Impact of melatonin on platelets during oxidative stress – an in vitro approach

Authors

DOI:

https://doi.org/10.15584/ejcem.2025.3.22

Keywords:

antioxidants, melatonin, oxidative stress, platelets

Abstract

Introduction and aim. Platelets are susceptible to oxidative damage due to metabolic pathways and oxygen-rich environments. Antioxidants combat oxidative stress (OS) and are currently employed in therapeutics. Melatonin has potent antioxidant properties; however, it has not been explored in platelet OS models. This study investigates the effect of melatonin on platelets during 2,2’-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced OS.

Material and methods. Platelets from Wistar rats (n=5) were grouped into controls (untreated), free radical-inducer (FRI: AAPH-treated), melatonin-treated (AO), and preincubated with melatonin and AAPH-treated (FRI+AO). OS and platelet markers were analyzed.

Results. Antioxidant defenses decreased in FRI, whereas increased in AO and FRI+AO. Lipid peroxidation (LPO) increased in FRI, whereas advanced oxidation protein products (AOPP) and metabolism increased in AO compared to controls. Superoxides, AOPP, and ATP secretion increased, whereas LPO decreased in FRI+AO compared to FRI. However, aggregation increased in FRI and AO compared to Controls, whereas decreased in FRI+AO compared to FRI.

Conclusion. OS models can give insights into the underlying redox status of the cells and modulations of antioxidants in platelets. The findings indicate that melatonin can modulate antioxidant defenses and alleviate OS in platelets. This study lays the foundation for further in vivo studies on platelet pathophysiology.

Downloads

Download data is not yet available.

References

Halliwell B, Gutteridge JM. Oxidative stress and redox regulation: adaptation, damage, repair senescence, and death. In: Free radicals in biology and medicine. 5th ed. Oxford University Press. USA; 2015. 199-283

Maurya PK, Dua K, editors. Role of oxidative stress in pathophysiology of diseases. Berlin: Springer; 2020.

Lima TRR, Sales BCP, Pereira LC. Oxidative stress monitoring in in vitro and in vivo models. Role of oxidative stress in pathophysiology of diseases. 2020;163-178. doi: 10.1007/978-981-15-1568-2_10

Manasa K, Vani R. In Vitro Susceptibility of Wistar Rat Platelets to Hydrogen Peroxide and AAPH-Induced Oxidative Stress. Indian J Hematol Blood Transfus. 2015;31(1):90-97. doi: 10.1007/s12288-014-0386-0

Noguchi N, Yamashita H, Gotoh N, Yamamoto Y, Numano R, Niki E. 2, 2′-Azobis (4-methoxy-2, 4-dimethylvaleronitrile), a new lipid-soluble azo initiator: application to oxidations of lipids and low-density lipoprotein in solution and in aqueous dispersions. Free Radic Biol Med. 1998:24(2):259-268. doi: 10.1016/s0891-5849(97)00230-x

Freedman JE. Oxidative stress and platelets. Arterioscler Thromb Vasc Biol. 2008;28(3):11-16. doi: 10.1161/ATVBAHA.107.159178

Rajashekaraiah V, Berikai Ananthakrishna A. Drug-induced thrombocytopenia–etiology and alternative therapeutic approaches. Eur J Clin Exp Med. 2023;21(3):617-626. doi: 10.15584/ejcem.2023.3.15

Reiter RJ, Tan DX, Mayo JC, Sainz RM, Leon J, Czarnocki Z. Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochim Pol. 2003;50(4):1129-1146.

Reiter RJ, Oh CS, Fujimori O. Melatonin Its intracellular and genomic actions. Trends Endocrinol Metab. 1996;7(1):22-27. doi: 10.1016/1043-2760(95)00192-1.

Van Rensburg SJ, Daniels WM, Van Zyl JM, Taljaard JJ. A Comparative study of the effects of cholesterol, beta-sitosterol, beta-sitosterol glucoside, dehydro-epiandrosterone sulphate and melatonin on in vitro lipid peroxidation. Metab Brain Dis. 2000;15(4):257-265. doi: 10.1023/a:1011167023695

Osuna C, Reiter RJ, García JJ, Karbownik M, Tan DX, Calvo JR, Manchester LC. Inhibitory effect of melatonin on homocysteine-induced lipid peroxidation in rat brain homogenates. Pharmacol Toxicol. 2002;90(1):32-37. doi: 10.1034/j.1600-0773.2002.900107.x

Sener A, Ozsavci D, Bingol-Ozakpinar O, Cevik O, Yanikkaya-Demirel G, Yardimci T. Oxidized-LDL and Fe3+/ascorbic acid-induced oxidative modifications and phosphatidylserine exposure in human platelets are reduced by melatonin. Folia Biol (Praha). 2009;55(2):45-52.

Longoni B, Salgo MG, Pryor WA, Marchiafava PL. Effects of melatonin on lipid peroxidation induced by oxygen radicals. Life Sci. 1998;62(10):853-859. doi: 10.1016/s0024-3205(98)00002-2

Lewicka M, Zawadzka M, Henrykowska G, Rutkowski M, Buczyński A. The antioxidant effects of melatonin in blood platelets during exposure to electromagnetic radiation–an invitro study. Postępy Hig Med Doś. 2021;75(1):889-895. doi: 10.2478/ahem-2021-0026

Blask DE, Sauer LA, Dauchy RT. Melatonin as a chronobiotic/anticancer agent: cellular, biochemical, and molecular mechanisms of action and their implications for circadian-based cancer therapy. Curr Top Med Chem. 2002;2(2):113-132. doi: 10.2174/1568026023394407

Pashalieva I, Stancheva E, Decheva L, Nyagolov Y, Negrev N. Experimental data about melatonin effects on platelet count and functional activity. Comptes rendus de l’Аcademie bulgare des sciences (Reports of the Bulgarian Academy of Sciences). 2012;65(6):855-860.

Morvaridzadeh M, Sadeghi E, Agah S, et al. Effect of melatonin supplementation on oxidative stress parameters: A systematic review and meta-analysis. Pharmacol Res. 2020;161:105210. doi: 10.1016/j.phrs.2020.105210

Devi AS, Subramanyam MVV, Vani R, Jeevaratnam K. Adaptations of the antioxidant system in erythrocytes of trained adult rats: Impact of intermittent hypobaric-hypoxia at two altitudes. Comp Biochem Physiol - Part C. 2005;140(1):59-67. doi: 10.1016/j.cca.2005.01.003

Carneiro AMD, Blakey RD. Serotonin-, protein kinase C-, and Hic-5-associated redistribution of the platelet serotonin transporter. J Biol Chem. 2006;281(34):24769-24780. doi: 10.1074/jbc.M603877200

Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170-3175.

Aebi H. Catalase in vitro. Methods Enzymology. Academic Press. 1984:121-126.

Beutler E, Duran O and Kelley BM. Improved method for determination of blood glutathione. J Lab Clin Med. 1963;61:882-888.

Campos C, Guzmán R, López-Fernández E, Casado A. Evaluation of the copper(II) reduction assay using bathocuproinedisulfonic acid disodium salt for the total antioxidant capacity assessment: the CUPRAC-BCS assay. Anal Biochem. 2009;392(1):37-44. doi: 10.1016/j.ab.2009.05.024

Olas B, Wachowicz B. Resveretrol and vitamin C as antioxidants in blood platelets. Thromb Res. 2002;106(2):143-148. doi: 10.1016/s0049-3848(02)00101-9

Yegin SÇ, Yur F, Çetin S, Güder A. Effect of Lycopene on Serum Nitrite-Nitrate Levels in Diabetic Rats. Indian J Pharm Sci. 2015;77(3):357-360. doi: 10.4103/0250-474x.159676

Olas B, Nowak P, Kolodziejczyk J, Ponczek M, Wachowicz B. Protective effects of resveratrol against oxidative/nitrative modifications of plasma proteins and lipids exposed to peroxynitrite. J Nutr Biochem. 2006;17(2):96-102. doi: 10.1016/j.jnutbio.2005.05.010

Habeeb AFSA. Reaction of protein sulfhydryl groups with Ellman’s reagent. Methods Enzymol. 1972;25:457-464. doi: 10.1016/S0076-6879(72)25041-8

Witko-Sarsat V, Friedlander M, Capeillère-Blandin C, et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int.1996;49(5):1304-1313. doi: 10.1038/ki.1996.186

Born GVR, Cross MJ. The aggregation of blood platelets. J Physiol. 1963;168(1):178-195. doi: 10.1113/jphysiol.1963.sp007185

Wachowicz B, Olas B, Zbikowska HM, Buczynski A. Generation of reactive oxygen species in blood platelets. Platelets. 2002;13(3):175-182. doi: 10.1080/09533710022149395

Basak A. Development of a rapid and inexpensive plasma glucose estimation by two-point kinetic method based on glucose oxidase-peroxidase enzymes. Indian J Clin Biochem. 2007;22:156-160. doi: 10.1007/BF02912902

Buhl SN, Jackson KV. Optimal conditions and comparison of lactate dehydrogenase catalysis of the lactate-to-pyruvate and pyruvate-to-lactate reactions in human serum at 25, 30, and 37°C. Clin Chem. 1978;24(5):828-831.

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-275.

Galano A. On the direct scavenging activity of melatonin towards hydroxyl and a series of peroxyl radicals. Phys Chem Chem Phys. 2011;13(15):7178-7188. doi: 10.1039/c0cp02801k

Niki E. Free radical initiators as source of water- or lipid-soluble peroxyl radicals. Methods Enzymol. 1990;186:100–108. doi: 10.1016/0076-6879(90)86095-d

Takabe W, Niki E, Uchida K, Yamada S, Satoh K, Noguchi N. Oxidative stress promotes the development of transformation: involvement of a potent mutagenic lipid peroxidation product, acrolein. Carcinogenesis. 2001;22(6):935-941. doi: 10.1093/carcin/22.6.935.

Reiter RJ, Tan DX, Fuentes-Broto L. Melatonin: a multitasking molecule. Prog Brain Res. 2010;181:127-151. doi: 10.1016/S0079-6123(08)81008-4

Margaritis A, Priora R, Frosali S, et al. The role of protein sulfhydryl groups and protein disulfides of the platelet surface in aggregation processes involving thiol exchange reactions. Pharmacol Res. 2011;63(1):77-84. doi: 10.1016/j.phrs.2010.09.004

Essex DW. The role of thiols and disulfides in platelet function. Antioxid Redox Signal. 2004;6(4):736-746. doi: 10.1089/1523086041361622

Eskiocak S, Tutunculer F, Basaran UN, Taskiran A, Cakir E. The effect of melatonin on protein oxidation and nitric oxide in the brain tissue of hypoxic neonatal rats. Brain Dev. 2007;29(1):19-24. doi: 10.1016/j.brain-dev.2006.05.007

Girish KS, Paul M, Thushara RM, et al. Melatonin elevates apoptosis in human platelets via ROS mediated mitochondrial damage. Biochem Biophys Res Commun. 2013;438(1):198-204. doi: 10.1016/j.bbrc.2013.07.053

Mayo JC, Tan DX, Sainz RM, Lopez-Burillo S, Reiter RJ. Oxidative damage to catalase induced by peroxyl radicals: functional protection by melatonin and other antioxidants. Free Radic Res. 2003;37(5):543-553. doi: 10.1080/1071576031000083206

Leach CM, Thorburn GD. A comparison of the inhibitory effects of melatonin and indomethacin on platelet aggregation and thromboxane release. Prostaglandins. 1980;20(1):51-56. doi: 10.1016/0090-6980(80)90005-2

Regodón S, del Prado Miguez M, Jardín I, et al. Melatonin, as an adjuvant‐like agent, enhances platelet responsiveness. J Pineal Res. 2009;46(3):275-285. doi: 10.1111/j.1600-079X.2008.00658.x

Downloads

Published

2025-09-30

How to Cite

Berikai Ananthakrishna, A., Christina Rajanand, M., & Vani, R. (2025). Impact of melatonin on platelets during oxidative stress – an in vitro approach. European Journal of Clinical and Experimental Medicine, 23(3), 649–657. https://doi.org/10.15584/ejcem.2025.3.22

Issue

Section

ORIGINAL PAPERS