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ABSTRACT
Introduction and aim. Atopic dermatitis (AD) is a life-long inflammatory dermatosis that features dry, erythematous skin. Eze-
timibe is a lipid-lowering agent with enhanced anti-inflammatory and anti-oxidative capacities. This work attempted to evalu-
ate the anti-eczematous action of topically administered ezetimibe in a mouse prototype of 1-chloro-2,4-dinitrobenzene (DNC-
B)-evoked AD. To our knowledge, this is the first study to investigate the topical use of ezetimibe in an experimental model of AD.
Material and methods. Thirty male Swiss albino mice were randomly allocated into five groups: healthy control, DNCB-induced 
model, vehicle, tacrolimus (0.1% ointment), and ezetimibe (2% ointment). Treatments were applied daily for 21 days. Clinical 
severity scores, total and differential leukocyte counts, histopathological changes, immunohistochemical expression of inter-
leukin (IL)-4 and IL-13, and tissue levels of IgE, malondialdehyde (MDA), IL-17, IL-31, transforming growth factor-β (TGF-β), and 
tumor necrosis factor-α (TNF-α) were assessed.
Results. DNCB increased dermatitis severity (EASI score 9.8±0.7 vs. 0.5±0.1 in controls, p<0.001), total leukocytes (14.2±1.6 
×10³/mL vs. 3.9±0.6 ×10³/mL, p<0.001), and IgE (356±42 ng/mL vs. 92±15 ng/mL, p<0.001). Ezetimibe treatment significantly 
reduced EASI scores (2.1±0.4, p<0.01 vs. DNCB), leukocytes (5.9±0.3 ×10³/mL, p<0.01 vs. DNCB), IgE (128±18 ng/mL, p<0.01 
vs. DNCB), and MDA (2.3±0.4 µmol/L vs. 5.9±0.7 µmol/L in DNCB, p<0.001). Pro-inflammatory cytokines IL-4, IL-13, IL-17, IL-31, 
TGF-β, and TNF-α were also markedly decreased (all p<0.05), with effects comparable to tacrolimus.
Conclusion. Topical ezetimibe significantly alleviated DNCB-induced AD-like lesions by reducing histopathological changes, 
leukocyte infiltration, IgE, oxidative stress, and key inflammatory cytokines. These findings support ezetimibe as a potential ad-
junctive topical therapy for immune-mediated dermatoses, warranting future clinical evaluation.
Keywords. atopic dermatitis, DNCB, eczema, ezetimibe, inflammatory dermatosis, immune-mediated skin diseases

Introduction
Atopic dermatitis (AD) is a recurring and remitting au-
to-inflammatory skin disease evoked by the immune 
system that often begins during the early stages of life. 

It is often known as eczematous dermatitis and is the 
most common skin condition that involves a rapid de-
velopment of itchy patches on the skin.1-3 Dermatosis 
is marked by atopic inflammation, lichen formation, 
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itchiness, greater vulnerability to infection, and rash-
es, frequently followed by acute pruritus.1,4,5 Inheritance 
variables, immune disruption, compromised skin bar-
riers, and external stimuli are believed to be among the 
fundamental reasons.6 AD collapses beneath the catego-
ry of atopic ailments that encompass food intolerance, 
pulmonary asthma, rashes and hay fever, many of which 
are relevant pathologies associated with elevated immu-
noglobulin E (IgE) concentrations and diminished fil-
aggrin concentrations.7,8 Furthermore, AD can occur 
concurrently with other immune-driven dermatoses, 
such as psoriasis.9-13 Furthermore, a possible correlation 
between ulcerative colitis and AD is shown in the litera-
ture study.14-17 Meanwhile, an immune system mismatch 
in the Th1/Th2 reactions is a distinguishing prosperi-
ty of AD pathogenesis, with higher rates of released cy-
tokines, including interleukin (IL)-4 and IL-13, which 
drive Th2 replication and B cell IgE liberation1. IgE value 
is a specified indicator of AD intensity, which is corrob-
orated by the efficiency of IgE-focused therapy to reduce 
AD symptoms among sufferers.18-20 Tumor necrosis fac-
tor (TNF)-α is a significant inflammatory cytokine that 
modulates immunological responses and cellular divi-
sion.21-23 It also facilitates the relocation of NF-κB into 
keratinocytes, which assists in transcriptional signaling 
and the liberation of cytokines, particularly IL-6 and IL-
8.24-28 Moreover, IL-17 is a pivotal target for treatment, 
since it fosters the secretion of TNF-α, exacerbating the 
effects of atopic inflammation.8 IL-17 amplification el-
evates IL-6 and IL-1β concentrations in keratinocytes, 
which are associated with the pathogenesis of AD.2,5 
Additionally, transforming growth factor (TGF)-β is an 
anti-inflammatory cytokine that facilitates angiogenesis 
while simultaneously promoting differentiation and in-
fluencing the expansion of keratinocytes; yet, excessive 
production of TGF-β1 in skin cells induces significant 
inflammation.29-31 However, oxidative damage has a role 
in the etiology of AD. Environmental factors, such as 
contaminants, ultraviolet radiation, illness, and mental 
illness, may elevate reactive oxygen species (ROS) out-
puts, finally exceeding the protective capacity of the an-
ti-oxidative barrier.32-36

Nevertheless, topical medicines, including calci-
neurin blockers, glucocorticoids, and, lastly, phosphodi-
esterase 4 (PDE4) antagonists such as crisaborole, are the 
bedrock of AD management.37-39 Yet, repeated usage of 
these medicines might cause an array of unwanted effects. 
Thus, there is a pressing demand for the identification of 
innovative and secure methods for treating AD.40,41 The 
approval of targeted biologics such as dupilumab, traloki-
numab, nemolizumab, baricitinib, upadacitinib, and 
abrocitinib suggests subsequent best alternatives for con-
trolling moderate to severe forms of AD.42,43

Ezetimibe is a lipid-diminishing medication that 
specifically hinders the cholesterol transporter Nie-
mann-Pick C1-like protein 1 (NPC1L1) in the jejunum 

brush borders, restricting the digestion of cholesterol in 
the stomach and bile systems. Ezetimibe was demon-
strated to be safe and efficient in decreasing the contents 
of cholesterol regularly accessible to hepatocytes. As a 
result of diminished cholesterol supply, the liver raises 
LDL receptor generation and LDL removal from the cir-
culation.44-47 Ezetimibe was established to stop athero-
sclerotic events when combined with statin, making it 
useful in the treatment of dyslipidemia and related ath-
erosclerotic complications.48,49 Ezetimibe’s impact on 
many inflammatory indicators was also studied. Ezeti-
mibe was revealed to lower atherosclerotic plaques, lim-
it macrophage accumulations, and prevent liberation of 
chemotactic cytokines like MCP-1 and TNF-α.50,51 Other 
observation demonstrate that combining ezetimibe with 
simvastatin can effectively alleviate autoimmune alope-
cia totalis and alopecia universalis, making it a promis-
ing treatment option for resistant alopecia areata. 52 This 
combination also considerably lowered amounts of IL-
1β and IL-18 in obese individuals.53 Beyond that, this 
medicine exerted protective actions on IL-1β-exacer-
bated matrix collagen breakdown in murine chondro-
cytes by modifying NF-κB and Nrf2/HO-1 molecular 
parameters.54 In parallel, ezetimibe enhanced endotheli-
al functions and decreased inflammation indicators, dis-
ease progression, and aortic stiffening among individuals 
with rheumatoid arthritis.55 In comparable vein, ezeti-
mibe shows inhibitory impacts on acetic acid-exacerbat-
ed rat prototype of ulcerated colitis by downregulating 
inflammatory and oxidative indicators, particularly the 
Akt/NF-κB/STAT3/CXCL10 signaling network.56 

Aim
Previous studies suggest that ezetimibe possesses an-
ti-inflammatory, antioxidant, and immunomodulatory 
properties; however, its anti-eczematous efficacy has not 
been investigated. This study aimed to evaluate, for the 
first time, the anti-atopic effects of topical ezetimibe in 
a DNCB-induced murine model of AD, providing nov-
el preclinical evidence for its potential repositioning as 
a topical therapy in dermatological inflammatory dis-
orders.

Material and methods
Drugs and chemicals
The suppliers of 1-chloro-2,4-dinitrobenzene (DNCB) 
was the Sigma Aldrich, Germany. Ezetimibe was pur-
chased from Hangzhou Hyper Chemicals Limited. The 
0.1% tacrolimus product was supplied by Cleveland 
Clinic, USA. The extra chemicals utilized in this investi-
gation had been procured from several sources who met 
specific standards.

Preparation of ezetimibe ointment
2.5 g of white wax (beeswax), 1.25 g of hard paraffin, 2.5 
g of lanolin, polyethylene glycol, and a sufficient quan-
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tity of soft paraffin were melted together in a saucepan 
on a hot plate at 70 ºC.57 2g of ezetimibe powder was 
placed to the melted mixture while being continuously 
stirred.58,59 The entire mixture was blended while trans-
ported on ice to produce 2% ezetimibe ointment.60-64

Vehicle components formulation
2.5 g of white wax, 1.25 g of hard paraffin, 2.5 g of lan-
olin, polyethylene glycol, and an adequate amount of 
white soft paraffin were combined and heated in a con-
tainer on a heated surface at 70ºC. The whole solution 
was constantly agitated and mixed.65,66

Study design
This work was licensed by the institutional review board 
(IRB) of the College of Medicine at Al-Nahrain Universi-
ty (approval no. UNCOMIRB20241037 on 14/10/2021). 
The experiments were carried out from November 2021 
to July 2022. The trial consisted of thirty male Swiss al-
bino-kind mice, with weight about 20 to 30 g and age 
about 8 to 9 weeks. Mice were placed in a sterile, isolat-
ed, and properly designated room with a humidity level 
of 49±2%. All investigations had been performed in con-
formity with rules of ethics for the handling of animals.

Animal preparation and sampling 
Mice had been randomly separated into 5 different cate-
gories of 6 mice each: a healthy untreated control group, 
an induction non-treated group, a vehicle group, an eze-
timibe group, and a tacrolimus group. Following a 14-day 
acclimation period, mice underwent rigorous hair ex-
traction from their back areas (about 4 cm2) with a pre-
cision shaving device. The residual hair strands were 
subsequently extracted with a depilatory lotion. To devel-
op AD-mimicking skin irritation, DNCB was dispersed in 
an acetone-based olive oil mixture at a 3:1 proportion and 
watered down to 0.5 and 1% strengths. Mice developed a 
sensitivity with 200 μL of 1% DNCB applied to their back 
skin-folds for 3 straight days, whereas the healthy controls 
did not obtain any medications. Mice with AD-like symp-
toms were treated with 200 μL of 0.5% DNCB locally each 
other day for 21 days to prevent unexpected resurgence. 
The vehicle group was given a topical vehicle formulation 
daily for 21 days, the tacrolimus group obtained tacroli-
mus 0.1% ointment daily for 21 days, and the ezetimibe 
group administered ezetimibe 2% ointment product daily 
for 21 days as indicated in Figure 1. At the completion of 
the tests, all animals underwent the intraperitoneal anal-
gesic medicines xylazine and ketamine (80 mg/kg). Upon 
achieving complete anesthesia, the animals were put to 
death by exsanguinations, which are the optimal means 
of harvesting and preserving.67-70 Skin biopsies were sub-
sequently processed to develop tissue homogenates for 
bio-indicator and histopathology analyses.71-74

Measurement of total and differential WBC counts	
The complete blood counts involves the overall amount 
of leukocytes/white blood cells (WBC) alongside the 
individual percentages for each WBC subgroup, such 
as neutrophils, lymphocytes, monocytes, and eosino-
phils. Blood specimens were taken in EDTA-containers 
and scrutinized with a small 5-part hematologic tester, 
namely the Mindray BC-5000 version.75,76 The method-
ology is based on triangular laser scattering, flow-cy-
tometry, and biochemical dye processing.77-81 

Fig 1. Tabular form of study groups

Estimation of severity grading of AD
The intensity of DNCB-evoked AD-mimicking cutane-
ous patches was estimated by 4 clinical manifestations: 
erythema, erosion/excoriation, epidermal thickenings, 
and lichenification, based on the Eczema Area and De-
gree Index (EASI) scoring technique.82 The metrics were 
evaluated on a scale of 0 (none), 1 (mild), 2 (moder-
ate), and 3 (severe) based on their severity, with total 
dermatitis levels determined by summing all analyzed 
data, achieving a highest possible score of 12.83 The back 
skin-fold thickening was calculated using a vernier cal-
ibrator measuring instrument on the central line of the 
back skin. 84-86 Dermatitis severity was assessed by two 
independent raters. Dermatitis scoring and treatment 
administration were conducted in a blinded fashion to 
minimize observer bias. The experimenters were un-
aware of the treatment groups during scoring. 

Histopathological estimation
The dorsal skins of mice were obtained from vari-
ous categories and preserved in 10% neutralizing-buf-
fer formaldehyde employing recognized guidelines.87-90 
Fixed paraffin was then applied to the skin samples. 
The paraffin-soaked tissues were sliced into slices and 
prepared for staining with hematoxylin and eosin. The 
derived specimens were viewed utilizing a light micros-
copy, and histological changes were documented.91-95 
Histological scoring relied on an amended edition of 
the scoring system described by Jeong et al., commonly 
used for DNCB-induced dermatitis models. Parameters 
encompassed skin thickness/acanthosis, hyperkeratosis, 
parakeratosis, erosion, inflammatory cell invasion, and 
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edema.96 The grading mechanisms varied from 0, signi-
fying no irregularity, to 1+, denoting mild irregularity; 
2+, representing modest irregularity; and 3+, signifying 
substantial irregularities.

Immunohistochemistry (IHC) examination
The immunohistochemistry approach was used to as-
sess the severity of AD lesions by determining the scores 
of IL-4 and IL-13. It is technique for detecting antigens 
or haptens in biological tissues. The immunohistochem-
ical assessment in this study employs specific antibodies 
for identifying the protein product of gene expression in 
the tissues of the investigated animal groups. Following 
the application of the main antibody (rabbit monoclonal 
anti-IL-4 and anti-IL-13), the corresponding secondary 
antibody and a chromogen agent (3,30-diaminoben-
zidine) are then incorporated into paraffin-fixed  seg-
ments of the skin tissues.31,97-99 The skin portions have 
been treated with hematoxylin. The immunohistochem-
istry investigation is scored via the following method 
using semi-quantitative scoring (positive stained cells): 
“Score 0=no stain; score 1=25%; score 2=26–50%; score 
3=51–75%; score 4=67–100%.30,100,101

Biochemical marker measurement
Using sandwich enzyme-linked immunosorbent-as-
says (ELISA), the amounts of IgE, malondialdehyde 
(MDA), IL-17, IL-31, TGF-β, and TNF-α in mouse skin 
tissues were determined by the supplier’s rules. IgE In-
vitrogen: catalogue no.: 88-50460-88, sensitivity: 4 ng/
mL; MDA Invitrogen: catalogue no.: EEA015, sensitiv-
ity: 1.13 μmol/L; IL-17 Sino biological: catalogue no.: 

KIT51065, sensitivity: 8 pg/mL; IL-31 Invitrogen: cat-
alogue no.: BMS6030, sensitivity: 9.1 pg/mL; TGF-β In-
vitrogen: catalogue no.: 88-8350-88, sensitivity: 8 pg/
mL; TNF-α Sino biological: catalogue no.: KIT50349, 
sensitivity: 15.69 pg/mL. To ensure statistical valida-
tion, ELISA measurements were done in duplicate. 
Following a cleansing with washing buffer, the pores 
were treated with a biotin-based-specific antibody.102-106 
Upon extracting the disengaged biotin-linked antibody, 
streptavidin/horseradish peroxidases (HRP) were gently 
transmitted into the wells. Tetramethylbenzidine (TMB) 
substrate solution was added once all unbound compo-
nents were eliminated. The amounts of various variables 
in every experimental group were determined spec-
tro-photometrically by matching their optical density 
to regular curves. The HRP-combined antibodies and 
indicators switched to yellow upon the addition of the 
stop solution The levels of various variables in each ex-
perimental group were determined spectro-photomet-
rically by comparing their optical densities to standard 
curves. Following the addition of the stop solution, the 
HRP-conjugated antibodies and substrates produced a 
yellow color, which was measured using an absorbance 
microplate reader at a wavelength of 450 nm. 107-109

Statistical analysis
The statistical evaluation was conducted using the 
program Excel 2013 and the SPSS statistical program 
edition 24 (IBM, Armonk, NY, USA). The numerical pa-
rameters are presented in terms of means with standard 
deviation (±SD), and the level of significance is estimat-
ed at a p value of less than 0.05. Means were contrasted 
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Fig. 2. Images displaying the degree of severity of eczematous lesions in study groups: A – control group, B – induction 
group, C – vehicle group, D – tacrolimus group, E – ezetimibe
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with the t-test for independence and an assessment of 
variance (ANOVA). Pearson’s correlation is adopted to 
determine linear relationships among the groups under 
study.110,111

Results
Impact of researched agents on observational severity 
scores
The induction and vehicle groups had significantly el-
evated observational severity levels than normal con-
trols (p<0.05). Also, there was no considerable variance 
among induction/model and vehicle groups with respect 
to observational dermatitis levels (p > 0.05). Nonethe-
less, the dermatitis severity ratings got significantly re-
duced in the tacrolimus and ezetimibe-treated groups 
when matched with the induction and vehicle groups 
(p<0.05). No noteworthy variances were detected across 
the tacrolimus and ezetimibe groups with respect to ob-
servational dermatitis levels (p>0.05) as observed in 
Figure 2 and Figure 3.

Fig 3. Impact of researched agents on the observational 
severity scores, data are illustrated as mean±SD; *denote 
considerable variation (p<0.05) vs. control group; # denote 
considerable variation (p<0.05) vs. induction and vehicle 
groups

Table 1. Impact of researched agents on total WBC, 
neutrophils, lymphocytes, monocytes, and eosinophils 
countsa

Groups
pVariables

(x103/mL)
Control Induction Vehicle Tacrolimus Ezetimibe

WBC 3916±558 14180±1856* 14120±1625* 6640±614# 5850±290# <0.05

Neutrophils 1465±221 4934±1434* 4910±1522* 2880±198# 2519±250# <0.05

Lymphocyte 2260±638 5940±1086* 5890±982* 3220±580# 2995±442# <0.05

Monocytes 81±12 1325±352* 1294±416* 543±118# 404±44# <0.05

Eosinophils 111±28 1939±512* 1888±448* 725±124# 577±93# <0.05
a data were expressed as mean±SD, * – denotes remarkable 
change (p<0.05) contrasted to the control group, # – 
denotes remarkable change (p<0.05) contrasted to the 
induction and vehicle groups

Effect of tested agents on total and differential WBC 
counts
The percentages of total WBC, neutrophils, lympho-
cytes, monocytes, and eosinophils were substantially in-

creased in induction and vehicle groups as opposed to 
normal controls (p<0.05). Besides, ezetimibe and tacro-
limus groups show considerably diminished counts of 
total WBC, neutrophils, lymphocytes, monocytes, and 
eosinophils than induction and vehicle groups as indi-
cated in Table 1.

Effect of tested agents on skin histological abnormalities
The healthy control group has regular skin microstruc-
ture; the keratin epidermal layers, dermal uppermost 
layer, sebaceous glands, and hair proliferating follicles 
all appear normal, as illustrated in Table 2 and Figure 4. 
However, the application of DNCB resulted in substan-
tial histopathological changes in the induction group op-
posed to the healthy untreated controls (p<0.05). Those 
skin changes were recognized by the breakdown of the 
skin barriers, the presence of clefts, marked hyperkera-
tosis, marked parakeratosis, increased acanthosis, pro-
found erosion, remarkable edema, profound sloughing, 
and prominent inflammatory cell infiltration as repre-
sented in Table 2 and Figure 4. Except for erosion and 
extracellular edema, the vehicle group exhibited non-sig-
nificant histopathological changes as matched to the in-
duction group (p>0.05), including increased epidermal 
thickenings/acanthosis, marked hyperkeratosis, marked 
parakeratosis, significant erosion, significant edema, and 
increased inflammatory cell penetration. The erosion and 
extracellular edema in the vehicle group were markedly 
alleviated compared to those seen in the induction. In 
opposition to the induction and vehicle groups, the tac-
rolimus 0.1% treated group showed substantially small-
er histological aberrations, such as reduced cutaneous 
thickness, minor hyperkeratosis, minor parakeratosis, 
slight erosion, slight edema, and reduced inflammato-
ry cell invasion as depicted in Table 2 and Figure 4. Ad-
ditionally, the histopathological changes were markedly 
diminished in the ezetimibe group versus the induction 
group (p<0.05), as demonstrated by decreased epidermal 
thickness, mild hyperkeratosis, mild parakeratosis, mild 
erosion and reduced inflammatory cell infiltration, as re-
vealed in Table 2 and Figure 4.

Table 2. Effect of tested agents on histopathological 
scoresa

Variables Mean±SD

Control Induction Vehicle Tacrolimus Ezetimibe p

Acanthosis 0 3±0.4* 3±0.04* 1±0.05# 1±0.04# <0.05

Hyperkeratosis 0 3±0.06* 3±0.08* 1±0.2# 2±0.04# <0.05

Parakeratosis 0 3±0.04* 3±0.18* 0±0.03# 0±0.04# <0.05

Erosion 0 3±0.05* 1±0.25* 0±0.05# 0±0.04# <0.05

Inflammatory 
cell infiltration

0 3±0.1* 3±0.06* 1±0.1# 1±0.04# <0.05

a data are illustrated as mean±SD, * – denote considerable 
variation (p<0.05) vs. control group, # – denote 
considerable variation (p<0.05) vs. induction and vehicle 
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groups
Impact of tested agents on skin immunohistochemical 
levels of IL-4 and IL-13
The immunohistochemistry investigation revealed con-
siderable elevation of IL-4 and IL-13  scores among 
the model/induction and vehicle groups as opposed 
to the normal controls (p<0.05), but there are no ap-
preciable variations among the induction and vehicle 
groups (p>0.05). The tacrolimus and ezetimibe-treated 
groups exhibited substantial diminution in IL-4 and IL-
13 contents when opposed to the induction and vehicle 

non-treated groups (p<0.05). However, no substantial 
changes were noted across the tacrolimus and ezetimibe 
groups in terms of IL-4 and IL-13 scores (p>0.05), as 
clarified in Figure 5 and Figure 6.

Effect of tested agents on skin tissue levels of IgE and 
MDA
The outcomes uncovered that the induction/model 
group exhibited markedly greater mean skin amounts 
of IgE and MDA as matched to the healthy untreated 
control group (p<0.05). No notable variations were seen 

 
Fig. 4. Effect of studied agents on mouse skin histological alterations: A and B: light microscopy cross-

section of mouse skin histopathology for healthy controls (H&E stain=10× and 4×), C and D: light 

microscopy cross-section of mouse skin histopathology for induction/ model group (H&E stain=10×), E 

and F: light microscopy cross-section of mouse skin histopathology for vehicle group (H&E stain=10× and 

4×), G and H: light microscopy cross-section of mouse skin histopathology for tacrolimus group (H&E 

stain=10×), I and J: light microscopy cross-section of mouse skin histopathology for ezetimibe group (H&E 

stain=10×) 
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Fig. 4. Effect of studied agents on mouse skin histological alterations: A and B: light microscopy cross-section of mouse 
skin histopathology for healthy controls (H&E stain=10× and 4×), C and D: light microscopy cross-section of mouse 
skin histopathology for induction/ model group (H&E stain=10×), E and F: light microscopy cross-section of mouse 
skin histopathology for vehicle group (H&E stain=10× and 4×), G and H: light microscopy cross-section of mouse skin 
histopathology for tacrolimus group (H&E stain=10×), I and J: light microscopy cross-section of mouse skin histopathology 
for ezetimibe group (H&E stain=10×)
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Fig. 5. Impact of studied agents on skin immunohistochemistry scores of IL-4: groups: (scale bar=100 mm), 

A: microscopic mouse cutaneous slice from the control group illustrating the immunohistochemical levels 

of IL-4, B: microscopic mouse cutaneous slice from the induction/model group illustrating the 

immunohistochemical levels of IL-4,  C: microscopic mouse skin slice from the vehicle group illustrating 

the immunohistochemical levels of IL-4, D: microscopic mouse cutaneous slice of the tacrolimus group 

illustrating the immunohistochemical levels of IL-4, E: microscopic mouse cutaneous slice of the ezetimibe 

group illustrating the immunohistochemical levels of IL-4 
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in any of the parameters between the induction and ve-
hicle groups. However, the tacrolimus and ezetimibe 
groups had dramatically lower levels of IgE and MDA 
relative to the induction and vehicle groups (p<0.05). 
Both the tacrolimus and ezetimibe groups did not vary 
considerably from one another on any of the parameters 
(p>0.05), as shown in Figure 7.

Effect of tested agents on skin tissue levels of IL-17, IL-
31, TGF-β, and TNF-α
The results demonstrated that the induction group had 
markedly elevated mean epidermal levels of IL-17, IL-
31, TGF-β, and TNF-α in relation to the healthy con-
trols (p<0.05). No remarkable variances occurred in all 
metrics across the model/induction and vehicle groups. 
Still, the tacrolimus and ezetimibe groups exhibited ex-

tensively mitigated amounts of IL-17, IL-31, TGF-β, 
and TNF-α relative to the induction/model and vehicle 
groups (p<0.05). The tacrolimus and ezetimibe groups 
exhibited no significant distinctions across all variables 
(p>0.05), as explained in Figure 8.

Discussion
The novelty of this work lies in demonstrating for the 
first time that ezetimibe, beyond its systemic lipid-low-
ering action, exerts strong topical anti-inflammatory 
and antioxidant effects in a murine model of AD. The 
mouse prototype of DNCB-aggravated atopic dermati-
tis was extensively utilized to assess innovative therapies 
and compounds. The research designs and methodolo-
gies are markedly varied, revealing distinct patterns of 
atopic dermatitis that manifest after sensitization and 

Fig. 5. Impact of studied agents on skin immunohistochemistry scores of IL-4: groups: (scale bar=100 mm), A: microscopic 
mouse cutaneous slice from the control group illustrating the immunohistochemical levels of IL-4, B: microscopic mouse 
cutaneous slice from the induction/model group illustrating the immunohistochemical levels of IL-4,  C: microscopic mouse 
skin slice from the vehicle group illustrating the immunohistochemical levels of IL-4, D: microscopic mouse cutaneous slice 
of the tacrolimus group illustrating the immunohistochemical levels of IL-4, E: microscopic mouse cutaneous slice of the 
ezetimibe group illustrating the immunohistochemical levels of IL-4
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Fig. 6. Impact of studied agents on skin immunohistochemistry scores of IL-13: groups: (scale bar=100 

mm), A: microscopic mouse cutaneous slice from the control group illustrating the immunohistochemical 

levels of IL-13, B: microscopic mouse cutaneous slice of the induction/model group illustrating the 

immunohistochemical levels of IL-13, C: microscopic mouse cutaneous slice of the vehicle group 

illustrating the immunohistochemical levels of IL-13, D: microscopic mouse cutaneous slice of the 

tacrolimus group illustrating the immunohistochemical levels of IL-13, E: microscopic mouse cutaneous 

slice of the ezetimibe group illustrating the immunohistochemical levels of IL-13 
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Fig. 6. Impact of studied agents on skin immunohistochemistry scores of IL-13: groups: (scale bar=100 mm), A: microscopic 
mouse cutaneous slice from the control group illustrating the immunohistochemical levels of IL-13, B: microscopic mouse 
cutaneous slice of the induction/model group illustrating the immunohistochemical levels of IL-13, C: microscopic mouse 
cutaneous slice of the vehicle group illustrating the immunohistochemical levels of IL-13, D: microscopic mouse cutaneous 
slice of the tacrolimus group illustrating the immunohistochemical levels of IL-13, E: microscopic mouse cutaneous slice of 
the ezetimibe group illustrating the immunohistochemical levels of IL-13

Fig. 7. Impact of tested agents on IgE and MDA (the data 
expressed as mean±standard deviation; * –implies a 
statistically marked difference (p<0.05) when contrasted to 
the normal controls, while # – implies a marked variation 
(p<0.05) when contrasted to the model/induction and 
vehicle groups

Fig. 8. Effects of tested agents on IL-17, IL-31, TGF-β, and 
TNF-α, the data expressed in the form of mean ±standard 
deviation, * – implies a statistically remarkable difference 
(p<0.05) when contrasted to the control group, while # – 
implies a remarkable variation (p<0.05) when contrasted to 
the model/induction and vehicle groups, IL  – interleukin, 
TGF-β – transforming growth factor-β; TNF-α – tumor 
necrosis factor-α
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frequent exposure to DNCB on the back skin.112 In this 
work, the disease was induced with 1% DNCB in the 
sensitization phase and successive administrations of 
0.5% DNCB in the challenge stage, resulting in a mild 
phenotype of eczematous dermatitis.83 The DNCB-treat-
ed skin exhibited a moderate extrinsic subacute atopic 
dermatitis lesion on day 12 and a mild extrinsic sub-
acute to prolonged phenotype and endotype on day 22, 
characterized by a predominant Th2 response. Both 
timepoints demonstrate hallmark features linked with 
atopic dermatitis, including dorsal skin thickening, hy-
perkeratosis, parakeratosis, elevated TH1 and TH2 cyto-
kine levels, and alterations in barrier proteins. Elevated 
mast cell influx in the epidermis and higher plasma IgE 
levels signify a type I allergic reaction. 83,113

In this study, administering DNCB to the murine 
dorsal regions resulted in evident indications of desqua-
mation, erythema, and blisters, along with a notable rise 
in eczema severity indices. Furthermore, the aggregate 
populations of WBCs, neutrophils, lymphocytes, mono-
cytes, and eosinophils were strongly elevated, and im-
munohistochemical testing indicated a large increment 
in IL-4 and IL-13 values. DNCB further drastically 
boosts the amounts of IgE, MDA, IL-17, IL-31, TGF-β, 
and TNF-α, while histological examination reveals 
pathological features such as hyperkeratotic changes, 
dermal thickness, and infiltrating lymphocytes, there-
fore confirming the AD model. Topical treatment is a 
popular method of ameliorating clinical manifestations, 
although it might trigger epidermal thinning and hy-
persensitivity.114-116 Tacrolimus is an effective prolonged 
topical therapy for AD that acts by reducing phospha-
tase activity in the calcineurin pathway, resulting in 
decreased T-lymphocyte activation and inflammatory 
cytokine production. It also improves skin barrier func-
tion by stimulating the development and maturation of 
skin cell. 117-119 Prior research has demonstrated that the 
anti-atopic benefits of tacrolimus entail the suppression 
of total and differential leukocytes, IgE activity, oxida-
tive measures notably MDA, and Th1- and Th2-related 
inflammatory cytokines, notably IL-4, IL-13, IL-17, IL-
31, TNF-a, and TGF-β, as well as various molecular sig-
naling cascades.120-124

Topical tacrolimus 0.1% yielded an immediate dec-
rement in overall dermatitis scores, inflammation, and 
pruritus.117 The most frequent undesirable actions of 
tacrolimus entail burning irritations at the sites of ad-
ministration.125-127 Consequently, developing innovative, 
efficacious medications for AD is essential.

In the current study, ezetimibe 2% ointment 
demonstrated a suppressive impact on DNCB-evoked 
AD-mimicking cutaneous erosions in mice, as evi-
denced by substantially reduced amounts of inflamma-
tory and oxidative biomarkers, histological alterations, 
and the dermatitis severity scores. Additionally, a con-

siderable decrement in the numbers of total leukocytes, 
lymphocytes, monocytes, eosinophils, and neutro-
phils was observed in comparison to the induction 
group. These outcomes were similar to those of Suchy 
et al. who discovered that ezetimibe has direct inhibi-
tory effects on the activation pathways of immune cells, 
including monocytes and macrophages.128 Another re-
search indicated that ezetimibe administration yielded 
in a dose-related decline in both the overall proportion 
of CD3+CD4+ T cells and the number of CD3+/CD4+/
CD45RO T memory lymphocytes.129 Aside from the ef-
fect on immune cells, ezetimibe additionally offers other 
benefits, such as lowering the production of C-reactive 
protein, an influential inflammatory biomarker.130 Like-
wise, topical ezetimibe experienced anti-inflammatory 
properties, reducing ear edema by 64%.131 supporting 
current research that suggests it may be applied to treat 
inflammatory skin conditions. These favorable effects 
of ezetimibe could be explained by its ability to down-
regulate inflammatory mediators, suppress macrophage 
activation, and regulate the NF-kB, a chain account-
able for producing various inflammation-related cyto-
kines. In this context, ezetimibe treatment caused IkB 
decomposition and thereby suppressed NF-kB transla-
tion via the mitogen-activated protein kinases (MAPKs) 
mechanism. This evidence showed that there might be 
an opportunity of using ezetimibe to treat and prevent 
inflammatory disorders.132 Another proof implies that 
ezetimibe might exhibit anti-inflammatory features 
alongside its lipid-lowering impacts, as NF-kB stimu-
lation is influenced by chemotactic cytokines and sub-
stances involved in intracellular defense.53  Moreover, 
ezetimibe alleviated clinical manifestations of ankylos-
ing spondylitis in animals by suppressing Th17 differ-
entiating-associated genes like IL-23R and IL-1R and 
modifying the Th17/Treg cell harmony resulting in a 
distinct anti-inflammatory impact irrespective of cir-
culatory lipid lowering. The researchers found that eze-
timibe dramatically boosted the overall count of Treg 
cells while decreasing the proportion of Th17 and 
Th1 lymphocytes. Ezetimibe also markedly decreased 
IFN-γ, TNF-α, IL-1β, IL-6, and IL-17 concentrations. 
As a result, ezetimibe modulates T-cell proliferation and 
pro-inflammatory cytokine release by immune system 
cells.133 Similarly, ezetimibe inhibited lymphocytic pro-
duction of TNF-α, IFN-γ, and IL-2 in hypercholesterol-
emic individuals in a lipid-unrelated way.134 Subsequent 
studies concluded that ezetimibe successfully managed 
the rat model of ulcerative colitis by alleviating the out-
put of pro-inflammatory measures like TNF-α, IL-1β, 
and NF-κB alongside oxidative measures like MDA 
and MPO in colon homogenate.135-137 Likewise, liter-
atures showed that ezetimibe is effective in treating of 
alopecia, an immune-related disease featured by T-lym-
phocyte stimulation, accumulation mast cells and pro-
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duction TNF-a.138-140 Alopecia sufferers are more likely 
to acquire other autoimmune disorders, like atopic der-
matitis, vitiligo, and skin cancer.141

Meanwhile, this work found that ezetimibe re-
markably reduced  the immunohistochemical expres-
sions of IL-4 and Il-13 in the back cutaneous folds. This 
outcome concurs with prior research, which indicated 
that ezetimibe/simvastatin combination contributed to 
decreased immunohistochemistry expression of che-
motactic cytokines among alopecia areata patients.141 
Additional observation revealed that ezetimibe pos-
sesses immunomodulatory impacts on antigenic pre-
sentation, lymphocytic trafficking, and regulatory T cell 
function.142 Ezetimibe was also documented to mitigate 
inflammatory variables like CRP, monocyte chemo-
attractant protein-1, IL-1β, IL-6, TNF-α, and pro-ox-
idant markers.143-145 In macrophage tests, ezetimibe 
reduced NF-κB expression and blocked the NLRP3 in-
flammasome-IL-1β route, resulting in anti-inflammato-
ry activity.146 Ezetimibe can also attenuate inflammation 
and oxidative injury induced by caspase-1/IL-1β via the 
AMP-stimulated protein kinase/NF-E2-relating factor 
2 (Nrf2)/thioredoxin-interacting protein (TXNIP) sys-
tem.147 In addition, this medication decreases monocyte 
chemoattractant protein 1-induced recruitment.148,149 
All these outcomes support our hypothesis that ezeti-
mibe could be of an important value in attenuating ex-
perimentally-induced model of AD.

Study limitations
Nonetheless, the present investigation encompassed 
some limitations. Actually, our data exclusively con-
firmed the inhibitory effect of ezetimibe on a murine 
male  prototype  of DNCB-aggravated  AD, neglecting 
the influence of gender-related fluctuations on the ex-
perimental results and failing to apply human par-
ticipants  due to the disparities between rodents and 
humans. Consequently, the effectiveness and security 
of ezetimibe in the management of AD ought to be as-
sessed in people. Moreover, the further in-depth mech-
anism by which ezetimibe confers preventive impacts in 
mice afflicted with AD needs to be elucidated. The issue 
pertains to implications on other immune-related ele-
ments such as the proliferation of systemic immune re-
ceptors (sCD25, sCD30), the atopy patch tests, and the 
filaggrin genes. Further investigation is necessary to as-
sess the efficacy of the combined use of ezetimibe and 
tacrolimus. 

Conclusion
Topical ezetimibe significantly attenuated DNCB-in-
duced eczematous dermatitis in mice by reducing histo-
pathological alterations, suppressing pro-inflammatory 
cytokines, and lowering total and differential leukocyte 
counts. These results provide the first evidence support-

ing ezetimibe as a potential adjunctive therapy for im-
mune-mediated and inflammatory dermatoses. The 
findings also highlight a novel therapeutic avenue for 
drug repurposing of ezetimibe in dermatology, partic-
ularly in AD.
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