]- K(xl-,x]-)
i=1

j=1

maxa —

N| =

190

Under the conditions of
n
1
0<a<— Z =
n
For the mini-example under consideration and v=0.5, it is common (but not
always) to obtain a solution in which al=a2 When al+a2=1q, the natural
candidate is a1=0.5 and a2 =0.5. Then, based on ai, we determine p. After
omitting the slacks and simplifying the conditions, typically p is equal to
aixK(xixi) for those xithat lie on the boundary. In practice, however, it may
turn out that p requires minimal corrections, especially if the boundary
conditions aiare violated. However, in such a small example, where the data is

perfectly "clean", a solution like this is possible.
After finding aiand p, the decision function takes the form:

2
)=) kG —p
1=
If f(x) > 0, the point X x is considered "normal" (the model says: +1), and if
f(x)< 0 is considered an anomaly (-1).

5. Example Implementation

Below is a Python code that confirms that in practice (for such a small set)
One-Class SVM will train quickly and give results indicating that both points are
"normal". The script will also display the value of dual coef (corresponds to
o coefficients) and intercept (corresponds to — pin the decision function)
calculated by the library.

Code
import numpy as np

from sklearn.svm import OneClassSVM

Nasze dwie proébki

X = np.array ([
[0.0, 0.01,
[1.0, 1.0]

1)

Inicjalizujemy One-Class SVM

191

Ustawiamy gamma=1 i nu=0.5 (tak jak w zalozeniach)
model = OneClassSVM(kernel="'rbf', gamma=1.0, nu=0.5)

Uczymy model na podstawie wylacznie tych 2 punktéw
model. fit (X)

Podgladamy kluczowe atrybuty
print ("Alfa (dual coef):", model.dual coef)
print ("Intercept (odpowiada -rho):", model.intercept)

Sprawdzamy predykcje dla obu punktdw
predictions = model.predict (X)

print ("Predykcje:", predictions)

Code Result

Alfa (dual coef): [[0.5 0.5]]

Intercept (odpowiada -rho): [-0.56766764]

Predykcje: [1 1]

Explanation of the most important elements

model.dual coef - a matrix containing ai from a dual solution. In scikit-
learn, it is written as a 2D array, usually [1 x n_samples].

model.intercept is a free term in the decision-making function,
corresponding to —p.

model.predict(X) — for each point in X, it returns +1 (normal) or -1
(anomalous).

With such a small example (only two points), one would expect both to be
considered normal, since science proceeds solely on these two observations. As
arule, dual coef will indicate that al +a2al = 1/(v-n)

The exact values may differ slightly from the intuitive 0.5 / 0.5, due to
implementation details and possible regularization terms in the solver.

The diagram above shows how the main ideas of One-Class SVM work on
a microscale

The kernel matrix determines the similarity between points and allows for
a non-linear demarcation of the area of normality.

The a coefficients affect how much each point “pushes” the border in its
vicinity.

The v parameter controls how much of the samples can be considered
outliers, and

v in RBF determines how local (or global) the match will be.

192

In real-world applications (with hundreds or thousands of points), solving
equations is too complex for manual calculation, but it is based on the same
principles. The implementation in scikit-learn allows you to quickly check what
values aand p have been determined by the solver, as well as verify which
samples will be considered anomalous.

Summary

The presented considerations lead to the conclusion that One-Class SVM
algorithms, complemented by additional methods such as Isolation Forest or
autoencoders, form the foundation of a modern approach to threat detection in
computer networks. They are particularly effective in situations where traditional
signature-based systems do not provide suitable attack patterns or when
cybercriminals employ unique, previously unknown techniques.

However, the preparation of high-quality data is crucial, ensuring that it is
both representative of normal traffic and, if possible, includes various examples
of suspicious behavior to verify and calibrate the model (although One-Class
SVM itself learns from normal samples).

Deploying such solutions in a production environment requires careful
integration with SIEM systems, continuous performance monitoring (especially
in terms of false alarm rates), and periodic parameter tuning, which helps adapt
to changing network traffic patterns.

The article concludes by emphasizing that, in an era of rapidly evolving
threats and highly dynamic IT systems, combining machine learning with good
network security practices can significantly enhance protection levels and enable
a more proactive defense against attacks.

Bibliography

Al-Duwairi B., Razaque A., 4 Survey of Al-Based Intrusion Detection Systems for Cloud
Computing Environments, “International Journal of Cloud Applications and Computing”
(IICAC) 2019, Vol. 9, No. 3.

Chen Yi, Ding Wang, Isolation Forest for Anomaly Detection, Mathematical Problems in
Engineering, 2018.

Goodfellow 1., McDaniel P., Papernot N., Making Machine Learning Robust Against Adversarial
Inputs, “Communications of the ACM” 2018, Vol. 61, No. 7.

Hu Jing, et al., A Deep Learning Approach for Intrusion Detection Using Recurrent Neural
Networks, IEEE Access, Vol. 6, 2018.

Kshetri N., Artificial Intelligence in Cyber Security, “IT Professional” 2018, Vol. 20, No. 3.

193

Loépez-Martin M., Carro B., Sanchez-Esguevillas A., Lloret J., Network Traffic Classifier With
Convolutional and Recurrent Neural Networks for Internet of Things, IEEE Access, Vol. 5,
2017 (updated online in 2018).

Ngo Quang-Hung, et al., Unsupervised Deep Learning for Real-Time Cyber Anomaly Detection,
IEEE Access, Vol. 7, 2019.

Sarker L., et al., IntrudTree: A Machine Learning Based Cyber Security Intrusion Detection Model,
“Symmetry” 2021, Vol. 13, No. 4.

Shalev-Shwartz S., Ben-David S., Understanding Machine Learning: From Theory to Algorithms,
Cambridge University Press, 2019.

Sutton R.S., Barto A.G., Reinforcement Learning: An Introduction (2nd Edition), MIT Press, 2018.

