
195

Dydaktyka Informatyki 20(2025)

ISSN 2083-3156; e-ISSN 2543-9847

DOI: 10.15584/di.2025.20.17

https://www.journals.ur.edu.pl/di

Uniwersytet Rzeszowski

Jacek WOŁOSZYN 1, Michał WOŁOSZYN2

1 ORCID: 0000-0003-4340-9853. Dr inż., Uniwersytet Radomski, Wydział Informatyki

i Matematyki, Katedra Informatyki, ul. Malczewskiego 20A, 26-600 Radom,

e-mail: jacek.woloszyn@uthrad.pl
2 BSc, student,Goldsmiths, University of London, 8 Lewisham Way, London SE 14 6NW,

e-mail:mwolo001@gold.ac.uk

data złożenia tekstu do Redakcji DI: 18.05.2025; data wstępnej oceny artykułu: 27.05.2025

PRACTICAL IMPLEMENTATION OF ARTIFICIAL

INTELLIGENCE IN CYBERSECURITY, ONE-CLASS SVM

FOR ANOMALY DETECTION IN NETWORK TRAFFIC

PRAKTYCZNA IMPLEMENTACJA SZTUCZNEJ INTELIGENCJI

W CYBERBEZPIECZEŃSTWIE, ONE-CLASS SVM

DO WYKRYWANIA ANOMALII W RUCHU SIECIOWYM

Keywords: Python, artificial intelligence, cybersecurity, One-Class SVM.

Słowa kluczowe: Python, sztuczna inteligencja, cyberbezpieczeństwo, One-Class SVM.

Abstract

The presented material provides a detailed discussion on the implementation of One-Class

SVM in Python, including code examples and a sample CSV file containing network flow parame-

ters such as duration, number of packets, and packet sizes. This is a continuation of the article

Theoretical Considerations on Artificial Intelligence and Cybersecurity: One-Class SVM for

Anomaly Detection in Network Traffic. The authors emphasize the necessity of removing the label

column during training, as One-Class SVM is designed to identify anomalous observations based

solely on a dataset of normal behavior. The text outlines the key stages of working with the model,

including data loading, splitting into training and test sets, scaling, model initialization, and

evaluation of results using metrics such as Precision, Recall, and F1-score. It is noted that model

evaluation in laboratory conditions may be misleading if only a small number of samples are

available. The article also discusses hyperparameter tuning (nu, gamma) and explores potential

extensions, including combining One-Class SVM with other algorithms, integration with SIEM

systems, and the implementation of real-time streaming data processing.

http://dx.doi.org/10.15584/di.2025.20.17
mailto:jacek.woloszyn@uthrad.pl
https://orcid.org/0000-0003-4340-9853

196

Streszczenie

W artykule szczegółowo omówiono implementację One-Class SVM w języku Python wraz

z przykładami kodu i przykładowym fragmentem pliku CSV, w którym zapisano parametry doty-

czące przepływów sieciowych (takie jak czas trwania, liczba pakietów, rozmiary pakietów). Jest to

kontynuuacja artykułu Theoretical Considerations on Artificial Intelligence and Cybersecurity,

One-Class SVM for Anomaly Detection in Network Traffic. Autorzy zwracają uwagę na koniecz-

ność usunięcia kolumny etykiet (label) podczas treningu, ponieważ One-Class SVM przystosowa-

ny jest do identyfikowania nietypowych obserwacji, bazując wyłącznie na zbiorze zachowań

normalnych. W tekście opisano podstawowe etapy pracy z modelem: wczytanie danych, podział

na zbiór treningowy i testowy, skalowanie, inicjalizację modelu oraz ewaluację wyników z wyko-

rzystaniem miar typu Precision, Recall czy F1-score. Zwrócono uwagę, że ocena jakości modelu

w warunkach laboratoryjnych może być myląca, jeśli dysponuje się jedynie niewielką liczbą pró-

bek. Omówiono także zagadnienie dostrajania hiperparametrów (nu, gamma) i opisano możliwe

rozszerzenia obejmujące łączenie One-Class SVM z innymi algorytmami, integrację z systemami

SIEM czy wprowadzenie przetwarzania strumieniowego w czasie rzeczywistym.

Introduction

In recent years, there has been a growing interest in artificial intelligence

algorithms and machine learning methods that enhance anomaly detection in

network traffic, thereby strengthening the security of telecommunication and

information systems.

Unsupervised learning-based solutions, such as One-Class SVM, have

gained particular importance. These models can be trained solely on “normal”

examples, eliminating the need for a large labeled dataset of attacks.

Given that real-world data is often highly diverse (with numerous features,

different protocols, and large traffic volumes), proper analytical environment

preparation is essential, including data preprocessing and feature scaling.

Additionally, parameter selection, such as nu and gamma, plays a crucial

role in balancing effective anomaly detection while avoiding an excessive

number of false alarms.

1. Implementation in Python

The implementation in Python1 typically begins with importing the

necessary libraries: NumPy and Pandas for data handling, Scikit-learn (sklearn)

for machine learning, and optionally Matplotlib for basic visualization of results.

1 Ngo Quang-Hung, et al., Unsupervised Deep Learning for Real-Time Cyber Anomaly

Detection, IEEE Access, Vol. 7, 2019.

197

Once the environment is set up, the next step is loading the dataset, for example,

from a CSV file, where each column contains features describing network traffic.

In Python, this can be done using data = pd.read_csv(“network_data.csv”),

assuming that the file is in CSV format. If the dataset includes a label column

(e.g., “label” indicating whether a sample is an attack or normal behavior), it

should be ignored during training since One-Class SVM2 is an unsupervised

model and only requires examples of normal traffic. This can be achieved by

creating a feature matrix X = data.drop (“label”, axis = 1, errors = “ignore”),

ensuring that training proceeds without supervision.

To simplify training and evaluation, the data is typically split into training

and test sets using train_test_split from Scikit-learn. The following command

allocates 80% of the data to training and 20% to testing X_train, X_test =

train_test_split (X, test_size = 0.2, random_state = 42). Since many machine

learning algorithms, including One-Class SVM, perform better on standardized

or normalized data, feature scaling is recommended. Using StandardScaler(), we

first fit the scaler on the training data and then apply it to both training and test

sets scaler = StandardScaler(); X_train_scaled = scaler.fit_transform (X_train);

X_test_scaled = scaler.transform (X_test). This ensures that both datasets have

the same range, preventing model bias towards features with large-scale

differences.

Once the data is ready, we proceed with training the One-Class SVM model.

The Scikit-learn library provides a OneClassSVM class, where key parameters

such as kernel = "rbf", nu = 0.01, and gamma = "scale" can be defined. The

model is initialized and trained using oc_svm = OneClassSVM (kernel = 'rbf',

nu = 0.01, gamma = 'scale'); oc_svm.fit (X_train_scaled). The nu parameter

controls the proportion of samples classified as anomalies, while gamma = “scale”

allows automatic kernel parameter selection based on the number of features and

variance of the data.

To predict anomalies on the test dataset, we execute y_pred =

oc_svm.predict (X_test_scaled), where results are returned as +1 (normal

sample) or –1 (anomaly). In practice, this output is often converted into a clearer

format, for example, anomaly = (y_pred = –1).astype(int), so that in the anomaly

vector, 1 represents detected anomalies. If the dataset contains some labeled

attack samples, model performance can be evaluated using Precision, Recall, and

F1-score. Assuming that the true labels are stored in the “label” column within

X_test, we retrieve them using y_test = data.loc [X_test.index, “label”] and

2 I. Goodfellow, P. McDaniel, N. Papernot, Making Machine Learning Robust Against

Adversarial Inputs, “Communications of the ACM” 2018, Vol. 61, No. 7; I. Sarker, et al.,

IntrudTree: A Machine Learning Based Cyber Security Intrusion Detection Model, “Symmetry”

2021, Vol. 13, No. 4.

198

compute the classification report using print(classification_report (y_test,

anomaly)).

In typical One-Class SVM applications, attack labels are not always available,

so expert knowledge, network segmentation analysis, and security logs are used to

verify whether the detected anomalies are truly suspicious. After obtaining initial

results, hyperparameter tuning is performed.3 Adjusting nu influences the number

of samples classified as anomalies–higher nu makes the model stricter, while

tuning gamma controls whether the decision boundary is tightly fitted to local

patterns or kept smooth. These adjustments can be conducted iteratively or via

GridSearchCV or RandomizedSearchCV, although One-Class SVM can be

computationally expensive when dealing with large datasets.

For deeper analysis, visualizations can be used, particularly with scatter

plots highlighting detected anomalies in low-dimensional feature spaces (2-3

features). While network traffic datasets typically have many attributes, making

visualization challenging, such simple plots can initially indicate whether the

model behaves as expected.

The final step is deployment, transferring the trained model to

a production environment, where it can process new log data in batches every

few minutes or in near real-time using Kafka and Spark Streaming. Python-

based implementation allows not only model training and analysis but also

integration with other security mechanisms.4 If anomalies are detected, alerts

can be automatically generated in SIEM systems, or suspicious IP traffic can

be blocked, assuming the anomaly score is high enough to minimize false

alarms.

2. Example implementation

Below is a sample excerpt from the network_data.csv file containing

network traffic data. This is a fictional example that illustrates the possible

structure and typical columns that may be present in such a dataset. In practice,

the file may contain more rows and additional columns, depending on the

analysis requirements.

3 B. Al-Duwairi, A. Razaque, A Survey of AI-Based Intrusion Detection Systems for Cloud

Computing Environments, “International Journal of Cloud Applications and Computing” (IJCAC)

2019, Vol. 9, No. 3; Y. Mirsky, et al., Kitsune: An Ensemble of Autoencoders for Online Network

Intrusion Detection, Network and Distributed System Security (NDSS) Symposium, 2018;

S. Shalev-Shwartz, S. Ben-David, Understanding Machine Learning: From Theory to Algorithms,

Cambridge University Press, 2019.
4 N. Kshetri, Artificial Intelligence in Cyber Security, “IT Professional” 2018, Vol. 20, No. 3;

R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (2nd Edition), MIT Press, 2018.

199

timestamp,source_ip,dest_ip,source_port,dest_port,protocol,flo

w_duration,packet_count,avg_packet_size,label

2025-03-01

10:15:22,192.168.1.10,172.217.18.14,49512,80,TCP,123,12,84,0

2025-03-01

10:15:23,192.168.1.10,172.217.18.14,49512,80,TCP,126,14,82,0

2025-03-01

10:16:05,192.168.1.15,8.8.8.8,35022,53,UDP,55,8,120,1

2025-03-01

10:16:10,192.168.1.15,8.8.4.4,35022,53,UDP,60,7,110,1

2025-03-01

10:18:47,192.168.1.20,10.0.0.5,50001,443,TCP,98,10,90,0

Column Overview

timestamp – The timestamp indicating when the given flow or packet was

recorded.

source_ip – The IP address of the sender (host or device from which the

traffic originates).

dest_ip – The IP address of the recipient (host or target server).

source_port – The source port used for communication.

dest_port – The destination port to which the traffic is directed.

protocol – The transport protocol, such as TCP or UDP (other protocols may

appear in certain datasets).

flow_duration – The total duration of the given flow (measured in seconds,

milliseconds, or another unit, depending on the tool used).

packet_count – The total number of packets in the given flow.

avg_packet_size – The average packet size (in bytes) in the flow;

sometimes, a total byte count column (e.g., "total_bytes") is present instead.

label – The label used for classification; typically,

0 indicates normal traffic

1 indicates a potential anomaly or attack

In real-world environments, network traffic data may contain significantly

richer information, such as TCP flags, session identifiers, event types, or

metadata specific to a given system (e.g., device type, application name).

If One-Class SVM is used in a fully unsupervised manner, the label column

is not used during training. However, it is valuable for evaluation purposes,

helping verify whether the anomalies detected by the model actually correspond

to attack instances.

import numpy as np

import pandas as pd

200

from sklearn.svm import OneClassSVM

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt

Przykładowy wczytanie danych

data = pd.read_csv("network_data.csv") # przykładowy plik CSV

Załóżmy, żemamykolumny: [feature1, feature2, ..., featureN]

X = data.drop(["label"], axis=1, errors="ignore") # jeśli

jest kolumna 'label', ignorujemy ją w unsupervised

Podział na zbiór treningowy i testowy

X_train, X_test = train_test_split(X, test_size=0.2,

random_state=42)

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

Inicjalizacja modelu z wybranymi parametrami

oc_svm = OneClassSVM(kernel='rbf', nu=0.01, gamma='scale')

Trening na danych przedstawiających "normalny" ruch

oc_svm.fit(X_train_scaled)

Predykcja na danych testowych

Zwraca 1 dla normalnych punktów, -1 dla anomalii

y_pred = oc_svm.predict(X_test_scaled)

Konwersja do binarnej postaci, np. anomalia: 1, normalne: 0

anomalia = (y_pred == -1).astype(int)

print("Liczba wykrytych anomalii:", sum(anomalia))

if "label" in data.columns:

y_test = data.loc[X_test.index, "label"] # 0 lub 1

 # Tu możnawyliczyć np. precision, recall, F1-score

 from sklearn.metrics import classification_report

 print(classification_report(y_test, anomalia))

Sample results

Liczba wykrytych anomalii: 1

precision recall f1-score support

 0 1.00 0.50 0.67 2

 1 0.00 0.00 0.00 0

 accuracy 0.50 2

 macro avg 0.50 0.25 0.33 2

weighted avg 1.00 0.50 0.67 2

201

Discussion of Results

In this example, the classification report shows that there are two samples in

the test set (support = 2), meaning that after the random split, we have two

observations for evaluation. Since test_size = 0.2, and the dataset contains only

five rows, the test set may contain either one or two observations, depending on

the rounding and random selection mechanisms. This is typical for very small

datasets, where it is important to understand that statistical metrics (such as

precision, recall, etc.) are only for illustrative purposes.

Summary of Results

Number of detected anomalies: 1

The One-Class SVM model identified one observation in the test set as an

anomaly. In the y_pred vector, this corresponds to a value of –1, which after

conversion to the anomaly vector becomes 1, indicating an anomaly for that

particular row.

In a real-world scenario, this means that one sample significantly deviated

from the learned pattern of normal network traffic, according to the model.

Classification Report (Precision, Recall, F1-score)

Precision indicates what percentage of the samples classified as anomalies

by the model are actually anomalies according to the labels.

Recall measures how many of the actual anomalies in the dataset were

successfully detected by the model.

F1-score is the harmonic mean of precision and recall, often used for overall

model evaluation.

Support represents the total number of occurrences of each class in the test

set (in this case, 2 samples labeled as 0 and 0 samples labeled as 1).

Interpretation of the Report

For Class 0 (normal behavior)

Precision = 1.00 → All samples classified as normal by the model were

indeed normal according to the labels.

Recall = 0.50 → Only half of the actual normal samples in the test set were

correctly identified as normal. This means that one normal sample was

incorrectly classified as an anomaly.

F1-score = 0.67 → A combined measure of precision and recall.

For Class 1 (attack, anomaly):

Precision = 0.00, Recall = 0.00 → Since there were no actual anomalies in

the test set (support = 0), the model had no opportunity to correctly classify

Class 1.

202

Accuracy = 0.50 → The model correctly classified 1 out of 2 cases, resulting

in 50% accuracy. This is a low accuracy, but with such a small number of

observations, it is difficult to obtain meaningful statistical results.

Challenges with a Very Small Test Sample

With only 5 rows in total and 2 in the test set, metrics such as accuracy,

precision, recall, and F1-score are highly unstable and should not be used to

draw strong conclusions.

In a real-world scenario, hundreds or thousands of samples are typically

available, allowing for a more reliable performance assessment.

Interpretation for Cybersecurity

One sample was classified as an anomaly, even though according to the

label, it was not an attack. This represents a false positive (false alarm).

If the test set contained an actual attack sample (label = 1), the model could

either detect it correctly (true positive) or miss it (false negative). However, in

this small dataset, no labeled attacks are present for verification.

Need for Further Model Tuning

The default parameters (nu = 0.01, gamma = 'scale') may not be optimal for

this dataset.

With a larger dataset, a systematic Grid Search or Randomized Search could

be conducted to experiment with different values such as nu = 0.05, nu = 0.1,

etc., to find the best balance between anomaly detection performance and false

alert reduction.

Importance of Proper Data Splitting

Due to the random split settings (random_state = 42, test_size = 0.2), the test

set may not contain all behavior types (both normal and anomalous samples) in

proportions representative of the real-world environment.

For such a small dataset, a cross-validation (CV) approach might be more

appropriate, although One-Class SVM inherently complicates standard k-fold

validation (especially since it does not use labels).

Final Takeaway

In this illustrative example, One-Class SVM classified one sample as an

anomaly, even though the label suggested otherwise. This highlights the

importance of:

Tuning hyperparameters to reduce false positives,

Using a sufficiently large dataset to obtain meaningful evaluation metrics,

Validating results with expert knowledge and real-world security logs to

confirm whether detected anomalies correspond to actual cyber threats. With

such a small data size, this is not surprising. In practice, to verify the true

effectiveness of the model, a much larger test set would be needed, consisting of

many normal samples and a number of real attacks. Only then can the

203

performance of One-Class SVM be accurately assessed through analyses of

measures such as precision, recall, f1-score or AUROC (Area Under the

Receiver Operating Characteristic curve).

3. Optimization and Parameter Selection

Optimizing and fine-tuning hyperparameters in One-Class SVM primarily

involves balancing two key aspects: accurate anomaly detection and minimizing

false alarms. One of the most critical parameters is ν (nu), which determines the

proportion of examples that can be treated as outliers. A higher ν value makes

the model stricter, meaning it is more likely to classify observations as

anomalies. This may improve sensitivity to rare, unusual events, but at the same

time, it increases the risk of excessive false alarms.

Another important parameter is gamma (γ) when using the RBF kernel. This

coefficient controls how much individual samples influence local distributions in

the feature space. A higher gamma value makes the decision boundaries more

sensitive to local fluctuations, which may improve precision in detecting specific

types of attacks, but can also cause overfitting to random noise in the training

set. In practice, the goal is to find an optimal compromise where the model is

sensitive enough to detect malicious behavior but does not produce too many

false positives.

To select these parameters, cross-validation (CV) is often used, though in

One-Class SVM, this can be challenging due to the lack of clear labels in the

training samples. One approach is to inject synthetic anomalies into part of the

data, introducing clearly abnormal events and verifying whether the model

correctly classifies them as deviations. Alternatively, if a small dataset of known

attacks is available, it can be used solely as a test base, while the model remains

trained on a purely normal dataset.

Tools such as GridSearchCV or RandomizedSearchCV play an essential role

in parameter tuning, although computational costs must be considered, as One-

Class SVM can be computationally intensive for large datasets. In such cases,

random sampling or dimensionality reduction (e.g., PCA) can be applied before

iterative tuning to reduce complexity.

Another crucial aspect is observing long-term trends. In production

environments, conditions evolve dynamically–new devices appear, network

traffic patterns shift, and new attack types emerge. A One-Class SVM model

trained on historical data may require periodic retraining or continuous updates

to remain effective.

204

If the system includes automated validation mechanisms (such as

monitoring the number of alarms per time period or tracking the ratio of

confirmed incidents in SIEM logs), this information can guide decisions on

whether parameters (e.g., ν) need adjustment, and whether the entire training

process should be repeated.

Finally, it is important to note that One-Class SVM's performance heavily

depends on data quality and structure. Therefore, hyperparameter tuning must

often be combined with feature engineering–removing highly correlated

attributes, defining new features that enhance the distinction between normal and

abnormal traffic, or transforming data to emphasize critical patterns (e.g.,

separating inbound vs. outbound traffic).

This entire sequence–from defining evaluation strategies, iteratively testing

different ν and γ values, to monitoring and potential retraining–ensures that the

model remains a reliable tool for anomaly detection in a constantly evolving

network environment.

4. Extensions

Extensions cover both combining One-Class SVM with other anomaly

detection methods and integrating the solution into larger security management

systems (SIEM) or real-time network traffic processing frameworks.

The first approach often involves ensemble learning, which combines

multiple machine learning algorithms, such as Isolation Forest, autoencoders, or

clustering methods (e.g., DBSCAN). The idea is that certain types of attacks

may be better detected by specific models (One-Class SVM may effectively

capture unusual deviations, while Isolation Forest might be better at handling

varied traffic statistics). By aggregating results from multiple sources, both

sensitivity and specificity of anomaly detection improve, reducing false alarm

rates in real-world environments.

The second extension involves integration with SIEM (Security Information

and Event Management) systems, such as Splunk or IBM QRadar, which collect

all network alerts and security events. Implementing One-Class SVM in such an

environment allows periodic analysis of network or system log data, and if the

model detects a significant deviation, it generates an incident suspicion alert.

SIEM systems, which also aggregate information from other sources (e.g.,

firewalls, IDS systems, application servers), can correlate various events to

determine whether a suspicious observation has serious security implications or

is simply a harmless anomaly.

205

Integration with SIEM also enables automated defensive responses, ranging

from blocking incoming traffic from suspicious IPs to advanced measures such

as dynamically switching network segments or isolating machines that exhibit

highly abnormal activity.

The third extension area is stream processing, meaning real-time data

analysis5 (almost immediately after it appears in the infrastructure). Solutions

such as Apache Kafka, Spark Streaming, or Apache Flink allow a continuous

flow of incoming network traffic records, eliminating the need to wait for

periodic anomaly detection cycles (e.g., hourly or daily scans).

With one or more One-Class SVM models, teams can implement an

architecture where data is rapidly scaled in a computing cluster, and the anomaly

detection results are sent back to SIEM or fed into automated response

mechanisms.

Deploying such functionality in production environments requires careful

resource planning (CPU and memory efficiency), as live network flow analysis

typically generates large volumes of information. However, the benefits of real-

time threat detection and mitigation can significantly enhance an organization's

overall security.

Combining One-Class SVM with a streaming architecture is thus a natural

extension of anomaly detection and enables faster detection and response to

security incidents.

Summary

The discussed One-Class SVM method proves to be highly useful in

dynamic and unpredictable network environments, where new attack types

emerge too rapidly for traditional signature-based systems to detect them

effectively.

The presented implementation steps confirm that the key to success lies in

both a well-prepared dataset (in terms of quality, format, and scaling) and the

proper selection of model hyperparameters. This allows for an effective

distinction between normal traffic and potentially dangerous deviations, enabling

rapid response to detected incidents.

However, in production deployment, it is crucial to consider evolving

threats, ensuring that the model is regularly updated and its performance

continuously monitored.

5 Chen, Yi, Ding, Wang. Isolation Forest for Anomaly Detection, Mathematical Problems in

Engineering, 2018; J.L. Leevy, T.M. Khoshgoftaar, R.A. Bauder, N. Seliya,. A Survey on Addressing

High-class Imbalance in Big Data, “Journal of Big Data”, Vol. 5, 2018.

206

When combined with other detection techniques and SIEM tools, One-Class

SVM becomes a valuable component of a multi-layered cybersecurity strategy,

allowing organizations to continuously track deviations from normal behavior

and detect attacks that do not match any known patterns.

Bibligraphy

Al-Duwairi B., Razaque A., A Survey of AI-Based Intrusion Detection Systems for Cloud

Computing Environments, “International Journal of Cloud Applications and Computing”

(IJCAC) 2019, Vol. 9, No. 3.

Chen Yi, Ding Wang, Isolation Forest for Anomaly Detection, Mathematical Problems in

Engineering, 2018.

Goodfellow I., McDaniel P., Papernot N., Making Machine Learning Robust Against Adversarial

Inputs, “Communications of the ACM” 2018, Vol. 61, No. 7.

Kshetri N., Artificial Intelligence in Cyber Security, “IT Professional” 2018, Vol. 20, No. 3.

Leevy J.L., Khoshgoftaar T.M., Bauder R.A., Seliya N., A Survey on Addressing High-class

Imbalance in Big Data, “Journal of Big Data” 2018, Vol. 5.

Mirsky Y., et al., Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection,

Network and Distributed System Security (NDSS) Symposium, 2018.

Ngo Quang-Hung, et al., Unsupervised Deep Learning for Real-Time Cyber Anomaly Detection,

IEEE Access, Vol. 7, 2019.

Shalev-Shwartz S., Ben-David S., Understanding Machine Learning: From Theory to Algorithms,

Cambridge University Press, 2019.

Sutton R.S., Barto A.G., Reinforcement Learning: An Introduction (2nd Edition), MIT Press, 2018.

