Hormonal profiles and metabolic changes in women diagnosed with concomitant Hashimoto’s thyroiditis and polycystic ovary syndrome via sonography

Authors

  • Abeer Wali Ahmed Department of Surgery, Ninevah Medical College. Ninevah University, Ninevah, Iraq https://orcid.org/0000-0002-9387-6807
  • Hana Abdul-QaderKhuder Department of Medical Physiology, Ninevah Medical College. Ninevah University, Ninevah, Iraq https://orcid.org/0000-0002-9202-4602
  • Shaymaa A.H. Jasim Department of Medical Physiology, Ninevah Medical College. Ninevah University, Ninevah, Iraq https://orcid.org/0000-0001-5161-1248
  • Osama A. Mohsein Department of Medical Laboratory Techniques, Mazaya University College, Thi-Qar, Iraq; Thi-Qar Health Directorate, Al Habbobi Teaching Hospital, Thi-Qar, Iraq

DOI:

https://doi.org/10.15584/ejcem.2025.3.12

Keywords:

Hashimoto’s thyroiditis, polycystic ovarian syndrome, sonographic changes

Abstract

Introduction and aim. Women with both Hashimoto’s thyroiditis (HT) and polycystic ovary syndrome (PCOS) often experience hormonal imbalances and metabolic changes. We investigated the correlation between sonographic changes and hormonal abnormalities in women with Hashimoto’s thyroiditis and PCOS.

Material and methods. A case-control study including 150 women with PCOS and Hashimoto’s thyroiditis, and 50 healthy women as a control group, was conducted at Al-Habobbi Teaching Hospital from 7/1/2023 to 7/10/2024. Lipid, blood sugar, luteinizing hormone (LH), follicle-stimulating hormone (FSH), prolactin, testosterone, and thyroid hormones were assessed, the groups had similar mean ages and smoking rates.

Results. When the case group was compared with the control group, significant hormonal and metabolic differences were observed. Specifically, levels of LH were significantly higher in the case group (14.68±1.21 vs. 3.31±1.03 mIU/mL, p=0.001), as were levels of FSH (14.85±1.07 vs. 5.26±0.51 mIU/mL, p<0.001), prolactin (28.90±1.34 vs. 7.02±1.16 ng/dL, p<0.001), and testosterone (57.71±2.61 vs. 12.41±2.27 ng/dL, p<0.001). In terms of lipid profile, the case group showed elevated total cholesterol (229.93±14.61 vs. 134.51±9.38 mg/dL, p<0.001), triglycerides (287.78±41.43 vs. 128.04±10.20 mg/dL, p<0.001), low-density lipoprotein (LDL) (136.98±20.02 vs. 58.67±11.45 mg/dL, p<0.001), and very low-density lipoprotein (VLDL) (57.55±8.28 vs. 25.60±2.04 mg/dL, p<0.001), while levels of high-density lipoprotein (HDL) were significantly lower (35.39±3.54 vs. 50.23±4.55 mg/dL, p<0.001). Regarding thyroid function, thyroxine (T4) levels were significantly reduced in the case group (9.80±0.77 vs. 15.02±1.25, p<0.001), while thyroid-stimulating hormone levels were elevated (6.25±1.10 vs. 2.17±0.74 μIU/mL, p<0.001).

Conclusion. These findings suggest a potential complex interaction between the thyroid and reproductive glands, which may influence the pathogenesis and metabolic effects of these endocrine disorders. However, the individual and combined effects require further detailed investigation.

Downloads

Download data is not yet available.

References

Azziz R, Carmina E, Chen Z, et al. Polycystic ovary syndrome. Nat Rev Dis Primers. 2016;2:16057. doi: 10.1038/nrdp.2016.57

Qassim M, Sarmad, Mohsen AK, Jalil IS. Assessing the prevalence of bacterial vaginosis among infertile women in Thi-Qar Province, Iraq. Infect Epidemiol Microbiol. 2024;10(4):287-296.

Rotterdam EA-SPCWG. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81:19-25. doi: 10.1016/j.fertnstert.2003.10.004

Gaberscek S, Zaletel K, Schwetz V, Pieber T, Obermayer-Pietsch B, Lerchbaum E. Mechanisms in endocrinology: thyroid and polycystic ovary syndrome. Eur J Endocrinol. 2015;172:R9-R21. doi: 10.1530/EJE-14-0295

Zhao H, Zhang Y, Ye J, et al. A comparative study on insulin secretion, insulin resistance, and thyroid function in patients with polycystic ovary syndrome with and without Hashimoto’s thyroiditis. Diabetes Metab Syndr Obes. 2021;14:1817-1821. doi: 10.2147/DMSO.S300015

McLeod DS, Cooper DS. The incidence and prevalence of thyroid autoimmunity. Endocrine. 2012;42:252-265. doi: 10.1007/s12020-012-9703-2

Caturegli P, De Remigis A, Rose NR. Hashimoto thyroiditis: clinical and diagnostic criteria. Autoimmun Rev. 2014;13:391-397. doi: 10.1016/j.autrev.2014.01.007

Mandac JC, Chaudhry S, Sherman KE, et al. The clinical and physiological spectrum of interferon-alpha induced thyroiditis: toward a new classification. Hepatology. 2006;43:661-672. doi: 10.1002/hep.21146

Ahmed SA, Hissong BD, Verthelyi D, et al. Gender and risk of autoimmune diseases: possible role of estrogenic compounds. Environ Health Perspect. 1999;107:681-686.

Knochenhauer ES, Key TJ, Kahsar-Miller M, et al. Prevalence of the polycystic ovary syndrome in unselected Black and White women of the southeastern United States: a prospective study. J Clin Endocrinol Metab. 1998;83:3078-3082.

Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev. 2014;94(2):355-382.

Karadayı Ataş P. Exploring the molecular interaction of PCOS and endometrial carcinoma through novel hyperparameter-optimized ensemble clustering approaches. Mathematics. 2024;12(2):295. doi: 10.3390/math12020295

Lizneva D, Suturina L, Walker W, Brakta S, Gavrilova-Jordan L, Azziz R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil Steril. 2016;106(1):6-15. doi: 10.1016/j.fertnstert.2016.05.003

Lateef D, Nasser N, Mohsein O. The relationships between apelin, vaspin and thyroid hormone levels in obese diabetic and non-diabetic women. J Exp Clin Med. 2024;41(2):239-245. doi: 10.52142/omujecm.41.2.3

Ghosh H, Rai S, Manzar MD, et al. Differential expression and interaction of melatonin and thyroid hormone receptors with estrogen receptor α improve ovarian functions in letrozole-induced rat polycystic ovary syndrome. Life Sci. 2022;295:120086. doi: 10.1016/j.lfs.2021.120086

Ataş PK. A novel hybrid model to predict concomitant diseases for Hashimoto’s thyroiditis. BMC Bioinformatics. 2023;24:319. doi: 10.1186/s12859-023-05443-5

Mohsein OA, Thuwaini MM, Salman HK. The relationship between leptin, thyroid hormone, and insulin resistance in obese diabetic patients. Cent Asian J Med Nat Sci. 2023;4(3):518-523.

Cai J, Shen Y, Zhao L, et al. High thyroid-stimulating hormone level is associated with hyperandrogenism in euthyroid polycystic ovary syndrome (PCOS) women, independent of age, BMI, and thyroid autoimmunity: a cross-sectional analysis. Front Endocrinol (Lausanne). 2019;10:222. doi: 10.3389/fendo.2019.00222

Serin AN, Arduc A, Dogan BA, et al. Hashimoto’s thyroiditis worsens ovaries in polycystic ovary syndrome patients compared to Anti-Müllerian hormone levels. BMC Endocr Disord. 2021;21:1-8. doi: 10.1186/s12902-021-00706-9

Arduc A, Dogan BA, Bilgec M, et al. High prevalence of Hashimoto’s thyroiditis in patients with polycystic ovary syndrome: does the imbalance between estradiol and progesterone play a role? Endocr Res. 2015;40(4):204-210. doi: 10.3109/07435800.2015.1015730

Ho CW, Chang YC, Chen YT, et al. Hashimoto’s thyroiditis might increase polycystic ovary syndrome and associated comorbidities risks in Asia. Ann Transl Med. 2020;8(11):765. doi: 10.21037/atm-19-4763

Kamińska W, Kaczmarek J, Sikora M, et al. Lifestyle intervention towards Mediterranean Diet, physical activity adherence and anthropometric parameters in normal weight women with polycystic ovary syndrome or Hashimoto’s thyroiditis—preliminary study. Ann Agric Environ Med. 2023;30(1):111-117. doi: 10.26444/aaem/159156

Garelli S, Sbrana E, Martinetti M, et al. High prevalence of chronic thyroiditis in patients with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol. 2013;169(2):248-251. doi: 10.1016/j.ejogrb.2013.03.003

Mukherjee P, Singla R, Kaur G, et al. The impact of polycystic ovary syndrome (PCOS) on the risk of developing ovarian cancer and thyroid disorders: a comprehensive review. Endocr Metab Immune Disord Drug Targets. 2024;24(5):562-572. doi: 10.2174/0118715303266512231 103075551

Novais JdSM, Ribeiro GR, Rodrigues FC, et al. Polycystic ovary syndrome and chronic autoimmune thyroiditis. Gynecol Endocrinol. 2015;31(1):48-51. doi: 10.3109/09513590.2014.958990

Janssen OE, Karamitsos D, Lindner K, et al. High prevalence of autoimmune thyroiditis in patients with polycystic ovary syndrome. Eur J Endocrinol. 2004;150(3):363-369. doi: 10.1530/eje.0.1500363

Cai J, Shen Y, Zhao L, et al. High thyroid stimulating hormone level is associated with hyperandrogenism in euthyroid polycystic ovary syndrome (PCOS) women, independent of age, BMI, and thyroid autoimmunity: a cross-sectional analysis. Front Endocrinol (Lausanne). 2019;10:222. doi: 10.3389/fendo.2019.00222

Zhao H, Zhang Y, Ye J, et al. A comparative study on insulin secretion, insulin resistance and thyroid function in patients with polycystic ovary syndrome with and without Hashimoto’s thyroiditis. Diabetes Metab Syndr Obes. 2021;14:1817-1821. doi: 10.2147/DMSO.S300015

Kachuei M, Koushki M, Hashemi S, et al. Prevalence of autoimmune thyroiditis in patients with polycystic ovary syndrome. Arch Gynecol Obstet. 2012;285:853-856. doi: 10.1007/s00404-011-2040-5

Arduc A, Dogan BA, Bilgec M, et al. High prevalence of Hashimoto’s thyroiditis in patients with polycystic ovary syndrome: does the imbalance between estradiol and progesterone play a role? Endocrine Res. 2015;40(4):204-210. doi: 10.3109/07435800.2015.1015730

Fan H, Zhang H, Li Y, et al. The role of the thyroid in polycystic ovary syndrome. Front Endocrinol. 2023;14: 1242050. doi: 10.3389/fendo.2023.1242050 doi: 10.3389/fendo.2023.1242050

Palomba S, De Wilde MA, Falbo A, et al. Polycystic ovary syndrome and thyroid disorder: a comprehensive narrative review of the literature. Front Endocrinol. 2023;14:1251866. doi: 10.3389/fendo.2023.1251866

Qassim Mohammad S, Khazal Mohsen A, Saleh Jalil I, Akram mohsein O. Assessing the Prevalence of Bacterial Vaginosis among Infertile Women in Thi- Qar Province, Iraq. IEM. 2024; 10(4):287-296. doi: 10.61186/iem.10.4.287

Lee HJ, Lee SH, Kim SW, et al. Is there association between thyroid stimulating hormone levels and the four phenotypes in polycystic ovary syndrome? Ginekol Pol. 2023;94(3):203-210. doi: 10.5603/GP.a2021.0239

Batóg G, Stojanović S, Górka A, et al. The interplay of oxidative stress and immune dysfunction in Hashimoto’s thyroiditis and polycystic ovary syndrome: a comprehensive review. Front Immunol. 2023;14:1211231. doi: 10.3389/fimmu.2023.1211231

Davoudi Z, Shariati L, Naderi M, et al. Prolactin Level in Polycystic Ovary Syndrome (PCOS): An approach to the diagnosis and management. Acta Bio Medica. 2021;92(5):e2021418. doi: 10.23750/abm.v92i5.9866

Elnour AAA, Javed M, Elkhier MKS. Comparison of prolactin, follicle-stimulating hormone, luteinizing hormone, estradiol, thyroid-stimulating hormone, free thyroxine and body mass index between infertile and fertile Saudi women. Obstet Gynecol Int J. 2021;12(2):119-122.

Ma M, Wang S, Zhang Y, et al. The imbalance in Th17 and Treg cells in polycystic ovarian syndrome patients with autoimmune thyroiditis. Immunol Investig. 2022;51(5):1170-1181. doi: 10.1080/08820139.2021.1915329

Kim JJ, Kang J, Kim S, et al. Thyroid autoimmunity markers in women with polycystic ovary syndrome and controls. Hum Fertil. 2022;25(1):128-134. doi: 10.1080/14647273.2019.1709668

Abdul-Ameer F, Al-Mashhadani F, Al-Baldawi A, et al. The relationship between serum CTRP-5, C3a/desArg, and complement-C3 levels and hypothyroidism in women with polycystic ovary syndrome. BMC Endocr Disord. 2024;24:272. doi: 10.1186/s12902-024-01801-3

Elslimani A-Z, Elhasi M, Elmhdwi MF. The relation between hypothyroidism and polycystic ovary syndrome. J Pharm Appl Chem. 2016;2(3):35-38.

Shekarian A, Mazaheri-Tehrani S, Shekarian S, Pourbazargan M. Prevalence of subclinical hypothyroidism in polycystic ovary syndrome and its impact on insulin resistance: a systematic review and meta-analysis. BMC Endocr Disord. 2025;25(1):75. doi: 10.1186/s12902-025-01896-2

Gaberšček S, Bavec M, Zaletel K, et al. Mechanisms in endocrinology: thyroid and polycystic ovary syndrome. Eur J Endocrinol. 2015;172(1):R9-R21.

Du D, Li X. The relationship between thyroiditis and po- lycystic ovary syndrome: a meta-analysis. Int J Clin Exp Med. 2013;6(10):880-885.

Romitti M, Pantoja JP, Orozco A, et al. Association between PCOS and autoimmune thyroid disease: a systematic review and meta-analysis. Endocr Connect. 2018;7(11):1158-1167. doi: 10.1530/EC-18-0309

Shanmugham D, Natarajan S, Karthik A. Prevalence of thyroid dysfunction in patients with polycystic ovarian syndrome: A cross sectional study. Int J Reprod Contracept Obstet Gynecol. 2018;7:3055-3059.

Mobeen H, Afzal N, Kashif M. Polycystic ovary syndrome may be an autoimmune disorder. Scientifica. 2016;2016: 4071735. doi: 10.1155/2016/4071735

Downloads

Published

2025-09-30

How to Cite

Ahmed, A. W., Abdul-QaderKhuder, H., Jasim, S. A., & Mohsein, O. A. (2025). Hormonal profiles and metabolic changes in women diagnosed with concomitant Hashimoto’s thyroiditis and polycystic ovary syndrome via sonography. European Journal of Clinical and Experimental Medicine, 23(3), 596–604. https://doi.org/10.15584/ejcem.2025.3.12

Issue

Section

ORIGINAL PAPERS