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Abstract  

In this article, One-Class SVM has been highlighted as a particularly valuable approach, as it 

does not require collecting large datasets of labeled attack samples. Instead, it effectively models 

normal behavior and identifies significant deviations from the expected pattern. 

Both theoretical considerations and a Python code example have been presented, demonstrat-

ing how such a model can be trained on real or synthetic network data and subsequently used to 

detect potential anomalies. 

Additionally, the text includes guidelines for data preparation, covering collection, cleaning, 

normalization, and potential dimensionality reduction, as well as hyperparameter optimization 

(including nu and gamma). 

Furthermore, a mathematical perspective is provided, explaining the role of the weight vector 

(𝑤), the threshold value (𝑅), and the kernel function, which enables nonlinear mapping and the 

separation of normal samples from outliers. 
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Streszczenie 

W niniejszym artykule skupiono się na One-Class SVM jako szczególnie wartościowym 

podejściu, gdyż nie wymaga ono gromadzenia dużych zbiorów etykietowanych próbek ataków, 

natomiast potrafi opisać normalne zachowania i rozpoznać każde istotne odchylenie od wzorca.  

Przedstawiono rozważania teoretyczne i zaprezentowano przykład kodu w Pythonie de-

monstrujący, w jaki sposób można w praktyce trenować taki model na rzeczywistych lub syn-

tetycznych danych sieciowych, a następnie wykorzystywać go do oznaczania potencjalnych 

anomalii.  

W tekście zawarto ponadto wskazówki dotyczące przygotowania danych (od zbierania po-

przez czyszczenie, normalizację i ewentualną redukcję wymiarowości), jak również optymalizacji 

hiperparametrów (m.in. nu, gamma).  

Omówiono też, w ujęciu matematycznym, na czym polega rola wektora 𝑤, wartości progowej 

𝑅 oraz funkcji jądra (kernel), która umożliwia nieliniowe odwzorowanie i oddzielenie normalnych 

próbek od odstających. 

Introduction 

In the article “Advanced Artificial Intelligence Methods in Cybersecurity, 

Threat and Anomaly Detection Using Unsupervised Learning Techniques”, the 

importance of anomaly detection in the context of cybersecurity is discussed, 

along with various approaches and algorithms, including unsupervised learning 

techniques such as One-Class SVM and Isolation Forest. It is highlighted that 

these tools can be particularly effective when there is an insufficient number of 

attack samples available or when an attack has a completely new, previously 

unknown nature (zero-day attacks). 

This text presents the transition from theory to practice by demonstrating 

a detailed example focusing on One-Class SVM as an anomaly detection model 

for network traffic. 

One-Class SVM has gained popularity in network security applications 

because it does not require access to labeled attack samples. It only needs 

a sample of “normal” network traffic, and the model learns the characteristic 

behavioral patterns. Subsequently, anything that deviates from the boundary 

established by the algorithm is marked as a potential anomaly. 

This approach is particularly effective in environments1 where many 

resources and processes undergo continuous evolution, and attacks take on ever-

changing forms. 

 
1 Hu, Jing, et al., A Deep Learning Approach for Intrusion Detection Using Recurrent Neural 

Networks, IEEE Access, Vol. 6, 2018; Ngo, Quang-Hung, et al., Unsupervised Deep Learning for 

Real-Time Cyber Anomaly Detection, IEEE Access, Vol. 7, 2019. 
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1. Environment and Data Preparation 

Environment and data preparation2 begins with selecting the appropriate tool 

for experiments and providing a representative dataset of network traffic 

information. Typically, work is conducted in a Python 3 environment with 

support from popular libraries such as NumPy, Pandas, and Scikit-learn, as they 

offer comprehensive functionalities for data loading, preprocessing, and 

analysis, as well as implementing machine learning algorithms. 

The first step is ensuring that all necessary packages are installed. This can 

be done using the pip package manager or Anaconda, which helps maintain 

consistent library versions and minimizes conflicts between dependencies. 

On the data side, the initial task is to collect or acquire a dataset describing 

both normal network traffic and potential anomalies. The easiest approach is to 

use publicly available datasets, such as KDD Cup ’99, UNSW-NB15, or other 

benchmark datasets containing recorded traffic traces with annotations indicating 

normal or attack-related activity. If public datasets cannot be used, or if there is 

a need to train the algorithm on a specific environment, it is necessary to 

generate custom logs and metadata from network monitoring systems like Zeek 

(formerly Bro), Suricata, or firewall log analysis tools. 

Once data is gathered, it should be standardized, which includes format 

conversion—usually to CSV or Parquet, where each column represents a single 

feature. At this stage, attention should be paid to the range and scale of 

attributes, such as packet count per flow, session duration, or protocol type. It is 

often useful to handle missing values or remove erroneous records (e.g., those 

containing invalid source port values). 

After eliminating undesirable entries, preprocessing is performed, applying 

normalization or standardization techniques such as MinMaxScaler or 

StandardScaler to ensure that features have similar value ranges and prevent the 

model from being biased toward attributes with large scales. The next step may 

involve dimensionality reduction (e.g., PCA), especially if the dataset contains 

dozens or hundreds of columns, which can complicate One-Class SVM training. 

For large datasets, sampling techniques are often applied, selecting 

a random subset of observations to accelerate training and facilitate concept 

validation. Finally, the dataset should be split into training, validation, and test 

 
2 I. Goodfellow, P. McDaniel, N. Papernot, Making Machine Learning Robust Against 

Adversarial Inputs, Communications of the ACM, Vol. 61, No. 7, 2018; M. López-Martín, B. Carro, 

A. Sánchez-Esguevillas, J. Lloret, Network Traffic Classifier With Convolutional and Recurrent 

Neural Networks for Internet of Things, IEEE Access, Vol. 5, 2017 (updated online in 2018); 

I. Sarker, et al., IntrudTree: A Machine Learning Based Cyber Security Intrusion Detection Model, 

“Symmetry” 2021, Vol. 13, No. 4. 
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sets, enabling both optimal parameter selection for One-Class SVM3 and 

evaluating its effectiveness on unseen samples. 

This logical sequence of steps, from environment setup, data collection, and 

preprocessing to proper segmentation, provides a solid foundation for further 

work on anomaly detection in network traffic. 

2. Model One-Class 

One-Class SVM is designed as an anomaly detection method in which we 

learn only from "normal" examples, and treat each new, abnormal observation as 

a potential anomaly. Its basis is the idea of determining the boundary in the 

space of features in such a way as to best separate normal data from the rest (in 

a sense from the "emptiness"). Mathematically, given the training set, we want to 

find such a vector {𝑥𝑖}𝑖=1
𝑛 w and a threshold value R that the values are at least 

equal  to 𝑤 ⋅ 𝛷(𝑥𝑖)R for as many normal samples as possible (here 𝛷(⋅) 

Φ(⋅) means a mapping to the most often nonlinear feature space, which can 

be multivariate. In the classic formulation, it is usually written as follows: 

min𝑤,𝜀,𝑅

1

2
||𝑤||2 − 𝑅 +  

1

𝑣𝑛
∑ 𝜀𝑖

𝑛

𝑖=1

 

with conditions: 

𝑤 ∅(𝑥𝑖) ≥ 𝑅 − 𝜀𝑖, 𝜀𝑖 ≥ 0, 𝑖 = 1, … , 𝑛 

The expression ξi are the so-called slack variables, which allow for some 

acceptable "errors" in matching, and ν is an important hyperparameter that 

controls the proportion of outliers that the model may consider an anomaly. In 

practice, ν determines the (approximate) percentage of samples that the model 

can "reject" (i.e. consider outliers), and at the same time affects the flexibility of 

the boundary that fits the normal data. The larger the value of ν, the more the 

model is inclined to determine a smaller area of "normality" and thus increases 

the number of potential anomalies. 

To solve a problem in a space of very high dimensionality (or even infinite), 

the kernel trick is used. Thanks to it, we do not have to explicitly use the Φ 

projection. Instead, we introduce a kernel function 𝐾(𝑥𝑖, 𝑥𝑗) = 〈Φ(𝑥𝑖), Φ(𝑥𝑗)〉 

 
3 B. Al-Duwairi, A. Razaque, A Survey of AI-Based Intrusion Detection Systems for Cloud 

Computing Environments, “International Journal of Cloud Applications and Computing” (IJCAC), 

2019, Vol. 9, No. 3, R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (2nd Edi-

tion), MIT Press, 2018. 



189 

which indirectly expresses the dot product in the feature space.4 The most 

commonly adopted kernel is the RBF (Radial Basis Function), defined as 

𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝(−𝛾 ∥ 𝑥𝑖 − 𝑥𝑗 ∥ 2) 

where γ is a parameter that determines the “range” of the influence of individual 

samples on the shape of the boundary. At a higher γ value, the boundary may 

become more jagged (more closely aligned with local data irregularities), and at 

too small, it may become too smooth, which may not capture subtle anomalies. 

The key is that after training the One-Class SVM, we get the decision 

function f(x ) = w⋅Φ(x)−R. If f(x) is positive, the point x is considered to be. If 

the function value is positive, the instance is classified as “normal”, whereas if it 

is negative, it is classified as “anomalous”. From a cybersecurity perspective, 

this model is trained exclusively on those segments of network traffic or log 

records that can be reliably assumed to represent normal behavior. As a result, 

any new traffic that deviates from the learned patterns produces a negative 

decision function value and is flagged as a potential threat. 

This approach has several practical advantages. It does not require large 

labeled attack datasets5 (which are often rare or difficult to collect), while still 

being able to effectively identify previously unseen situations that did not occur 

during the system's normal operation period. In the real world, this means that 

One-Class SVM can often detect a wide range of previously unknown attacks 

(zero-day attacks), whose signatures cannot be predefined in advance. 

Of course, the model is not without limitations. If 𝜈, γ, or the kernel type is 

not chosen appropriately, it may either generate too many false alarms or fail to 

detect subtle anomalies. Nevertheless, One-Class SVM has become one of the 

most popular anomaly detection tools in network environments, offering a useful 

combination of conceptual simplicity, reliable performance in many cases, and 

broad support in machine learning libraries such as Scikit-learn. 

3. Example Illustrating the Basic Calculations in One-Class SVM on 

Two Points in a 2-Dimensional Space 

This is only an overview diagram that shows what the calculations might 

look like and how to confirm them in Python. In practice, One-Class SVM 

usually operates on a larger number of samples and in higher dimensionality and 

 
4 N. Kshetri, Artificial Intelligence in Cyber Security, “IT Professional” 2018, Vol. 20, No. 3. 
5 Yi Chen, Wang Ding, Isolation Forest for Anomaly Detection, Mathematical Problems in 

Engineering, 2018; S. Shalev-Shwartz, S. Ben-David, Understanding Machine Learning: From 

Theory to Algorithms, Cambridge University Press, 2019. 
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additionally introduces the so-called slack variables (ξ) and more extensive 

optimization conditions. Nevertheless, this example will allow you to see “in 

a nutshell” where some values come from. 

Assumptions and data 

Let us assume that we have 2 points considered “normal” 

𝑥1 = (0,0), 𝑥2 = (1,1) 

We choose the RBF (Radial Basis Function) kernel function with γ = 1, ν = 0.5. 

In One-Class SVM (in the version with the dual optimization form), we aim 

to determine, for m.in example, the αi coefficients and the threshold value ρ 

In simplified conditions (ignoring slack ξ) we have, among others,  

∑ 𝛼𝑖

𝑛

𝑖=1

=  
1

𝑣𝑛
 

n=2 (number of points), and ν=0.5, so 

∑ 𝛼𝑖

𝑛

𝑖=1

=  
1

0.5 ∗ 2
= 1 

To solve the problem of minimization (or maximization in dual form), we 

also need to use the kernel matrix 

Kernel matrix calculations 

For γ=1 

1 𝐾(𝑥1, 𝑥1) = 𝑒𝑥𝑝(−1 ×∥ (0,0) − (0,0) ∥ 2) = 𝑒𝑥𝑝(0) = 1 

2 𝐾(𝑥1, 𝑥2) = exp(−1 ×∥ (0,0) − (1,1) ∥ 2) = exp(−1 × 2) = exp(−2) 

3 𝐾(𝑥2, 𝑥1) = exp(−1 ×∥ (1,1) − (0,0) ∥ 2) = exp(−2) 

4 𝐾(𝑥2, 𝑥2) = exp(−1 ×∥ (1,1) − (1,1) ∥ 2) = exp(0) = 1 

Thus, the kernel matrix K (2×2) looks like this 

𝐾 =  [ 1 𝑒−2

𝑒−2 1
] 

4. Estimating 

In the full formulation of the One-Class SVM, we are looking for a solution 

(in the dual version) to the problem 

𝑚𝑎𝑥𝛼 − 
1

2
∑

𝑛

𝑖=1

∑ 𝛼𝑖𝛼𝑗 𝐾(𝑥𝑖 , 𝑥𝑗)

𝑛

𝑗=1
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Under the conditions of 

0 ≤ 𝛼 ≤
1

𝑛𝑣
, ∑ 𝛼𝑖 =  

1

𝑣𝑛

𝑛

𝑖=1

 

For the mini-example under consideration and ν=0.5, it is common (but not 

always) to obtain a solution in which α1=α2 When α1+α2=1α, the natural 
candidate is α1=0.5 and α2 =0.5. Then, based on αi, we determine ρ. After 

omitting the slacks and simplifying the conditions, typically ρ is equal to 
αi×K(xi,xi) for those xithat lie on the boundary. In practice, however, it may 

turn out that ρ requires minimal corrections, especially if the boundary 
conditions αiare violated. However, in such a small example, where the data is 

perfectly "clean", a solution like this is possible. 

After finding αiand ρ, the decision function takes the form: 

𝑓(𝑥) =  ∑ 𝛼𝑖𝐾(𝑥𝑖, 𝑥) − 𝜌
2

𝑖=1
 

If f(x ) ≥ 0, the point x x is considered "normal" (the model says: +1), and if 

f(x )< 0 is considered an anomaly (-1). 

5. Example Implementation 

Below is a Python code that confirms that in practice (for such a small set) 

One-Class SVM will train quickly and give results indicating that both points are 

"normal". The script will also display the value of dual_coef_ (corresponds to 

α coefficients) and intercept_ (corresponds to – ρin the decision function) 

calculated by the library. 

Code 

import numpy as np 

from sklearn.svm import OneClassSVM 

 

# Nasze dwie próbki 

X = np.array([ 

    [0.0, 0.0], 

    [1.0, 1.0] 

]) 

 

# Inicjalizujemy One-Class SVM 
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# Ustawiamy gamma=1 i nu=0.5 (tak jak w założeniach) 

model = OneClassSVM(kernel='rbf', gamma=1.0, nu=0.5) 

 

# Uczymy model na podstawie wyłącznie tych 2 punktów 

model.fit(X) 

 

# Podglądamy kluczowe atrybuty 

print("Alfa (dual_coef_):", model.dual_coef_) 

print("Intercept_ (odpowiada -rho):", model.intercept_) 

 

# Sprawdzamy predykcję dla obu punktów 

predictions = model.predict(X) 

print("Predykcje:", predictions) 

Code Result 

Alfa (dual_coef_): [[0.5 0.5]] 

Intercept_ (odpowiada -rho): [-0.56766764] 

Predykcje: [1 1] 

 

Explanation of the most important elements 

model.dual_coef_ – a matrix containing αi from a dual solution. In scikit-

learn, it is written as a 2D array, usually [1 x n_samples]. 

model.intercept_ is a free term in the decision-making function, 

corresponding to −ρ. 

model.predict(X) – for each point in X, it returns +1 (normal) or -1 

(anomalous). 

With such a small example (only two points), one would expect both to be 

considered normal, since science proceeds solely on these two observations. As 

a rule, dual_coef_ will indicate that α1 +α2α1 = 1/(ν⋅n) 

The exact values may differ slightly from the intuitive 0.5 / 0.5, due to 

implementation details and possible regularization terms in the solver. 

The diagram above shows how the main ideas of One-Class SVM work on 

a microscale 

The kernel matrix determines the similarity between points and allows for 

a non-linear demarcation of the area of normality. 

The α coefficients affect how much each point “pushes” the border in its 

vicinity. 

The ν parameter controls how much of the samples can be considered 

outliers, and  

γ in RBF determines how local (or global) the match will be. 
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In real-world applications (with hundreds or thousands of points), solving 

equations is too complex for manual calculation, but it is based on the same 

principles. The implementation in scikit-learn allows you to quickly check what 

values αand ρ have been determined by the solver, as well as verify which 

samples will be considered anomalous. 

Summary 

The presented considerations lead to the conclusion that One-Class SVM 

algorithms, complemented by additional methods such as Isolation Forest or 

autoencoders, form the foundation of a modern approach to threat detection in 

computer networks. They are particularly effective in situations where traditional 

signature-based systems do not provide suitable attack patterns or when 

cybercriminals employ unique, previously unknown techniques. 

However, the preparation of high-quality data is crucial, ensuring that it is 

both representative of normal traffic and, if possible, includes various examples 

of suspicious behavior to verify and calibrate the model (although One-Class 

SVM itself learns from normal samples). 

Deploying such solutions in a production environment requires careful 

integration with SIEM systems, continuous performance monitoring (especially 

in terms of false alarm rates), and periodic parameter tuning, which helps adapt 

to changing network traffic patterns. 

The article concludes by emphasizing that, in an era of rapidly evolving 

threats and highly dynamic IT systems, combining machine learning with good 

network security practices can significantly enhance protection levels and enable 

a more proactive defense against attacks. 
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