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Abstract

The presented material provides a detailed discussion on the implementation of One-Class
SVM in Python, including code examples and a sample CSV file containing network flow parame-
ters such as duration, number of packets, and packet sizes. This is a continuation of the article
Theoretical Considerations on Artificial Intelligence and Cybersecurity: One-Class SVM for
Anomaly Detection in Network Traffic. The authors emphasize the necessity of removing the label
column during training, as One-Class SVM is designed to identify anomalous observations based
solely on a dataset of normal behavior. The text outlines the key stages of working with the model,
including data loading, splitting into training and test sets, scaling, model initialization, and
evaluation of results using metrics such as Precision, Recall, and F1-score. It is noted that model
evaluation in laboratory conditions may be misleading if only a small number of samples are
available. The article also discusses hyperparameter tuning (nu, gamma) and explores potential
extensions, including combining One-Class SVM with other algorithms, integration with SIEM
systems, and the implementation of real-time streaming data processing.
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Streszczenie

W artykule szczegdtowo omowiono implementacje One-Class SVM w jezyku Python wraz
z przyktadami kodu i przyktadowym fragmentem pliku CSV, w ktorym zapisano parametry doty-
czace przeplywow sieciowych (takie jak czas trwania, liczba pakietow, rozmiary pakietow). Jest to
kontynuuacja artykutu Theoretical Considerations on Artificial Intelligence and Cybersecurity,
One-Class SVM for Anomaly Detection in Network Traffic. Autorzy zwracaja uwage na koniecz-
no$¢ usuniecia kolumny etykiet (label) podczas treningu, poniewaz One-Class SVM przystosowa-
ny jest do identyfikowania nietypowych obserwacji, bazujac wylacznie na zbiorze zachowan
normalnych. W tekscie opisano podstawowe etapy pracy z modelem: wczytanie danych, podziat
na zbidr treningowy i testowy, skalowanie, inicjalizacj¢ modelu oraz ewaluacje wynikow z wyko-
rzystaniem miar typu Precision, Recall czy F1-score. Zwrocono uwagg, ze ocena jakosci modelu
w warunkach laboratoryjnych moze by¢ mylaca, jesli dysponuje si¢ jedynie niewielkg liczba pro-
bek. Omoéwiono takze zagadnienie dostrajania hiperparametrow (nu, gamma) i opisano mozliwe
rozszerzenia obejmujace taczenie One-Class SVM z innymi algorytmami, integracj¢ z systemami
SIEM czy wprowadzenie przetwarzania strumieniowego w czasie rzeczywistym.

Introduction

In recent years, there has been a growing interest in artificial intelligence
algorithms and machine learning methods that enhance anomaly detection in
network traffic, thereby strengthening the security of telecommunication and
information systems.

Unsupervised learning-based solutions, such as One-Class SVM, have
gained particular importance. These models can be trained solely on “normal”
examples, eliminating the need for a large labeled dataset of attacks.

Given that real-world data is often highly diverse (with numerous features,
different protocols, and large traffic volumes), proper analytical environment
preparation is essential, including data preprocessing and feature scaling.

Additionally, parameter selection, such as nu and gamma, plays a crucial
role in balancing effective anomaly detection while avoiding an excessive
number of false alarms.

1. Implementation in Python
The implementation in Python' typically begins with importing the

necessary libraries: NumPy and Pandas for data handling, Scikit-learn (sklearn)
for machine learning, and optionally Matplotlib for basic visualization of results.

' Ngo Quang-Hung, et al., Unsupervised Deep Learning for Real-Time Cyber Anomaly
Detection, IEEE Access, Vol. 7, 2019.
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Once the environment is set up, the next step is loading the dataset, for example,
from a CSV file, where each column contains features describing network traffic.
In Python, this can be done using data = pd.read csv(“network data.csv”),
assuming that the file is in CSV format. If the dataset includes a label column
(e.g., “label” indicating whether a sample is an attack or normal behavior), it
should be ignored during training since One-Class SVM? is an unsupervised
model and only requires examples of normal traffic. This can be achieved by
creating a feature matrix X = data.drop (“label”, axis = 1, errors = “ignore”),
ensuring that training proceeds without supervision.

To simplify training and evaluation, the data is typically split into training
and test sets using train_test split from Scikit-learn. The following command
allocates 80% of the data to training and 20% to testing X train, X test =
train_test split (X, test size = 0.2, random_state = 42). Since many machine
learning algorithms, including One-Class SVM, perform better on standardized
or normalized data, feature scaling is recommended. Using StandardScaler(), we
first fit the scaler on the training data and then apply it to both training and test
sets scaler = StandardScaler(); X train_scaled = scaler.fit_transform (X _train);
X test scaled = scaler.transform (X test). This ensures that both datasets have
the same range, preventing model bias towards features with large-scale
differences.

Once the data is ready, we proceed with training the One-Class SVM model.
The Scikit-learn library provides a OneClassSVM class, where key parameters
such as kernel = "rbf", nu = 0.01, and gamma = "scale" can be defined. The
model is initialized and trained using oc_svm = OneClassSVM (kernel = 'rbf,
nu= 0.01, gamma = 'scale'); oc_svm.fit (X train_scaled). The nu parameter
controls the proportion of samples classified as anomalies, while gamma = “scale”
allows automatic kernel parameter selection based on the number of features and
variance of the data.

To predict anomalies on the test dataset, we execute y pred =
oc_svm.predict (X test scaled), where results are returned as +1 (normal
sample) or —1 (anomaly). In practice, this output is often converted into a clearer
format, for example, anomaly = (y_pred = —1).astype(int), so that in the anomaly
vector, 1 represents detected anomalies. If the dataset contains some labeled
attack samples, model performance can be evaluated using Precision, Recall, and
Fl-score. Assuming that the true labels are stored in the “label” column within
X test, we retrieve them using y test = data.loc [X test.index, “label”] and

2 1. Goodfellow, P. McDaniel, N. Papernot, Making Machine Learning Robust Against
Adversarial Inputs, “Communications of the ACM” 2018, Vol. 61, No. 7; L. Sarker, et al.,
IntrudTree: A Machine Learning Based Cyber Security Intrusion Detection Model, “Symmetry”
2021, Vol. 13, No. 4.
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compute the classification report using print(classification report (y_test,
anomaly)).

In typical One-Class SVM applications, attack labels are not always available,
so expert knowledge, network segmentation analysis, and security logs are used to
verify whether the detected anomalies are truly suspicious. After obtaining initial
results, hyperparameter tuning is performed.® Adjusting nu influences the number
of samples classified as anomalies—higher nu makes the model stricter, while
tuning gamma controls whether the decision boundary is tightly fitted to local
patterns or kept smooth. These adjustments can be conducted iteratively or via
GridSearchCV or RandomizedSearchCV, although One-Class SVM can be
computationally expensive when dealing with large datasets.

For deeper analysis, visualizations can be used, particularly with scatter
plots highlighting detected anomalies in low-dimensional feature spaces (2-3
features). While network traffic datasets typically have many attributes, making
visualization challenging, such simple plots can initially indicate whether the
model behaves as expected.

The final step is deployment, transferring the trained model to
a production environment, where it can process new log data in batches every
few minutes or in near real-time using Kafka and Spark Streaming. Python-
based implementation allows not only model training and analysis but also
integration with other security mechanisms.* If anomalies are detected, alerts
can be automatically generated in SIEM systems, or suspicious IP traffic can
be blocked, assuming the anomaly score is high enough to minimize false
alarms.

2. Example implementation

Below is a sample excerpt from the network data.csv file containing
network traffic data. This is a fictional example that illustrates the possible
structure and typical columns that may be present in such a dataset. In practice,
the file may contain more rows and additional columns, depending on the
analysis requirements.

3 B. Al-Duwairi, A. Razaque, 4 Survey of Al-Based Intrusion Detection Systems for Cloud
Computing Environments, “International Journal of Cloud Applications and Computing” (IJCAC)
2019, Vol. 9, No. 3; Y. Mirsky, et al., Kitsune: An Ensemble of Autoencoders for Online Network
Intrusion Detection, Network and Distributed System Security (NDSS) Symposium, 2018;
S. Shalev-Shwartz, S. Ben-David, Understanding Machine Learning: From Theory to Algorithms,
Cambridge University Press, 2019.

4 N. Kshetri, Artificial Intelligence in Cyber Security, “IT Professional” 2018, Vol. 20, No. 3;
R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (2nd Edition), MIT Press, 2018.
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timestamp, source ip,dest ip, source port,dest port,protocol, flo
w_duration,packet count,avg packet size, label

2025-03-01
10:15:22,192.168.1.10,172.217.18.14,49512,80,TCP,123,12,84,0

2025-03-01
10:15:23,192.168.1.10,172.217.18.14,49512,80,TCP,126,14,82,0

2025-03-01
10:16:05,192.168.1.15,8.8.8.8,35022,53,U0DP, 55,8,120,1

2025-03-01
10:16:10,192.168.1.15,8.8.4.4,35022,53,U0DP,60,7,110,1

2025-03-01
10:18:47,192.168.1.20,10.0.0.5,50001, 443, TCP,98,10,90,0

Column Overview

timestamp — The timestamp indicating when the given flow or packet was
recorded.

source_ip — The IP address of the sender (host or device from which the
traffic originates).

dest ip — The IP address of the recipient (host or target server).

source port — The source port used for communication.

dest port — The destination port to which the traffic is directed.

protocol — The transport protocol, such as TCP or UDP (other protocols may
appear in certain datasets).

flow_duration — The total duration of the given flow (measured in seconds,
milliseconds, or another unit, depending on the tool used).

packet count — The total number of packets in the given flow.

avg packet size — The average packet size (in bytes) in the flow;
sometimes, a total byte count column (e.g., "total bytes") is present instead.

label — The label used for classification; typically,

0 indicates normal traffic

1 indicates a potential anomaly or attack

In real-world environments, network traffic data may contain significantly
richer information, such as TCP flags, session identifiers, event types, or
metadata specific to a given system (e.g., device type, application name).

If One-Class SVM is used in a fully unsupervised manner, the label column
is not used during training. However, it is valuable for evaluation purposes,
helping verify whether the anomalies detected by the model actually correspond
to attack instances.

import numpy as np

import pandas as pd
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from sklearn.svm import OneClassSVM

from sklearn.preprocessing import StandardScaler
from sklearn.model selection import train test split
import matplotlib.pyplot as plt

# Przykladowy wczytanie danych

data = pd.read csv("network data.csv") # przykladowy plik CSV
# Zatdzmy, zemamykolumny: [featurel, feature2, ..., featureN]
X = data.drop(["label"], axis=1, errors="ignore") # jesli

jest kolumna 'label', ignorujemy ja w unsupervised

# Podzial na zbidr treningowy i testowy

X train, X test = train test split (X, test size=0.2,
random_state=42)

scaler = StandardScaler ()

X train scaled = scaler.fit transform(X train)

X test scaled = scaler.transform(X test)

# Inicjalizacja modelu z wybranymi parametrami
oc_svm = OneClassSVM(kernel="rbf', nu=0.01, gamma='scale')
# Trening na danych przedstawiajacych "normalny" ruch
oc_svm.fit (X train scaled)
# Predykcja na danych testowych
# Zwraca 1 dla normalnych punktéw, -1 dla anomalii
y_pred = oc_svm.predict (X test scaled)
# Konwersja do binarnej postaci, np. anomalia: 1, normalne: O
anomalia = (y pred == -1).astype(int)
print ("Liczba wykrytych anomalii:", sum(anomalia))
if "label" in data.columns:
y test = data.loc[X test.index, "label"] # 0 lub 1
# Tu moznawyliczy¢é np. precision, recall, Fl-score
from sklearn.metrics import classification report

print (classification report(y test, anomalia))

Sample results
Liczba wykrytych anomalii: 1

precision recall fl-score support
0 1.00 0.50 0.67
1 0.00 0.00 0.00
accuracy 0.50
macro avg 0.50 0.25 0.33
weighted avg 1.00 0.50 0.67
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Discussion of Results

In this example, the classification report shows that there are two samples in
the test set (support = 2), meaning that after the random split, we have two
observations for evaluation. Since test_size = 0.2, and the dataset contains only
five rows, the test set may contain either one or two observations, depending on
the rounding and random selection mechanisms. This is typical for very small
datasets, where it is important to understand that statistical metrics (such as
precision, recall, etc.) are only for illustrative purposes.

Summary of Results

Number of detected anomalies: 1

The One-Class SVM model identified one observation in the test set as an
anomaly. In the y pred vector, this corresponds to a value of —1, which after
conversion to the anomaly vector becomes 1, indicating an anomaly for that
particular row.

In a real-world scenario, this means that one sample significantly deviated
from the learned pattern of normal network traffic, according to the model.

Classification Report (Precision, Recall, F1-score)

Precision indicates what percentage of the samples classified as anomalies
by the model are actually anomalies according to the labels.

Recall measures how many of the actual anomalies in the dataset were
successfully detected by the model.

F1-score is the harmonic mean of precision and recall, often used for overall
model evaluation.

Support represents the total number of occurrences of each class in the test
set (in this case, 2 samples labeled as 0 and 0 samples labeled as 1).

Interpretation of the Report

For Class 0 (normal behavior)

Precision = 1.00 — All samples classified as normal by the model were
indeed normal according to the labels.

Recall = 0.50 — Only half of the actual normal samples in the test set were
correctly identified as normal. This means that one normal sample was
incorrectly classified as an anomaly.

F1-score = 0.67 — A combined measure of precision and recall.

For Class 1 (attack, anomaly):

Precision = 0.00, Recall = 0.00 — Since there were no actual anomalies in
the test set (support = 0), the model had no opportunity to correctly classify
Class 1.
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Accuracy = 0.50 — The model correctly classified 1 out of 2 cases, resulting
in 50% accuracy. This is a low accuracy, but with such a small number of
observations, it is difficult to obtain meaningful statistical results.

Challenges with a Very Small Test Sample

With only 5 rows in total and 2 in the test set, metrics such as accuracy,
precision, recall, and F1-score are highly unstable and should not be used to
draw strong conclusions.

In a real-world scenario, hundreds or thousands of samples are typically
available, allowing for a more reliable performance assessment.

Interpretation for Cybersecurity

One sample was classified as an anomaly, even though according to the
label, it was not an attack. This represents a false positive (false alarm).

If the test set contained an actual attack sample (label = 1), the model could
either detect it correctly (true positive) or miss it (false negative). However, in
this small dataset, no labeled attacks are present for verification.

Need for Further Model Tuning

The default parameters (nu = 0.01, gamma = 'scale') may not be optimal for
this dataset.

With a larger dataset, a systematic Grid Search or Randomized Search could
be conducted to experiment with different values such as nu = 0.05, nu = 0.1,
etc., to find the best balance between anomaly detection performance and false
alert reduction.

Importance of Proper Data Splitting

Due to the random split settings (random_state = 42, test_size = 0.2), the test
set may not contain all behavior types (both normal and anomalous samples) in
proportions representative of the real-world environment.

For such a small dataset, a cross-validation (CV) approach might be more
appropriate, although One-Class SVM inherently complicates standard k-fold
validation (especially since it does not use labels).

Final Takeaway

In this illustrative example, One-Class SVM classified one sample as an
anomaly, even though the label suggested otherwise. This highlights the
importance of:

Tuning hyperparameters to reduce false positives,

Using a sufficiently large dataset to obtain meaningful evaluation metrics,

Validating results with expert knowledge and real-world security logs to
confirm whether detected anomalies correspond to actual cyber threats. With
such a small data size, this is not surprising. In practice, to verify the true
effectiveness of the model, a much larger test set would be needed, consisting of
many normal samples and a number of real attacks. Only then can the
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performance of One-Class SVM be accurately assessed through analyses of
measures such as precision, recall, fl-score or AUROC (Area Under the
Receiver Operating Characteristic curve).

3. Optimization and Parameter Selection

Optimizing and fine-tuning hyperparameters in One-Class SVM primarily
involves balancing two key aspects: accurate anomaly detection and minimizing
false alarms. One of the most critical parameters is v (nu), which determines the
proportion of examples that can be treated as outliers. A higher v value makes
the model stricter, meaning it is more likely to classify observations as
anomalies. This may improve sensitivity to rare, unusual events, but at the same
time, it increases the risk of excessive false alarms.

Another important parameter is gamma (y) when using the RBF kernel. This
coefficient controls how much individual samples influence local distributions in
the feature space. A higher gamma value makes the decision boundaries more
sensitive to local fluctuations, which may improve precision in detecting specific
types of attacks, but can also cause overfitting to random noise in the training
set. In practice, the goal is to find an optimal compromise where the model is
sensitive enough to detect malicious behavior but does not produce too many
false positives.

To select these parameters, cross-validation (CV) is often used, though in
One-Class SVM, this can be challenging due to the lack of clear labels in the
training samples. One approach is to inject synthetic anomalies into part of the
data, introducing clearly abnormal events and verifying whether the model
correctly classifies them as deviations. Alternatively, if a small dataset of known
attacks is available, it can be used solely as a test base, while the model remains
trained on a purely normal dataset.

Tools such as GridSearchCV or RandomizedSearchCV play an essential role
in parameter tuning, although computational costs must be considered, as One-
Class SVM can be computationally intensive for large datasets. In such cases,
random sampling or dimensionality reduction (e.g., PCA) can be applied before
iterative tuning to reduce complexity.

Another crucial aspect is observing long-term trends. In production
environments, conditions evolve dynamically-new devices appear, network
traffic patterns shift, and new attack types emerge. A One-Class SVM model
trained on historical data may require periodic retraining or continuous updates
to remain effective.
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If the system includes automated validation mechanisms (such as
monitoring the number of alarms per time period or tracking the ratio of
confirmed incidents in SIEM logs), this information can guide decisions on
whether parameters (e.g., v) need adjustment, and whether the entire training
process should be repeated.

Finally, it is important to note that One-Class SVM's performance heavily
depends on data quality and structure. Therefore, hyperparameter tuning must
often be combined with feature engineering—removing highly correlated
attributes, defining new features that enhance the distinction between normal and
abnormal traffic, or transforming data to emphasize critical patterns (e.g.,
separating inbound vs. outbound traffic).

This entire sequence—from defining evaluation strategies, iteratively testing
different v and y values, to monitoring and potential retraining—ensures that the
model remains a reliable tool for anomaly detection in a constantly evolving
network environment.

4. Extensions

Extensions cover both combining One-Class SVM with other anomaly
detection methods and integrating the solution into larger security management
systems (SIEM) or real-time network traffic processing frameworks.

The first approach often involves ensemble learning, which combines
multiple machine learning algorithms, such as Isolation Forest, autoencoders, or
clustering methods (e.g., DBSCAN). The idea is that certain types of attacks
may be better detected by specific models (One-Class SVM may effectively
capture unusual deviations, while Isolation Forest might be better at handling
varied traffic statistics). By aggregating results from multiple sources, both
sensitivity and specificity of anomaly detection improve, reducing false alarm
rates in real-world environments.

The second extension involves integration with SIEM (Security Information
and Event Management) systems, such as Splunk or IBM QRadar, which collect
all network alerts and security events. Implementing One-Class SVM in such an
environment allows periodic analysis of network or system log data, and if the
model detects a significant deviation, it generates an incident suspicion alert.
SIEM systems, which also aggregate information from other sources (e.g.,
firewalls, IDS systems, application servers), can correlate various events to
determine whether a suspicious observation has serious security implications or
is simply a harmless anomaly.
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Integration with SIEM also enables automated defensive responses, ranging
from blocking incoming traffic from suspicious IPs to advanced measures such
as dynamically switching network segments or isolating machines that exhibit
highly abnormal activity.

The third extension area is stream processing, meaning real-time data
analysis® (almost immediately after it appears in the infrastructure). Solutions
such as Apache Kafka, Spark Streaming, or Apache Flink allow a continuous
flow of incoming network traffic records, eliminating the need to wait for
periodic anomaly detection cycles (e.g., hourly or daily scans).

With one or more One-Class SVM models, teams can implement an
architecture where data is rapidly scaled in a computing cluster, and the anomaly
detection results are sent back to SIEM or fed into automated response
mechanisms.

Deploying such functionality in production environments requires careful
resource planning (CPU and memory efficiency), as live network flow analysis
typically generates large volumes of information. However, the benefits of real-
time threat detection and mitigation can significantly enhance an organization's
overall security.

Combining One-Class SVM with a streaming architecture is thus a natural
extension of anomaly detection and enables faster detection and response to
security incidents.

Summary

The discussed One-Class SVM method proves to be highly useful in
dynamic and unpredictable network environments, where new attack types
emerge too rapidly for traditional signature-based systems to detect them
effectively.

The presented implementation steps confirm that the key to success lies in
both a well-prepared dataset (in terms of quality, format, and scaling) and the
proper selection of model hyperparameters. This allows for an effective
distinction between normal traffic and potentially dangerous deviations, enabling
rapid response to detected incidents.

However, in production deployment, it is crucial to consider evolving
threats, ensuring that the model is regularly updated and its performance
continuously monitored.

5 Chen, Yi, Ding, Wang. Isolation Forest for Anomaly Detection, Mathematical Problems in
Engineering, 2018; J.L. Leevy, T.M. Khoshgoftaar, R.A. Bauder, N. Seliya,. 4 Survey on Addressing
High-class Imbalance in Big Data, “Journal of Big Data”, Vol. 5, 2018.
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When combined with other detection techniques and SIEM tools, One-Class
SVM becomes a valuable component of a multi-layered cybersecurity strategy,
allowing organizations to continuously track deviations from normal behavior
and detect attacks that do not match any known patterns.
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