

REVIEW PAPER

Harnessing the gut-brain axis in the treatment of type 2 diabetes mellitus and obesity

Kornela Kotucha ¹, Katarzyna Kaplon ¹, Magdalena Moś ¹, Jakub Fiegler-Rudol ²,
Alina Pietryszyn-Bilińska ³, Klaudia Dynarowicz ⁴, David Aebisher ⁵,
Rafał Wiench ², Aleksandra Kawczyk-Krupka ¹

¹ Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Bytom, Poland

² Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland

³ Silesian Center for Heart Diseases in Zabrze, 2nd Department of Cardiology and Angiology, Zabrze, Poland

⁴ Department of Biochemistry and General Chemistry, Faculty of Medicine, Collegium Medicum, University of Rzeszów, Rzeszów, Poland

⁵ Department of Photomedicine and Physical Chemistry, Faculty of Medicine, Collegium Medicum, University of Rzeszów, Rzeszów, Poland

ABSTRACT

Introduction and aim. The most common metabolic disorders include type 2 diabetes (T2DM) and obesity. Their prevalence has increased in recent years. Due to their widespread prevalence and the fact that they increase the risk of cardiovascular disease, morbidity, and mortality, they pose a significant economic burden to the healthcare system. In this review, we will focus primarily on the role of gut hormone signaling produced by enteroendocrine cells (EECs), which are part of the gut-brain axis. Furthermore we will summarize applications of these mechanisms in novel therapies for T2DM and obesity.

Material and method. Literature data analysis was performed using the following databases: PubMed (MEDLINE), Scopus, Web of Science and Google Scholar. The review included articles in Polish and English published between 2000 and 2024.

Analysis of the literature. EECs are specialized transepithelial cells present throughout the intestine. The best-studied EEC subtype is the L cell, which secretes glucagon-like peptide-1 (GLP-1). GLP-1 regulates insulin secretion and contributes to satiety by increasing insulin secretion and inhibiting glucagon secretion. Significant progress in the use of intestinal hormones in the treatment of T2DM and obesity has led to the development of effective therapies for both of these conditions, such as GLP-1 analogs.

Conclusion. The growing understanding of biochemical processes, hormonal signaling, and the development of new technologies contribute to the continuation of research on new, more effective therapies that use mechanisms of action of the gut-brain axis. Despite these achievements, the need for new and more effective treatments is constantly growing, and requires innovative strategies and their potential combination with existing therapies.

Keywords. diabetes, gut-brain axis, obesity

Corresponding author: David Aebisher, e-mail: daebisher@ur.edu.pl or Aleksandra Kawczyk-Krupka, e-mail: akawczyk@sum.edu.pl

Received: 17.04.2025 / Revised: 16.07.2025 / Accepted: 17.07.2025 / Published: 30.12.2025

Kotucha K, Kaplon K, Moś M, et al. Harnessing the gut-brain axis in the treatment of type 2 diabetes mellitus and obesity. *Eur J Clin Exp Med.* 2025;23(4):1069–1080. doi: 10.15584/ejcem.2025.4.24.

Introduction

Metabolic disorders include type 2 diabetes (T2DM) and obesity. These conditions frequently coexist. Their prevalence varies widely across the globe.^{1,2} According to the International Diabetes Federation, 463 million people worldwide had diabetes in 2019,³ while, according to the World Health Organization, more than 650 million adults worldwide were obese in 2016.⁴ Due to their widespread prevalence and the fact that both T2DM and obesity increase the risk of developing cardiovascular disease, morbidity, and mortality, these conditions impose a significant economic burden on healthcare systems.¹

One of the available therapies and treatment strategies for these conditions is glucagon-like peptide-1 (GLP-1) therapy. Their mechanism of action is based on the regulation of food intake, hunger and satiety, metabolism, and glucose homeostasis via the gut-brain axis.⁵ The gastrointestinal tract responds to a variety of stimuli, such as mechanical factors, pathogens, nutrients contained in food, and toxins.⁵ The gut-brain axis mediates bidirectional communication between the gastrointestinal tract and the central nervous system, utilizing specific signaling pathways.^{5,6} These pathways include the nervous system, the immune system, the hypothalamic-pituitary-adrenal axis, and enteroendocrine cells (EECs).⁶

Aim

In this review, we will focus primarily on the role of gut hormone signaling produced by EECs, which are part of the gut-brain axis and are involved in the regulation of appetite and glucose homeostasis. Furthermore, we will summarize applications of these mechanisms in novel therapies for T2DM and obesity.

Material and methods

Literature data analysis was conducted between 2020 and 2024 using the following databases: PubMed (MEDLINE), Scopus, Web of Science, and Google Scholar. The review included articles in Polish and English published between 2000 and 2024. Key terms used to identify relevant studies included: “glucagon-like peptide-1,” “enteroendocrine cells,” “GLP-1 analogues,” “incretin effect in type 2 diabetes,” “lixisenatide,” “liraglutide,” “semaglutide,” and “tirzepatide.” The review included scientific articles, reviews, and clinical trial descriptions in pediatric and adult patients. The review addressed the role of the gut-brain axis in appetite regulation and glucose homeostasis, the role of GLP-1 analogues in the context of the incretin effect, the treatment of T2DM, the treatment of obesity, cardiovascular disease, and other beneficial and adverse effects. Articles published before 2000, articles written in languages other than English or Polish, conference proceedings, and articles with access

only to the abstract were excluded. A literature review was conducted by five reviewers using a standard data extraction form. Ninety-two publications were included in the review. The analysis focused primarily on the role of gut hormonal signaling, generated by EEC, as a component of the gut-brain axis, and on the characteristics and effects of GLP-1 analogues, including tirzepatide.

Analysis of the literature

The role of the gut-brain axis in appetite regulation and glucose homeostasis

EECs are specialized transepithelial cells present throughout the intestine.⁷ Several unique subtypes of EECs have been described, distinguished by their location along the intestine, and the hormones and neurotransmitters they secrete. The nomenclature used to distinguish between the subtypes is based on the detection of specific hormones.^{8,9} EEC cells in the stomach produce hormones that, through feedback, regulate their own levels. These include ghrelin, histamine, and gastrin. In the distal intestine, they secrete anorexic hormones, and to support gastric motility, motilin and serotonin, as well as gastric inhibitory polypeptide (GIP).⁵ The best-studied EEC subtype is the L cell, which secretes GLP-1.¹⁰ GLP-1 regulates insulin secretion and contributes to satiety by increasing insulin secretion and inhibiting glucagon secretion, thereby suppressing endogenous glucose production and reducing postprandial glycemia. GLP-1 also delays gastric emptying¹¹ and increases pyloric contractions, thereby slowing the flow of food into the small intestine.⁵

EECs secrete hormones that influence neighbouring receptors, organs, and nerves (including the intestinal and vagus nerves). Therefore, their mechanism of action operates on multiple levels. The primary mechanism of action is through paracrine signaling, characterized by a short half-life.¹²⁻¹⁵ Another mode of action is endocrine due to the presence of pancreatic β -cells, which influence the process of food regulation.¹⁴ The third signaling pathway utilizes synaptic connections between EECs and intestinal afferent nerves; these are unable to directly detect chemical signals in the intestinal lumen. Therefore, synaptic connections with EEC cells enable the transmission of sensory stimuli from the intestinal lumen via neurotransmitters such as glutamate.¹⁶

Prior to food ingestion, gastric EECs produce ghrelin, which modulates orexigenic signaling to the brain. This hormone is detected at high concentrations before meals, suggesting that circulating ghrelin directly engages the hindbrain and the arcuate nucleus to promote appetite.¹⁷ The entry of nutrients into the small intestine inhibits ghrelin secretion¹⁸ and their absorption by the duodenal epithelium stimulates EECs to secrete cholecystokinin (CCK), GIP, and Secretin.¹⁰ CCK

receptors act on sensory nerves located in the region of the vagus nerve and its terminals. In this way, they influence not only satiety but also pyloric contractions, inhibiting gastric emptying.^{19,20} GIPs, in turn, activate insulin secretion. They regulate the activity of specific receptors on β -cells and influence the hypothalamus, which leads to fat storage in adipocytes.^{21,22} EECs are most strongly activated when nutrients and bile acids pass from the duodenum into the jejunum.^{19,23,24,25}

GLP-1 analogs

GLP-1 analogues, or GLP-1 receptor agonists (GLP-1RAs), are incretin-based drugs that are increasingly used in the treatment of patients with T2DM. These drugs are administered via subcutaneous injection (the exception being the oral formulation of semaglutide). Their primary role is to control and regulate blood glucose levels, which occurs through the process of insulin secretion and biosynthesis in a glucose-dependent manner. Additionally, these drugs inhibit glucagon secretion, delay gastric emptying, and promote satiety, which supports glycemic control and weight management in patients. GLP-1 analogues mimic the action of endogenous GLP-1.²⁶ Theoretically, pancreatic β cells should respond in the same way to glucose, regardless of whether it was administered orally or directly into the bloodstream. In practice, however, the body's response is different - after oral glucose intake, the level of insulin secreted is higher than after intravenous administration, despite similar blood glucose concentrations. This phenomenon is called the incretin effect. This effect is caused by gut hormones, the so-called incretins, which include GIP and GLP-1. GLP-1 is secreted by cells of the duodenal mucosa, while GLP-1 is produced in the cells of the small intestine. Through synthesis with appropriate receptors on the surface of pancreatic β -cells, they stimulate them to increase insulin secretion. The action of GIP and GLP-1 depends on the current glucose concentration – the higher the concentration, the greater the stimulation of insulin secretion and the simultaneous inhibition of glucagon production. When glucose levels drop to baseline, the activity of these hormones ceases. Importantly, incretins do not increase insulin secretion or inhibit glucagon when glucose levels are low – so they do not cause hypoglycemia. Additionally, GLP-1 slows down stomach emptying, which leads to slower digestion and absorption of glucose. This reduces the rapidity of the postprandial increase in blood sugar levels. Slower stomach emptying also promotes a faster feeling of satiety, which may contribute to a reduction in the amount of food consumed. In turn, GIP also affects at the cellular level – it stimulates the expression of the gene responsible for the production of proinsulin, a precursor of insulin.²⁷

GLP-1 and the incretin Effect

A greater and more effective insulin response is induced by an oral glucose load than by an intravenous load.^{28,29} This enhanced response is referred to as the incretin effect. GLP-1 is an incretin peptide hormone. It is secreted by L cells in the distal small intestine and colon within minutes of nutrient ingestion. It acts on pancreatic β -cells via GLP-1 receptors. It is estimated that approximately 50–70% of total insulin secretion after an oral glucose load is a consequence of incretin release from the gastrointestinal tract.^{29,30,31} GLP-1 suppresses appetite, and sustained activation of the GLP-1 receptor is associated with weight loss.^{29,30} The pancreas is not the only site where the GLP-1 receptor is found. It also appears in the stomach, intestines, kidneys, pituitary gland, and central nervous system. Therefore, its influence and role are extensive and multifaceted.^{29,30}

Studies on the secretion and action of incretins indicate significantly reduced incretin action in individuals with T2DM.³¹ The reasons for this reduced incretin action are not fully understood.²⁹ Secondary to the development of T2DM, pancreatic resistance to GLP-1 develops, and GLP-1 secretion by L cells decreases.^{29,32} Because the attenuation of GLP-1-related incretin action occurs early in the natural history of T2DM, GLP-1 replacement therapy seems a logical choice to restore normal insulin response in patients.²⁹ Administration of pharmacological doses of GLP-1 has been shown to be an effective way to restore the insulin response to glucose in patients with T2DM. GLP-1 infusion not only increases insulin secretion but also normalizes its secretory pattern, restoring the first phase of the insulin response, which is characterized by a sudden and rapid increase in insulin levels.^{29,33} Nauck et al. and Choe et al. demonstrated that continuous intravenous infusion of GLP-1 in patients with poorly controlled T2DM increased insulin secretion, resulting in better glycemic control, particularly of fasting glucose levels.^{34,35} The antidiabetic efficacy of GLP-1 administered by continuous subcutaneous infusion was confirmed by Zander, who demonstrated normalization of daily glycemia and a reduction in glycated hemoglobin (HbA1c) levels within 6 weeks of treatment.^{36,37} However, continuous administration of native GLP-1 via the intravenous or subcutaneous route is not convenient for long-term use in patients due to its very short half-life of approximately 2 minutes. Therefore, it has been important to develop GLP-1 agonists that are resistant to degradation by the dipeptidyl peptidase-4 (DPP-4) enzyme.³⁷

Meta-analyses of clinical trials have shown that the use of GLP-1RAs in patients with obesity and T2DM is not associated with an increased risk of breast cancer, acute pancreatitis, pancreatic cancer, or overall cancer incidence. Furthermore, evidence suggests that GLP-1RAs therapy does not increase the risk of new thyroid nodules in patients with T2DM. Preclinical studies have

also shown potential anti-cancer activity of GLP-1RAs, including by inhibiting the growth of prostate and pancreatic cancer cells. Similarly, growth-inhibiting effects on breast and cervical cancer cells have been observed, suggesting potential future applications of GLP-1RAs in cancer therapy. In particular, liraglutide has shown antiproliferative and proapoptotic properties against pancreatic cancer cells resistant to gemcitabine and other cytotoxic drugs. Despite these promising results, some concerns have been raised about the long-term safety of GLP-1RAs. A population-based matched-case study suggested that exenatide use may increase the risk of hospitalization for acute pancreatitis. Additionally, some data suggest that incretin drugs may be associated with an approximately 1.7-fold increased risk of developing pancreatic cancer. However, due to limited statistical power, short follow-up, and uncertainties in assessing disease severity, a direct causal relationship cannot be unequivocally confirmed. In contrast, systematic reviews of studies assessing mortality and the effects of GLP-1RAs on cardiovascular and renal function in patients with T2DM have not shown an increased incidence of severe hypoglycemia, pancreatitis, or pancreatic cancer. There is currently no clear clinical evidence indicating a carcinogenic effect of GLP-1RAs. On the contrary, a growing body of research suggests that they may have anticancer effects on various types of cancer, including ovarian, breast, prostate, and pancreatic.^{38,39,40}

Short-acting and long-acting GLP-1 analogs

The first GLP-1 receptor agonist approved for the treatment of T2DM was exenatide, a synthetic exendin-4 peptide isolated from the venom of the Gila monster (*Heloderma suspectum*).³⁴ Exenatide is a peptide resistant to DPP-4 and is not inactivated by it. This drug has an affinity for the GLP-1 receptor similar to native GLP-1 and stimulates pancreatic β -cells in a glucagon-like manner. After subcutaneous injection, exenatide has a half-life of about 4 hours, reaching peak concentration between 2 and 3 hours, with a total duration of action up to 5-7 hours. Two-times and three-times daily regimens have been tested. The regimen of exenatide was approved for subcutaneous injection twice daily, before breakfast and dinner.³⁴ The long-acting-release LAR preparation of exenatide molecule enables weekly administration while maintaining the desired therapeutic effect.^{34,41} Although exenatide shares 53% sequence homology with GLP-1, it induces an immune response leading to the formation of antibodies formation, which, however, does not significantly affect its therapeutic efficacy.^{34,42}

Lixisenatide is a structural analog of exendin-4, modified by adding six lysine residues at the C-terminal end, while removing a proline residue. This modification makes it resistant to DPP-4 degradation.^{43,44} It is administered via subcutaneous injection once daily.⁴⁵

Liraglutide, developed as another GLP-1 receptor agonist, shares 97% sequence homology with native GLP-1. By attaching a fatty acid chain to its structure via a linker molecule, it provides a long-acting drug. Furthermore, it promotes albumin binding in extracellular fluid and plasma.^{34,46} Approximately 2% of liraglutide is unbound to albumin. However, the majority of liraglutide is a reservoir from which it can be released into specific and targeted tissues and cells with GLP-1 receptors. The estimated half-life is 13 hours.^{34,47} It is approved for once-daily subcutaneous administration.³⁴ Dulaglutide and albiglutide represent a novel approach in which larger proteins, such as immunoglobulin fragments in the case of dulaglutide^{34,48} and albumin in the case of albiglutide^{34,49}, are linked to two modified (DPP-4-resistant) GLP-1 molecules. Due to their slow systemic elimination, these drugs have a half-life of approximately one week, allowing for once-weekly administration.^{34,50,51} The relatively rapid absorption of these drugs results in an earlier response and, consequently, a more rapid onset of clinically noticeable effects.^{34,52}

Semaglutide has a molecular structure similar to liraglutide. It has been modified by replacing alanine at position 2 with α -aminoisobutyric acid, which makes it completely resistant to DPP-4 degradation. Due to the stronger binding of the fatty chain, semaglutide has an even longer elimination time, which allows it to be administered once a week.^{34,53}

In summary, we distinguish short-acting and long-acting GLP-1RAs. Short-acting GLP-1RAs include exenatide and lixisenatide, administered once or twice daily via subcutaneous injection. Long-acting GLP-1RAs include liraglutide administered as subcutaneous injections once daily, and exenatide, dulaglutide, albiglutide, and semaglutide administered once weekly.^{34,45}

An oral form of semaglutide has also been developed, containing the same active molecule as the injectable form, combined with an absorption enhancer, sodium N-[8-(2-hydroxybenzoyl)amino]caprylate (SNAC). SNAC locally increases pH, facilitating semaglutide absorption. However, oral semaglutide has low bioavailability. To achieve similar efficacy as subcutaneous injection (1 mg/week), significantly higher doses (up to 14 mg/day) are required.^{34,54} It is recommended to take oral semaglutide once daily in the morning on an empty stomach with a small amount of water, at least 30 minutes before breakfast.^{8,54}

GLP-1 analogs in T2DM treatment

The role of GLP-1RAs is to stimulate insulin secretion in a blood glucose-dependent manner - the higher the blood glucose concentration, the greater the insulin secretion.²⁹ Furthermore, by increasing insulin biosynthesis at the

translational level, they help maintain insulin reserves in β -cells and their secretory capacity.^{29,30} Due to their direct effect on pancreatic α -cells, which become more sensitive to glucose, they secrete less glucagon, thus reducing endogenous glucose production. Glucagon stimulates hepatic glucose production, so reducing its secretion leads to reduced hepatic glucose production, which reduces insulin requirements and improves glycemic control.^{29,55} Furthermore, GLP-1RAs can influence peripheral glucose metabolism via GLP-1 receptors located in the central nervous system.^{29,55} GLP-1RAs reduce gastric acid secretion and slow gastric emptying, both in response to pentagastrin and after a meal. These effects are mediated by the vagus nerve and GLP-1 receptors located in the central nervous system or on afferent vagal fibers, which transmit sensory signals to the brainstem.^{29,30} Slowing gastric emptying reduces the rate of glucose absorption, resulting in lower postprandial blood glucose levels. Short-acting GLP-1RAs, administered around meals, have a stronger effect on gastric motility and are more effective in reducing postprandial glycemia than long-acting forms.^{29,57}

GLP-1 analogs significantly reduce the level of HbA1c. Studies show that GLP-1RAs used in monotherapy lower HbA1c level by 0.5–1.0% more than placebo. In combination with metformin, the reduction of HbA1c was 0.5–1.1%, with sulfonylureas 0.6–1.4%, and with thiazolidinediones 0.8–1.1%.²⁹ Direct comparisons have shown that the reduction of HbA1c achieved with GLP-1RAs is greater than in the case of DPP-4 inhibitors, due to their higher receptor binding affinity.^{29,58} The reduction of HbA1c levels with the use of GLP-1RAs is comparable to that achieved with the use of insulin (including basal insulin analogs, mixed formulations, and NPH insulin), but without the risk of hypoglycemia or weight gain that are associated with insulin therapy.^{29,59,60} In clinical practice, the degree of HbA1c reduction depends on the patient's initial hemoglobin level.⁵

GLP-1 analogs in obesity treatment

GLP-1 plays an important role in multiple areas of physiology. The most important in terms of obesity treatment is reducing appetite and food intake. This effect promotes long-term weight loss. Studies indicate that GLP-1 secretion from the gastrointestinal tract is impaired in obese individuals, suggesting its involvement in the pathophysiology of obesity.^{61,62}

GLP-1RAs mechanism of action includes both central and peripheral processes that together promote satiety, reduce hunger, and consequently lead to decreased food intake.⁶¹ Central effects involve the activation of GLP-1 receptors present in brain regions involved in the regulation of food intake and energy balance. Indirect mechanisms include the activation of

vagal afferents originating from the intestines and portal circulation.^{61,63} Slowed gastric emptying and transient nausea induced by GLP-1 analogs may contribute to weight loss, but their role is thought to be minor and short-lived.^{61,64}

Weight loss was consistently observed in all pivotal clinical trials of GLP-1RAs. Studies have shown that albiglutide^{45,59} and dulaglutide³² were less effective in reducing body weight compared with liraglutide and semaglutide. The larger molecular structures of albiglutide and dulaglutide limit the ability of GLP-1RAs to penetrate the brain and affect the satiety center.^{65,66,67} Food and Drug Administration -approved injectable GLP-1 analogues for the treatment of obesity include liraglutide and semaglutide.^{65,68}

GLP-1 analogs and cardiovascular diseases

Cardiovascular diseases remain the most common cause of death in Poland. Cardiovascular risk is defined as the probability of developing cardiovascular disease or dying from it within a specified time period. Numerous studies confirm that people with T2DM are exposed to higher cardiovascular risk compared to the general population. The level of this risk is influenced by many factors, which can be divided into classic (e.g. hypertension, hypercholesterolemia, smoking) and non-classic (e.g. inflammation, oxidative stress, metabolic disorders). T2DM is often accompanied by hyperglycemia and other metabolic disorders, which significantly increase the risk of developing both cardiovascular diseases and microvascular complications. Randomized clinical trials have shown that maintaining proper glycemic control reduces the risk of microvascular complications. However, its effect on preventing macrovascular complications, such as atherosclerosis, is moderate. Despite this, it has been shown that more effective treatment of hyperglycemia can lead to a reduction in the number of serious cardiovascular events. GLP-1 analogues, in addition to their hypoglycemic effect, also have a beneficial effect on cardiovascular risk factors. It is suspected that drugs from this group affect them indirectly, mainly by reducing body weight. Therapy with GLP-1 analogues often also leads to an improvement in the lipid profile – a reduction in the level of total cholesterol, low-density lipoprotein (LDL) fraction and triglycerides – as well as a decrease in systolic blood pressure. Additionally, preclinical and clinical studies suggest that stimulation of GLP-1 receptors affects the functioning of endothelial cells, the immune system and platelets, which are involved in the process of atherogenesis. It has also been shown that drugs such as exenatide, liraglutide or semaglutide reduce oxidative stress and the expression of adhesion molecules in blood vessels, which may slow down the development

of atherosclerosis. In recent years, many studies have been conducted to assess the effect of GLP-1 analogues on the risk of cardiovascular events. For example, the use of liraglutide at a dose of 1.8 mg for 3.5 to 5 years in patients with T2DM led to a significant reduction in the risk of cardiovascular death, heart attack and non-fatal stroke. The effect of individual GLP-1 analogues on the cardiovascular system varies. Studies have shown that lixisenatide and exenatide do not differ in terms of efficacy from placebo in the context of cardiovascular risk. On the other hand, liraglutide, albiglutide and dulaglutide showed a beneficial effect in reducing this risk. Although most studies concerned patients with T2DM, the effect of GLP-1 analogue therapy in people without diagnosed diabetes is increasingly being analyzed. Preliminary results suggest that these drugs may improve glucose metabolism, reduce the amount of perivascular and epicardial adipose tissue, which is important in preventing atherosclerosis. In addition, they are indicated to have a potential role in reducing chronic inflammation and oxidative stress – two important factors increasing cardiovascular risk – which may be indirectly related to weight loss.^{69,70}

Studies show that GLP-1 analogues can reduce the risk of cardiovascular events in overweight or obese individuals, regardless of diabetes. They also have potential protective effects on the circulatory system, helping to reduce the risk of cardiovascular complications. Table 1 shows cardiovascular and renal effects in obese individuals caused by GLP-1 drug supplementation.

Table 1. Cardiovascular and renal effects in obese individuals caused by GLP-1 drug supplementation

With diabetes	No diabetes
weight loss	weight loss
lowering systolic blood pressure	lowering systolic blood pressure
lowering the level of total cholesterol, LDL fraction and triglycerides	improving kidney function, reducing the risk of developing or worsening kidney disease
reducing oxidative stress and the expression of adhesion molecules in blood vessels, which may slow down the development of atherosclerosis	reducing oxidative stress and the expression of adhesion molecules in blood vessels, which may slow down the development of atherosclerosis
reducing the incidence of cardiovascular death, heart attack and stroke	reducing the incidence of cardiovascular death, heart attack and stroke

Other positive effects of GLP-1 analogs

GLP-1 analogs may also benefit patients with conditions other than diabetes and obesity, as indicated by subsequent studies.⁷¹ It has been demonstrated that GLP-1 analogs have a protective and therapeutic effects in the central nervous system through the reduction of neuroinflammation, enhancement of signal transduction in cells, and stimulation of neuronal growth and differentiation.^{71,72} Particularly beneficial effects have been observed in case of Alzheimer's

disease, Parkinson's disease, depression, and in post-stroke conditions. In Alzheimer's disease, GLP-1 analogs improve glucose metabolism in brain, improving glucose transport across the blood-brain barrier.^{71,73} They also have a protective effect on dopaminergic neurons in the substantia nigra, which may positively influence motor activity in Parkinson's disease.^{71,74} GLP-1RAs have also demonstrated a significant impact on reducing stroke incidence and enhancing neuroprotection in both preclinical and clinical studies.^{71,75} Furthermore, GLP-1 analogs may exhibit antidepressant effects by improving cognitive function, promoting neuroprotection, and modulating neurotransmitter release. They may be effective as adjunctive medications not only in neurodegenerative diseases and substance abuse disorders, but also in mood disorders such as depression.^{71,76} In addition, GLP-1 analogs appear to be a promising therapeutic option for the treatment of chronic pain, offering analgesic effects without severe adverse effects or addiction risks.^{71,77}

These medications show cardioprotective properties by exerting anti-inflammatory effects and reducing myocardial damage induced by ischemia. They also modify the processes of lipid synthesis and secretion, while improving endothelial function. Studies suggest that GLP-1 analogs may be effective in the treatment of hypertension and atherosclerosis.^{71,78}

In individuals reporting typical or atypical chest pain, increased circulating GLP-1 levels were correlated with reduced atherosclerotic plaque burden as assessed by coronary computed tomography. In animal models of atherosclerosis, treatment with GLP-1RAs, particularly semaglutide, has been shown to reduce fatty changes in the aortic root, ascending aorta, and iliac bifurcation. On the other hand, one study of type 2 diabetic patients receiving liraglutide reported increased plaque volume. Despite the growing body of evidence, it remains unclear whether GLP-1RAs therapy actually contributes to plaque regression or stabilization of those more likely to rupture.⁷⁹

Atherosclerosis is a chronic inflammatory-degenerative process in which fibrolipid changes occur in the arterial wall. It is the leading cause of death worldwide. Particularly dangerous are cases in which thrombosis overlaps – this leads to the most serious complications, such as myocardial infarction or stroke.

One of the causes of atherosclerosis is elevated plasma cholesterol levels, especially in the form of low-density lipoproteins. These are responsible for transporting cholesterol through the bloodstream. Emerging atherosclerotic plaques undergo fibrosis over time, forming fibrous caps and calcium deposits. Numerous studies have shown that semaglutide and liraglutide can positively impact lipid profiles and lower blood pressure, reducing the risk of developing atherosclerosis and car-

diovascular disease. Furthermore, animal models have shown that drugs from this class inhibit the progression of atherosclerosis. The mechanisms of action of GLP-1RAs in atherosclerosis include: reduced inflammation, decreased intima-media thickness, improved lipid profile, and normalized endothelial function. These drugs have also been shown to lower systemic inflammatory markers, which is important because chronic inflammation plays a key role in the pathogenesis of cardiovascular disease. Furthermore, there is evidence that GLP-1RAs may prevent the formation of macrophage foam cells, thereby delaying the progression of atherosclerotic lesions. Although no GLP-1 agonists have been officially approved for the treatment of atherosclerosis, the results of previous studies suggest that these drugs may represent a promising therapeutic option for the prevention and treatment of this disease.

Research results indicate that GLP-1 analogs may also play a beneficial role in the treatment of polycystic ovary syndrome, contributing not only to weight reduction but also beneficially affecting androgen levels.^{71,80}

Moreover, these medications seem to be effective in the treatment of non-alcoholic fatty liver disease. GLP-1RAs have been shown to directly influence adipogenesis, lipotoxicity, fatty acid oxidation, and the release of cytokines associated with liver inflammation and fibrosis. They also reduce visceral obesity and hepatic fat deposition.^{71,81}

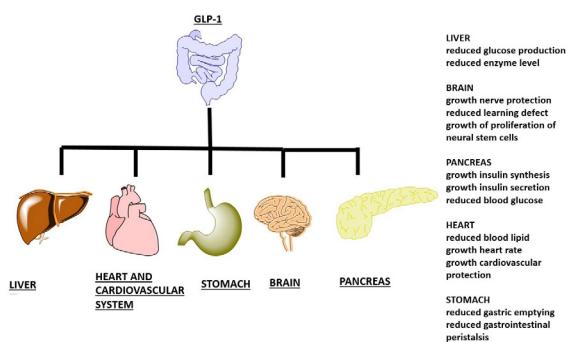
Adverse effects of GLP-1 analogs

When presenting the characteristics of GLP-1 analogues, it is also important to mention their potential side effects. The most common adverse effects include nausea and vomiting. Their incidence is lower with long-acting preparations. These symptoms may be due to delayed gastric emptying or the analogues' effects on the central nervous system. Nausea and vomiting are particularly common at the beginning of therapy, but their severity usually decreases within the first 4–8 weeks of treatment, as observed in studies with exenatide and liraglutide.^{29,82} Other adverse effects of GLP-1RAs inhibitors include diarrhea and constipation. Diarrhea occurs in approximately 10–20% of patients, and constipation in approximately 4–10% of those treated with these drugs.²⁹ Injection-site reactions, such as itching or soft tissue nodules, may also occur in patients taking GLP-1 analogues. These reactions are usually mild and transient. Injection site nodules are observed primarily with exenatide and are the result of an inflammatory reaction to the polymer.²⁹ Additionally, GLP-1RAs use may slightly increase heart rate.²⁹ It is worth noting that when GLP-1 analogs are used in monotherapy, the risk of hypoglycemia is low because the analogs stimulate insulin secretion and inhibit glucagon release in a glucose-dependent manner. The

risk of hypoglycemia may be a concern when analogs are combined with insulin therapy.²⁹

GLP-1RAs for weight loss were associated with an increased risk of pancreatitis, gastroparesis, and intestinal obstruction compared with bupropion/naltrexone therapy, but no increased risk of biliary tract disease. Although these adverse events are relatively rare, given the increasing use of GLP-1 agonists, they should be taken into account by patients considering the use of these drugs for obesity treatment.⁸³

Patients taking GLP-1 analogues often experience side effects from the digestive system, such as nausea, vomiting, diarrhea or constipation. These symptoms may result from the drug's effect on the motility of the digestive tract and the mechanisms regulating the feeling of satiety.


In gastroenterology practice, you should be prepared for the following phenomena:

- Nausea, vomiting, diarrhea – these are the most common side effects, which may affect even over 50% of patients.
- Constipation – slowed intestinal peristalsis caused by the drug may lead to constipation, which can be particularly troublesome in patients with existing pelvic floor dysfunction.
- Bloating – may be a consequence of both constipation and a general slowing of intestinal transit.
- Abdominal discomfort – manifested by abdominal pain, a feeling of fullness or tension, may be related to the effect of the drug on the digestive tract.
- Intestinal obstruction – a rare but potentially serious complication that can occur in those with anatomical or functional predispositions.
- Pancreatitis – although rare, some studies suggest a possible association between the use of GLP-1 analogues and an increased risk of pancreatitis.
- Gastroparesis – slowed stomach emptying, known as gastroparesis, can also occur as a side effect of therapy.

Tirzepatide (Mounjaro) a new agent in T2DM and obesity treatment

Currently, drugs are also available that can perform dual functions. Tirzepatide is the first dual agonist of the GIP and GLP-1 receptors. Currently, tirzepatide is approved only for the treatment of type 2 diabetes.^{84,85} It is a synthetic peptide composed of 39 amino acids and structurally similar to incretins. Its structure contains a fatty acid residue linked to hydrophilic linkers. Additionally, the peptide contains two non-encoded amino acid residues, which are responsible for its extended half-life and strong affinity for albumin. Similar to other drugs, tirzepatide has a mean half-life of approximately five days.⁸⁵ Tirzepatide acts through the aforementioned incretin effect. Studies indicate that

it lowers HbA1c levels more effectively than semaglutide and induces weight loss, depending on the dose administered. This effect is primarily mediated by GIP, although the combination of GIP and GLP-1 receptor agonism demonstrates synergistic effects.⁸⁶⁻⁸⁹ The phase III SURPASS trials demonstrated that tirzepatide, both as monotherapy and as adjunctive therapy, is more effective in lowering blood glucose and insulin levels compared with GLP-1RAs. Furthermore, the risk of hypoglycemia and other adverse cardiovascular events is low with tirzepatide.⁸⁴ Currently, tirzepatide is also being evaluated for its use in the treatment of obesity in patients with T2DM. It is also anticipated that this drug could be used in the future to treat nonalcoholic steatohepatitis or obstructive sleep apnea.^{90,91,92} Adverse events are rare, usually during dose escalation, and are generally mild to moderate in severity. Five SURPASS clinical trials confirmed the potent glucose-lowering and weight-reducing properties of tirzepatide, with an overall safety profile comparable to that of GLP-1RAs.^{84,88} Figure 1 shows the effect of GLP-1 on selected internal organs.

Fig. 1. Effects of GLP-1 on organs

Conclusion

Significant progress in the use of intestinal hormones in the treatment of T2DM and obesity has led to the development of effective therapies for both of these conditions, such as GLP-1 analogs. These drugs are now commonly used to treat T2DM, and recent studies have shown that they are also effective in weight loss. The growing understanding of biochemical processes, hormonal signaling, and the development of new technologies contribute to the continuation of research on new, more effective therapies that use mechanisms of action of the gut-brain axis. Despite these achievements, the need for new and more effective treatments is constantly growing, and requires innovative strategies and their potential combination with existing therapies.

Declarations

Funding

All sources of funding of the study should be disclosed.

Author contributions

Conceptualization, Ko.K.; Ka.K.; M.M.; J.F-R.; A.P.B.; K.D.; D.A.; R.W. and A.K-K.; Validation, Ko.K.; Ka.K.; M.M.; J.F-R.; A.P.B.; K.D.; D.A.; R.W. and A.K-K.; Formal Analysis, Ko.K.; Ka.K.; M.M.; J.F-R.; A.P.B.; K.D.; D.A.; R.W. and A.K-K.; Resources, Ko.K.; Ka.K.; M.M.; J.F-R.; A.P.B.; K.D.; D.A.; R.W. and A.K-K.; Writing – Original Draft Preparation, Ko.K.; Ka.K.; M.M.; J.F-R.; A.P.B.; K.D.; D.A.; R.W. and A.K-K.; Writing – Review & Editing, Ko.K.; Ka.K.; M.M.; J.F-R.; A.P.B.; K.D.; D.A.; R.W. and A.K-K.; Visualization, Ko.K.; Ka.K.; M.M.; J.F-R.; A.P.B.; K.D.; D.A.; R.W. and A.K-K.; Supervision, A.K.K.

Conflicts of interest

The author(s) declare no competing interests.

Data availability

All data generated or analyzed during this study are included in this published article.

Ethics approval

Not applicable.

References

1. Huang X, Wu Y, Ni Y, Xu H, He Y. Global, regional, and national burden of type 2 diabetes mellitus caused by high BMI from 1990 to 2021, and forecasts to 2045: analysis from the global burden of disease study 2021. *Front Public Health.* 2025;13:1515797. doi: 10.3389/fpubh.2025.1515797
2. Ong KL, Stafford LK, McLaughlin SA, et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. *Lancet.* 2023; 402(10397):203-234. doi: 10.1016/S0140-6736(23)01301-6.
3. International Diabetes Federation: IDF Diabetes Atlas-9th edition. <https://diabetesatlas.org/media/uploads/sites/3/2025/02/IDF-Atlas-9th-Edition-EN.pdf>. Accessed April 21, 2021.
4. World Health Organization (WHO): Obesity and Overweight, 2020. <https://iris.who.int/bitstream/handle/10665/332070/9789240005105-eng.pdf>. Accessed April 21, 2021.
5. Wachsmuth HR, Weninger SN, Duca FA. Role of the gut-brain axis in energy and glucose metabolism. *Exp Mol Med.* 2022;54(4):377-392. doi: 10.1038/s12276-021-00677-w.
6. Longo S, Rizza S, Federici M. Microbiota-gut-brain axis: relationships among the vagus nerve, gut microbiota, obesity, and diabetes. *Acta Diabetol.* 2023;60(8):1007-1017. doi: 10.1007/s00592-023-02088-x
7. Nwako JG, McCauley HA. Enteroendocrine cells regulate intestinal homeostasis and epithelial function. *Mol Cell Endocrinol.* 2024;593:112339. doi: 10.1016/j.mce.2024.112339

8. Hunne B, Stebbing MJ, McQuade RM, Furness JB. Distributions and relationships of chemically defined enteric-endocrine cells in the rat gastric mucosa. *Cell and Tissue Research*. 2019;378(1):33-48. doi: 10.1007/s00441-019-03029-3
9. Richards P, Thornberry NA, Pinto S. The gut-brain axis: Identifying new therapeutic approaches for type 2 diabetes, obesity, and related disorders. *Mol Metab*. 2021;46:101175. doi: 10.1016/j.molmet.2021.101175
10. Movahednasab M, Dianat-Moghadam H, Khodadad S, et al. GLP-1-based therapies for type 2 diabetes: from single, dual and triple agonists to endogenous GLP-1 production and L-cell differentiation. *Diabetol Metab Syndr*. 2025;17(1):60. doi: 10.1186/s13098-025-01623-w
11. Raven LM, Brown C, Greenfield JR. Considerations of delayed gastric emptying with peri-operative use of glucagon-like peptide-1 receptor agonists. *Med J Aust*. 2024;220(1):14-16. doi: 10.5694/mja2.52170.
12. Yusta B, Baggio LL, Koehler J, et al. GLP-1R agonists modulate enteric immune responses through the intestinal intraepithelial lymphocyte GLP-1R. *Diabetes*. 2015;64(7):2537-2549. doi:10.2337/db14-1577
13. Yusta B, Matthews D, Koehler JA, et al. Localization of glucagon-like peptide-2 receptor expression in the mouse. *Endocrinology*. 2019;160(8):1950-1963. doi:10.1210/en.2019-00398
14. Richards P, Parker HE, Adriaenssens AE, et al. Identification and characterization of GLP-1 receptor-expressing cells using a new transgenic mouse model. *Diabetes*. 2014;63(4):1224-1233. doi: 10.2337/db13-1440
15. Zheng Z, Zong Y, Ma Y, et al. Glucagon-like peptide-1 receptor: mechanisms and advances in therapy. *Signal Transduct Target Ther*. 2024;9(1):234. doi: 10.1038/s41392-024-01931-z
16. Heiss CN, Olofsson LE. The role of the gut microbiota in development, function and disorders of the central nervous system and the enteric nervous system. *J Neuroendocrinol*. 2019;31(5):e12684. doi: 10.1111/jne.12684
17. Davies JS. Ghrelin mediated hippocampal neurogenesis. *Vitam Horm*. 2022;118:337-367. doi: 10.1016/bs.vh.2021.12.003
18. Kotta AS, Kelling AS, Corleto KA, Sun Y, Giles ED. Ghrelin and Cancer: Examining the Roles of the Ghrelin Axis in Tumor Growth and Progression. *Biomolecules*. 2022;12(4):483. doi: 10.3390/biom12040483
19. Bai L, Mesgarzadeh S, Ramesh KS, et al. Genetic identification of vagal sensory neurons that control feeding. *Cell*. 2019;179(5):1129-1143. doi: 10.1016/j.cell.2019.10.031
20. Warrilow A, Turner M, Naumovski N, Somerset S. Role of cholecystokinin in satiation: a systematic review and meta-analysis. *Br J Nutr*. 2023;129(12):2182-2190. doi: 10.1017/S0007114522000381
21. Holst JJ. The incretin system in healthy humans: the role of GIP and GLP-1. *Metabolism*. 2019;96:46-55. doi: 10.1016/j.metabol.2019.04.014
22. Adriaenssens AE, Biggs EK, Darwish T, et al. Glucose-dependent insulinotropic polypeptide receptor-expressing cells in the hypothalamus regulate food intake. *Cell Metab*. 2019;30(5):987-996. doi: 10.1016/j.cmet.2019.07.013
23. Prescott SL, Umans BD, Williams EK, et al. An airway protection program revealed by sweeping genetic control of vagal afferents. *Cell*. 2020;181(3):574-589. doi: 10.1016/j.cell.2020.03.004
24. Kupari J, Häring M, Agirre E, et al. An atlas of vagal sensory neurons and their molecular specialization. *Cell Rep*. 2019;27(8):2508-2523. doi: 10.1016/j.celrep.2019.04.096
25. Drokhlyansky E, Smillie CS, Van Wittenberghe N, et al. The human and mouse enteric nervous system at single cell resolution. *Cell*. 2020;182(6):1606-1622. doi: 10.1016/j.cell.2020.08.003
26. Wong C, Lee MH, Yaow CYL, et al. Glucagon-Like Peptide-1 Receptor Agonists for Non-Alcoholic Fatty Liver Disease in Type 2 Diabetes: A Meta-Analysis. *Front Endocrinol (Lausanne)*. 2021;12:609110. doi: 10.3389/fendo.2021.609110
27. Moore PW, Malone K, VanValkenburg D, et al. GLP-1 Agonists for Weight Loss: Pharmacology and Clinical Implications. *Adv Ther*. 2023;40(3):723-742. doi: 10.1007/s12325-022-02394-w
28. Roberts-Thomson KM, Parker L, Betik AC, et al. Oral and intravenous glucose administration elicit opposing microvascular blood flow responses in skeletal muscle of healthy people: role of incretins. *J Physiol*. 2022;600(7):1667-1681. doi: 10.1113/JP282428
29. Shaefer CF Jr, Kushner P, Aguilar R. User's guide to mechanism of action and clinical use of GLP-1 receptor agonists. *Postgrad Med*. 2015;127(8):818-826. doi: 10.1080/00325481.2015.1090295
30. Nauck MA, Quast DR, Wefers J, Pfeiffer AFH. The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: A pathophysiological update. *Diabetes Obes Metab*. 2021;23 (3):5-29. doi: 10.1111/dom.14496.
31. Holst JJ, Gasbjerg LS, Rosenkilde MM. The Role of Incretins on Insulin Function and Glucose Homeostasis. *Endocrinology*. 2021;162(7):bqab065. doi: 10.1210/endocr/bqab065
32. Holst JJ, Knop FK, Vilsbøll T, et al. Loss of incretin effect is a specific, important, and early characteristic of type 2 diabetes. *Diabetes Care*. 2011;34(2):251-257. doi: 10.2337/dc11-s227
33. Godsland IF, Johnston DG, Alberti K, Oliver N. The importance of intravenous glucose tolerance test glucose stimulus for the evaluation of insulin secretion. *Sci Rep*. 2024;14(1):7451. doi: 10.1038/s41598-024-54584-x
34. Nauck MA, Meier JJ. Management of endocrine disease: Are all GLP-1 agonists equal in the treatment of type 2 diabetes? *Eur J Endocrinol*. 2019;181(6):R211-R234. doi: 10.1530/EJE-19-0566
35. Choe HJ, Nauck MA, Moon JH. Metabolic Consequences of Glucagon-Like Peptide-1 Receptor Agonist Shortage:

Deterioration of Glycemic Control in Type 2 Diabetes. *Endocrinol Metab (Seoul)*. 2025;40(1):156-160. doi: 10.3803/EnM.2024.2150

36. Zander M, Madsbad S, Madsen JL, Holst JJ. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. *Lancet*. 2002;359(9309):824-830. doi: 10.1016/S0140-6736(02)07952-7

37. Matuszek B, Lenart-Lipińska M, Nowakowski A. Incretin hormones in the treatment of type 2 diabetes. Part II. Incretins - new possibilities for pharmacotherapy of type 2 diabetes. *Endokrynol Pol*. 2008;59(4):322-329.

38. Zhao X, Wang M, Wen Z, et al. GLP-1 Receptor Agonists: Beyond Their Pancreatic Effects. *Front Endocrinol (Lausanne)*. 2021;12:721135. doi: 10.3389/fendo.2021.721135

39. Dankner R, Murad H, Agay N, Olmer L, Freedman LS. Glucagon-Like Peptide-1 Receptor Agonists and Pancreatic Cancer Risk in Patients With Type 2 Diabetes. *JAMA Netw Open*. 2024;7(1):e2350408. doi: 10.1001/jamanetworkopen.2023.50408

40. Nreu B, Dicembrini I, Tinti F, Mannucci E, Monami M. Pancreatitis and pancreatic cancer in patients with type 2 diabetes treated with glucagon-like peptide-1 receptor agonists: an updated meta-analysis of randomized controlled trials. *Minerva Endocrinol (Torino)*. 2023;48(2):206-213. doi: 10.23736/S2724-6507.20.03219-8

41. DeFronzo RA, Ratner RE, Han J, et al. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. *Diabetes Care*. 2005;28(5):1092-1100. doi: 10.2337/diacare.28.5.1092

42. Fineman MS, Mace KF, Diamant M, et al. Clinical relevance of anti-exenatide antibodies: safety, efficacy and cross-reactivity with long-term treatment. *Diabetes Obes Metab*. 2012;14(6):546-554. doi: 10.1111/j.1463-1326.2012.01561.x

43. Leon N, LaCoursiere R, Yarosh D, Patel RS. Lixisenatide (Adlyxin): A Once-Daily Incretin Mimetic Injection for Type-2 Diabetes. *P T*. 2017;42(11):676-711.

44. Christensen M, Knop FK, Holst JJ, Vilsbøll T. Lixisenatide, a novel GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus. *IDrugs*. 2009;12(8):503-513.

45. Trujillo JM, Nuffer W. GLP-1 receptor agonists for type 2 diabetes mellitus: recent developments and emerging agents. *Pharmacotherapy*. 2014;34(11):1174-1186. doi: 10.1002/phar.1507

46. Mahapatra MK, Karuppasamy M, Sahoo BM. Semaglutide, a glucagon like peptide-1 receptor agonist with cardiovascular benefits for management of type 2 diabetes. *Rev Endocr Metab Disord*. 2022;23(3):521-539. doi: 10.1007/s11154-021-09699-1

47. Elbrønd B, Jakobsen G, Larsen S, et al. Pharmacokinetics, pharmacodynamics, safety, and tolerability of a single-dose of NN2211, a long-acting glucagon-like peptide 1 derivative, in healthy male subjects. *Diabetes Care*. 2002;25(8):1398-1404. doi: 10.2337/diacare.25.8.1398

48. Jimenez-Solem E, Rasmussen MH, Christensen M, Knop FK. Dulaglutide, a long-acting GLP-1 analog fused with an Fc antibody fragment for the potential treatment of type 2 diabetes. *Curr Opin Mol Ther*. 2010;12(6):790-797.

49. Brønden A, Naver SV, Knop FK, Christensen M. Albiglutide for treating type 2 diabetes: an evaluation of pharmacokinetics/pharmacodynamics and clinical efficacy. *Expert Opin Drug Metab Toxicol*. 2015;11(9):1493-1503. doi: 10.1517/17425255.2015.1068288

50. Bush MA, Matthews JE, De Boever EH, et al. Safety, tolerability, pharmacodynamics and pharmacokinetics of albiglutide, a long-acting glucagon-like peptide-1 mimetic, in healthy subjects. *Diabetes Obes Metab*. 2009;11(5):498-505. doi: 10.1111/j.1463-1326.2008.00992.x

51. Geiser JS, Heathman MA, Cui X, et al. Clinical Pharmacokinetics of Dulaglutide in Patients with Type 2 Diabetes: Analyses of Data from Clinical Trials. *Clin Pharmacokinet*. 2016;55(5):625-634. doi: 10.1007/s40262-015-0338-3

52. Grunberger G, Forst T, Fernandez Lando L, et al. Early fasting glucose measurements can predict later glycemic response to once weekly dulaglutide. *Diabet Med*. 2016;33(3):391-394. doi: 10.1111/dme.12833

53. Lau J, Bloch P, Schäffer L, et al. Discovery of the Once-Weekly Glucagon-Like Peptide-1 (GLP-1) Analogue Semaglutide. *J Med Chem*. 2015;58(18):7370-7380. doi: 10.1021/acs.jmedchem.5b00726

54. Granhall C, Donsmark M, Blicher TM, et al. Safety and pharmacokinetics of single and multiple ascending doses of the novel oral human GLP-1 analogue, oral semaglutide, in healthy subjects and subjects with type 2 diabetes. *Clin Pharmacokinet*. 2019;58(6):781-791. doi: 10.1007/s40262-018-0728-4

55. Williams DL. Minireview: finding the sweet spot: peripheral versus central glucagon-like peptide 1 action in feeding and glucose homeostasis. *Endocrinology*. 2009;150(7):2997-3001. doi: 10.1210/en.2009-0220

56. Jalleh RJ, Marathe CS, Rayner CK, et al. Physiology and Pharmacology of Effects of GLP-1-based Therapies on Gastric, Biliary and Intestinal Motility. *Endocrinology*. 2024;166(1):bqae155. doi: 10.1210/endocr/bqae155

57. Owens DR, Monnier L, Bolli GB. Differential effects of GLP-1 receptor agonists on components of dysglycaemia in individuals with type 2 diabetes mellitus. *Diabetes Metab*. 2013;39(6):485-496. doi: 10.1016/j.diabet.2013.09.004

58. Aroda VR, Henry RR, Han J, et al. Efficacy of GLP-1 receptor agonists and DPP-4 inhibitors: meta-analysis and systematic review. *Clin Ther*. 2012;34(6):1247-1258. doi: 10.1016/j.clinthera.2012.04.013

59. Rosenstock J, Fonseca VA, Gross JL, et al. Advancing basal insulin replacement in type 2 diabetes inadequately controlled with insulin glargine plus oral agents: a comparison of adding albiglutide, a weekly GLP-1 receptor agonist, versus thrice-daily prandial insulin lispro. *Diabetes Care*. 2014;37(8):2317-2325. doi: 10.2337/dc14-0001

60. Yang CY, Chen YR, Ou HT, Kuo S. Cost-effectiveness of GLP-1 receptor agonists versus insulin for the treatment of type 2 diabetes: a real-world study and systematic review. *Cardiovasc Diabetol.* 2021;20(1):21. doi: 10.1186/s12933-020-01211-4

61. Popoviciu MS, Păduraru L, Yahya G, et al. Emerging Role of GLP-1 Agonists in Obesity: A Comprehensive Review of Randomised Controlled Trials. *Int J Mol Sci.* 2023;24(13):10449. doi: 10.3390/ijms241310449

62. Rosenberg J, Jacob J, Desai P, Park J, Donovan L, Kim JY. Incretin Hormones: Pathophysiological Risk Factors and Potential Targets for Type 2 Diabetes. *J Obes Metab Syndr.* 2021;30(3):233-247. doi: 10.7570/jomes21053

63. Iqbal J, Wu HX, Hu N, et al. Effect of glucagon-like peptide-1 receptor agonists on body weight in adults with obesity without diabetes mellitus-a systematic review and meta-analysis of randomized control trials. *Obes Rev.* 2022;23(6):e13435. doi: 10.1111/obr.13435

64. Bettge K, Kahle M, Abd El Aziz MS, Meier JJ, Nauck MA. Occurrence of nausea, vomiting and diarrhoea reported as adverse events in clinical trials studying glucagon-like peptide-1 receptor agonists: A systematic analysis of published clinical trials. *Diabetes Obes Metab.* 2017;19(3):336-347. doi: 10.1111/dom.12824

65. Liu QK. Mechanisms of action and therapeutic applications of GLP-1 and dual GIP/GLP-1 receptor agonists. *Front Endocrinol (Lausanne).* 2024;15:1431292. doi: 10.3389/fendo.2024.1431292

66. Hernandez AF, Green JB, Janmohamed S, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. *Lancet.* 2018;392(10157):1519-1529. doi: 10.1016/S0140-6736(18)32261-X

67. Pratley RE, Nauck MA, Barnett AH, et al. Once-weekly albiglutide versus once-daily liraglutide in patients with type 2 diabetes inadequately controlled on oral drugs (HARMONY 7): a randomised, openlabel, multicentre, non-inferiority phase 3 study. *Lancet Diabetes Endocrinol.* 2014;2(4):289-297. doi: 10.1016/S2213-8587(13)70214-6

68. Hannon TS, Arslanian SA. Obesity in Adolescents. *N Engl J Med.* 2023;389(3):251-261. doi: 10.1056/NEJMcp2102062

69. Kołakowska K, Miłkowska U, Piech GM, Lis I. The impact of GLP-1 analogues on cardiovascular risk. *Biuletyn Głównej Biblioteki Lekarskiej.* 2024;57(383):169-180. doi: 10.2478/bgbl-2024-0030

70. Evans M, Kuodi P, Akunna CJ, et al. Cardiovascular and renal outcomes of GLP-1 receptor agonists vs. DPP-4 inhibitors and basal insulin in type 2 diabetes mellitus: A systematic review and meta-analysis. *Diab Vasc Dis Res.* 2023;20(6):14791641231221740. doi: 10.1177/14791641231221740

71. Sienicka A, Kubasik K, Pisula A. The glucagon-like peptide-1 analogues therapy in the non-diabetic patients. *Prospects in Pharmaceutical Sciences.* 2023;21(1):9-14.

72. Kopp KO, Glotfelty EJ, Li Y, Greig NH. Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: Implications for neurodegenerative disease treatment. *Pharmacol Res.* 2022;186:106550. doi: 10.1016/j.phrs.2022.106550

73. De Giorgi R, Ghenciulescu A, Yotter C, Taquet M, Koychev I. Glucagon-like peptide-1 receptor agonists for major neurocognitive disorders. *J Neurol Neurosurg Psychiatry.* 2025;96(9):870-883. doi: 10.1136/jnnp-2024-335593

74. Hong CT, Chen JH, Hu CJ. Role of glucagon-like peptide-1 receptor agonists in Alzheimer's disease and Parkinson's disease. *J Biomed Sci.* 2024;31(1):102. doi: 10.1186/s12929-024-01090-x

75. Vergès B, Aboyans V, Angoulvant D, et al. Protection against stroke with glucagon-like peptide-1 receptor agonists: a comprehensive review of potential mechanisms. *Cardiovasc Diabetol.* 2022;21(1):242. doi: 10.1186/s12933-022-01686-3

76. Detka J, Głombik K. Insights into a possible role of glucagon-like peptide-1 receptor agonists in the treatment of depression. *Pharmacol Rep.* 2021;73(4):1020-1032. doi: 10.1007/s43440-021-00274-8

77. Jing F, Zou Q, Pu Y. GLP-1R agonist liraglutide attenuates pain hypersensitivity by stimulating IL-10 release in a nitroglycerin-induced chronic migraine mouse model. *Neurosci Lett.* 2023;812:137397. doi: 10.1016/j.neulet.2023.137397

78. Sharma A, Verma S. Mechanisms by Which Glucagon-Like-Peptide-1 Receptor Agonists and Sodium-Glucose Cotransporter-2 Inhibitors Reduce Cardiovascular Risk in Adults With Type 2 Diabetes Mellitus. *Can J Diabetes.* 2020;44(1):93-102. doi: 10.1016/j.jcjd.2019.09.003

79. Park B, Bakbak E, Teoh H, et al. GLP-1 receptor agonists and atherosclerosis protection: the vascular endothelium takes center stage. *Am J Physiol Heart Circ Physiol.* 2024;326(5):H1159-H1176. doi: 10.1152/ajpheart.00574.2023

80. Cena H, Chiovato L, Nappi RE. Obesity, Polycystic Ovary Syndrome, and Infertility: A New Avenue for GLP-1 Receptor Agonists. *J Clin Endocrinol Metab.* 2020;105(8):e2695-2709. doi: 10.1210/clinmed/dgaa285

81. Newsome PN, Buchholtz K, Cusi K, et al. A Placebo-Controlled Trial of Subcutaneous Semaglutide in Nonalcoholic Steatohepatitis. *N Engl J Med.* 2021;384(12):1113-1124. doi: 10.1056/NEJMoa2028395.

82. Summary for Patients: Efficacy and Safety of Glucagon-Like Peptide-1 Receptor Agonists for Weight Loss Among Adults Without Diabetes. *Ann Intern Med.* 2025;178(2):I19. doi: 10.7326/ANNALS-24-01590-PS

83. Sodhi M, Rezaeianzadeh R, Kezouh A, Etminan M. Risk of Gastrointestinal Adverse Events Associated With Glucagon-Like Peptide-1 Receptor Agonists for Weight Loss. *JAMA.* 2023;330(18):1795-1797. doi: 10.1001/jama.2023.19574

84. Gettman L. New Drug: Tirzepatide (Mounjaro™). *Sr Care Pharm.* 2023;38(2):50-62. doi: 10.4140/TCP.n.2023.50

85. Chavda VP, Ajabiya J, Teli D, Bojarska J, Apostolopoulos V. Tirzepatide, a New Era of Dual-Targeted Treatment for Diabetes and Obesity: A Mini-Review. *Molecules*. 2022;27(13):4315. doi: 10.3390/molecules27134315

86. Syed YY. Tirzepatide: First Approval. *Drugs*. 2022;82(11): 1213-1220. doi: 10.1007/s40265-022-01746-8

87. Abdi Beshir S, Ahmed Elnour A, Soorya A, et al. A narrative review of approved and emerging anti-obesity medications. *Saudi Pharm J*. 2023;31(10):101757. doi: 10.1016/j.jps.2023.101757

88. Forzano I, Varzideh F, Avvisato R, Jankauskas SS, Mone P, Santulli G. Tirzepatide: A Systematic Update. *Int J Mol Sci*. 2022;23(23):14631. doi: 10.3390/ijms232314631

89. Frías JP, Davies MJ, Rosenstock J, et al. Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes. *N Engl J Med*. 2021;385(6):503-515. doi: 10.1056/NEJMoa2107519

90. Rosenstock J, Wysham C, Frías JP, et al. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomised, phase 3 trial. *Lancet*. 2021;398(10295):143-155. doi: 10.1016/S0140-6736(21)01324-6

91. Loomba R, Hartman ML, Lawitz EJ, et al. Tirzepatide for Metabolic Dysfunction-Associated Steatohepatitis with Liver Fibrosis. *N Engl J Med*. 2024;391(4):299-310. doi: 10.1056/NEJMoa2401943

92. Malhotra A, Grunstein RR, Fietze I, et al. Tirzepatide for the Treatment of Obstructive Sleep Apnea and Obesity. *N Engl J Med*. 2024;391(13):1193-1205. doi: 10.1056/NEJMoa2404881