A brief review of the cardiovascular complication of COVID-19 – what is the pathophysiology of arrhythmia during infection?
DOI:
https://doi.org/10.15584/ejcem.2025.3.1Keywords:
arrhythmias, cardiovascular diseases, coronavirus, COVID-19, pathophysiologyAbstract
Introduction and aim. COVID-19, caused by SARS-CoV-2, significantly affects the cardiovascular system beyond its respiratory manifestations. This review examines the intricate relationship between COVID-19 and cardiovascular complications, focusing on cardiac arrhythmias and their underlying pathophysiology.
Material and methods. A comprehensive literature search was conducted in PubMed and Google Scholar from its inception to December 2024, including peer-reviewed articles published in English.
Analysis of literature. In COVID-19, a spectrum of cardiovascular complications is observed, including acute myocardial infarction, arrhythmias, myocarditis, venous thromboembolism, and heart failure/cardiac shock. The pathophysiology of cardiovascular damage in COVID-19 involves multiple mechanisms, primarily including direct viral cardiotoxicity, systemic inflammation, and hypercoagulability. Arrhythmias are a common cardiac complication in COVID-19, encompassing a range of disturbances, from bradycardia to ventricular fibrillation. The mechanisms underlying arrhythmias in COVID-19 are multifaceted, including direct viral injury to cardiomyocytes, hypoxia, systemic inflammation, hyperthermia, autonomic imbalance, electrolyte imbalances, side effects of medications, and drug-drug interactions.
Conclusion. Understanding the complex interplay of these factors is crucial for the early diagnosis and appropriate management of cardiac complications in patients with COVID-19. To mitigate cardiovascular morbidity and mortality in individuals with COVID-19, cardiovascular monitoring and the development of targeted therapeutic strategies are highly recommended.
Downloads
References
Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 2020;55(3):105924. doi: 10.1016/j.ijantimicag.2020.105924
Terzic CM, Medina-Inojosa BJ. Cardiovascular Complications of Coronavirus Disease-2019. Physical Medicine and Rehabilitation Clinics of North America. 2023;34(3):551-561. doi: https://doi.org/10.1016/j.pmr.2023.03.003
Long B, Brady WJ, Koyfman A, Gottlieb M. Cardiovascular complications in COVID-19. Am J Emerg Med. 2020;38(7):1504-1507. doi: 10.1016/j.ajem.2020.04.048
Shao HH, Yin RX. Pathogenic mechanisms of cardiovascular damage in COVID-19. Mol Med. 2024;30(1):92. doi: 10.1186/s10020-024-00855-2
Kang Y, Chen T, Mui D, et al. Cardiovascular manifestations and treatment considerations in COVID-19. Heart. 2020;106(15):1132-1141. doi: 10.1136/heartjnl-2020-317056
Farshidfar F, Koleini N, Ardehali H. Cardiovascular complications of COVID-19. JCI Insight. 2021;6(13):e148980. doi: 10.1172/jci.insight.148980
Vasbinder A, Meloche C, Azam TU, et al. Relationship Between Preexisting Cardiovascular Disease and Death and Cardiovascular Outcomes in Critically Ill Patients With COVID-19. Circ Cardiovasc Qual Outcomes. 2022;15(10): e008942. doi: 10.1161/circoutcomes.122.008942
Shafi AMA, Shaikh SA, Shirke MM, Iddawela S, Harky A. Cardiac manifestations in COVID-19 patients-A systematic review. J Card Surg. 2020;35(8):1988-2008. doi: 10.1111/jocs.14808
Magadum A, Kishore R. Cardiovascular Manifestations of COVID-19 Infection. Cells. 2020;9(11):2508. doi: 10.3390/cells9112508
Goha A, Mezue K, Edwards P, Nunura F, Baugh D, Madu E. COVID-19 and the heart: An update for clinicians. Clin Cardiol. 2020;43(11):1216-1222. doi: 10.1002/clc.23406
Mojón-Álvarez D, Giralt T, Carreras-Mora J, et al. Baseline NT-proBNP levels as a predictor of short-and long-term prognosis in COVID-19 patients: a prospective observational study. BMC Infect Dis. 2024;24(1):58. doi: 10.1186/s12879-024-08980-3
Al-Aly Z, Bowe B, Xie Y. Long COVID after breakthrough SARS-CoV-2 infection. Nat Med. 2022;28(7):1461-1467. doi: 10.1038/s41591-022-01840-0
Dherange P, Lang J, Qian P, et al. Arrhythmias and COVID-19: A Review. JACC Clin Electrophysiol. 2020;6(9): 1193-1204. doi: 10.1016/j.jacep.2020.08.002
Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11): 1061-1069. doi: 10.1001/jama.2020.1585
Babapoor-Farrokhran S, Rasekhi RT, Gill D, Babapoor S, Amanullah A. Arrhythmia in COVID-19. SN Compr Clin Med. 2020;2(9):1430-1435. doi: 10.1007/s42399-020-00454-2
Sritharan HP, Bhatia KS, van Gaal W, Kritharides L, Chow CK, Bhindi R. Association between pre-existing cardiovascular disease, mortality and cardiovascular outcomes in hospitalised patients with COVID-19. Front Cardiovasc Med. 2023;10:1224886. doi: 10.3389/fcvm.2023.1224886
Rastogi A, Tewari P. Covid 19 and its cardiovascular effects. Ann Card Anaesth. 2020;23(4):401-408. doi: 10.4103/aca.aca_237_20
Pranata R, Huang I, Lukito AA, Raharjo SB. Elevated N-terminal pro-brain natriuretic peptide is associated with increased mortality in patients with COVID-19: systematic review and meta-analysis. Postgrad Med J. 2020;96(1137):387-391. doi: 10.1136/postgradmedj-2020-137884
Ozen M, Yilmaz A, Cakmak V, et al. D-Dimer as a potential biomarker for disease severity in COVID-19. Am J Emerg Med. 2021;40:55-59. doi: 10.1016/j.ajem.2020.12.023
Shah S, Shah K, Patel SB, et al. Elevated D-Dimer Levels Are Associated With Increased Risk of Mortality in Coronavirus Disease 2019: A Systematic Review and Meta-Analysis. Cardiol Rev. 2020;28(6):295-302. doi: 10.1097/crd.0000000000000330
Mouhat B, Besutti M, Bouiller K, et al. Elevated D-dimers and lack of anticoagulation predict PE in severe COVID-19 patients. Eur Respir J. 2020;56(4):2001811. doi: 10.1183/13993003.01811-2020
Task Force for the management of COVID-19 of the European Society of Cardiology. European Society of Cardiology guidance for the diagnosis and management of cardiovascular disease during the COVID-19 pandemic: part 1-epidemiology, pathophysiology, and diagnosis. Eur Heart J. 2022;43(11):1033-1058. doi: 10.1093/eurheartj/ehab696
El-Menyar A, Ramzee AF, Asim M, et al. COVID-19 Increases the Risk of New Myocardial Infarction in Patients with Old Myocardial Infarction: A Retrospective Observational Study. Clin Med Insights Cardiol. 2024;18:11795468241301133. doi: 10.1177/11795468241301133
Poredos P, Spirkoska A, Lezaic L, Mijovski MB, Jezovnik MK. Patients with an Inflamed Atherosclerotic Plaque have Increased Levels of Circulating Inflammatory Markers. J Atheroscler Thromb. 2017;24(1):39-46. doi: 10.5551/jat.34884
Abou-Ismail MY, Diamond A, Kapoor S, Arafah Y, Nayak L. The hypercoagulable state in COVID-19: Incidence, pathophysiology, and management. Thromb Res. 2020;194:101-115. doi: 10.1016/j.thromres.2020.06.029
Jain V, Gupta K, Bhatia K, et al. Management of STEMI during the COVID-19 pandemic: Lessons learned in 2020 to prepare for 2021. Trends Cardiovasc Med. 2021;31(3):135-140. doi: 10.1016/j.tcm.2020.12.003
Seligman H, Sen S, Nijjer S, et al. Management of Acute Coronary Syndromes During the Coronavirus Disease 2019 Pandemic: Deviations from Guidelines and Pragmatic Considerations for Patients and Healthcare Workers. Interv Cardiol. 2020;15:e16. doi: 10.15420/icr.2020.21
Altamimi H, Abid AR, Othman F, Patel A. Cardiovascular Manifestations of COVID-19. Heart Views. Jul-Sep 2020;21(3):171-186. doi: 10.4103/heartviews.Heartviews_150_20
Varney JA, Dong VS, Tsao T, et al. COVID-19 and arrhythmia: An overview. J Cardiol. 2022;79(4):468-475. doi: 10.1016/j.jjcc.2021.11.019
Hooks M, Bart B, Vardeny O, Westanmo A, Adabag S. Effects of hydroxychloroquine treatment on QT interval. Heart Rhythm. 2020;17(11):1930-1935. doi: 10.1016/j.hrthm.2020.06.029
Loungani RS, Rehorn MR, Newby LK, et al. A care pathway for the cardiovascular complications of COVID-19: Insights from an institutional response. Am Heart J. 2020;225:3-9. doi: 10.1016/j.ahj.2020.04.024
Lovell JP, Čiháková D, Gilotra NA. COVID-19 and Myocarditis: Review of Clinical Presentations, Pathogenesis and Management. Heart Int. 2022;16(1):20-27. doi: 10.17925/hi.2022.16.1.20
Rezkalla SH, Kloner RA. Viral myocarditis: 1917-2020: From the Influenza A to the COVID-19 pandemics. Trends Cardiovasc Med. 2021;31(3):163-169. doi: 10.1016/j.tcm.2020.12.007
Davis MG, Bobba A, Chourasia P, et al. COVID-19 Associated Myocarditis Clinical Outcomes among Hospitalized Patients in the United States: A Propensity Matched Analysis of National Inpatient Sample. Viruses. 2022;14(12):2791. doi: 10.3390/v14122791
Ali J, Khan FR, Ullah R, et al. Cardiac Troponin I Levels in Hospitalized COVID-19 Patients as a Predictor of Severity and Outcome: A Retrospective Cohort Study. Cureus. 2021;13(3):e14061. doi: 10.7759/cureus.14061
Malas MB, Naazie IN, Elsayed N, Mathlouthi A, Marmor R, Clary B. Thromboembolism risk of COVID-19 is high and associated with a higher risk of mortality: A systematic review and meta-analysis. EclinicalMedicine. 2020;29:100639. doi: 10.1016/j.eclinm.2020.100639
Angelini DE, Kaatz S, Rosovsky Rachel P, et al. COVID-19 and venous thromboembolism: A narrative review. Res Pract Thromb Haemost. 2022;6(2):e12666. doi: 10.1002/rth2.12666
Esmaeel HM, Ahmed HA, Elbadry MI, et al. Coagulation parameters abnormalities and their relation to clinical outcomes in hospitalized and severe COVID-19 patients: prospective study. Sci Rep. 2022;12(1):13155. doi: 10.1038/s41598-022-16915-8
Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844-847. doi: 10.1111/jth.14768
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. doi: 10.1016/s0140-6736(20)30566-3
Lawler PR, Goligher EC, Berger JS, et al. Therapeutic Anticoagulation with Heparin in Noncritically Ill Patients with Covid-19. N Engl J Med. 2021;385(9):790-802. doi: 10.1056/NEJMoa2105911
Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094-1099. doi: 10.1111/jth.14817
Spyropoulos AC, Levy JH, Ageno W, et al. Scientific and Standardization Committee communication: Clinical guidance on the diagnosis, prevention, and treatment of venous thromboembolism in hospitalized patients with COVID-19. Journal of Thrombosis and Haemostasis. 2020;18(8):1859-1865. doi: 10.1111/jth.14929
Murthy S, Gomersall CD, Fowler RA. Care for Critically Ill Patients With COVID-19. JAMA. 2020;323(15):1499-1500. doi: 10.1001/jama.2020.3633
Arentz M, Yim E, Klaff L, et al. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. JAMA. 2020;323(16):1612-1614. doi: 10.1001/jama.2020.4326
Zhu Y, Zhang X, Peng Z. Consequences of COVID-19 on the cardiovascular and renal systems. Sleep Med. 2022;100:31-38. doi: 10.1016/j.sleep.2022.07.011
Patel AB, Verma A. COVID-19 and Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers: What Is the Evidence? JAMA. 2020;323(18):1769-1770. doi: 10.1001/jama.2020.4812
MacLaren G, Fisher D, Brodie D. Preparing for the Most Critically Ill Patients With COVID-19: The Potential Role of Extracorporeal Membrane Oxygenation. JAMA. 2020;323(13):1245-1246. doi: 10.1001/jama.2020.2342
Bartlett RH, Ogino MT, Brodie D, et al. Initial ELSO Guidance Document: ECMO for COVID-19 Patients with Severe Cardiopulmonary Failure. ASAIO J. 2020;66(5):472-474. doi: 10.1097/mat.0000000000001173
Kuck KH. Arrhythmias and sudden cardiac death in the COVID-19 pandemic. Herz. 2020;45(4):325-326. doi: 10.1007/s00059-020-04924-0
Shi S, Qin M, Shen B, et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-810. doi: 10.1001/jamacardio.2020.0950
Zakynthinos GE, Tsolaki V, Oikonomou E, Vavouranakis M, Siasos G, Zakynthinos E. New-Onset Atrial Fibrillation in the Critically Ill COVID-19 Patients Hospitalized in the Intensive Care Unit. J Clin Med. 2023;12(22):6989. doi: 10.3390/jcm12226989
Gawałko M, Kapłon-Cieślicka A, Hohl M, Dobrev D, Linz D. COVID-19 associated atrial fibrillation: Incidence, putative mechanisms and potential clinical implications. Int J Cardiol Heart Vasc. 2020;30:100631. doi: 10.1016/j.ijcha.2020.100631
Mohammad M, Emin M, Bhutta A, Gul EH, Voorhees E, Afzal MR. Cardiac arrhythmias associa-
ted with COVID-19 infection: state of the art review. Expert Rev Cardiovasc Ther. 2021;19(10):881-889. doi: 10.1080/14779072.2021.1997589
Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ Res. 2020;126(10):1456-1474. doi: 10.1161/circresaha.120.317015
Wang Y, Wang Z, Tse G, et al. Cardiac arrhythmias in patients with COVID-19. J Arrhythm. 2020;36(5):827-836. doi: 10.1002/joa3.12405
Tian S, Xiong Y, Liu H, et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod Pathol. 2020;33(6):1007-1014. doi: 10.1038/s41379-020-0536-x
Swenson KE, Hardin CC. Pathophysiology of Hypoxemia in COVID-19 Lung Disease. Clin Chest Med. 2023;44(2):239-248. doi: 10.1016/j.ccm.2022.11.007
Plant LD, Xiong D, Romero J, Dai H, Goldstein SAN. Hypoxia Produces Pro-arrhythmic Late Sodium Current in Cardiac Myocytes by SUMOylation of Na(V)1.5 Channels. Cell Rep. 2020;30(7):2225-2236.e4. doi: 10.1016/j.celrep.2020.01.025
Hawerkamp HC, Dyer AH, Patil ND, et al. Characterisation of the pro-inflammatory cytokine signature in severe COVID-19. Front Immunol. 2023;14:1170012. doi: 10.3389/fimmu.2023.1170012
Li Y-S, Ren H-C, Cao J-H. Roles of Interleukin-6-mediated immunometabolic reprogramming in COVID-19 and other viral infection-associated diseases. Int Immunopharmacol. 2022;110:109005. doi: https://doi.org/10.1016/j.intimp.2022.109005
Roterberg G, El-Battrawy I, Veith M, et al. Arrhythmic events in Brugada syndrome patients induced by fever. Ann Noninvasive Electrocardiol. 2020;25(3):e12723. Doi: 10.1111/anec.12723
D’Aloia A, Faggiano P, Brentana L, et al. Recurrent ventricular fibrillation during a febrile illness and hyperthermia in a patient with dilated cardiomyopathy and automatic implantable cardioverter defibrillator. An example of reversible electrical storm. Int J Cardiol. 2005;103(2):207-208. doi: 10.1016/j.ijcard.2004.06.027
Ma JF, Zhou Y, Fu HX. Ventricular fibrillation induced by fever in structurally normal hearts. Front Cardiovasc Med. 2023;10:1230295. doi: 10.3389/fcvm.2023.1230295
El-Battrawy I, Lang S, Zhao Z, et al. Hyperthermia Influences the Effects of Sodium Channel Blocking Drugs in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. PLoS One. 2016;11(11):e0166143. doi: 10.1371/journal.pone.0166143
Naksuk N, Lazar S, Peeraphatdit TB. Cardiac safety of off-label COVID-19 drug therapy: a review and proposed monitoring protocol. Eur Heart J Acute Cardiovasc Care. 2020;9(3):215-221. doi: 10.1177/2048872620922784
Manolis AS, Manolis AA, Manolis TA, Apostolopoulos EJ, Papatheou D, Melita H. COVID-19 infection and cardiac arrhythmias. Trends Cardiovasc Med. 2020;30(8):451-460. doi: 10.1016/j.tcm.2020.08.002
Amaratunga EA, Corwin DS, Moran L, Snyder R. Bradycardia in Patients With COVID-19: A Calm Before the Storm? Cureus. 2020;12(6):e8599. doi: 10.7759/cureus.8599
Arnold AC, Ng J, Raj SR. Postural tachycardia syndrome - Diagnosis, physiology, and prognosis. Auton Neurosci. 2018;215:3-11. doi: 10.1016/j.autneu.2018.02.005
Ormiston CK, Świątkiewicz I, Taub PR. Postural orthostatic tachycardia syndrome as a sequela of COVID-19. Heart Rhythm. 2022;19(11):1880-1889. doi: 10.1016/j.hrthm.2022.07.014
Desai AD, Boursiquot BC, Melki L, Wan EY. Management of Arrhythmias Associated with COVID-19. Curr Cardiol Rep. 2020;23(1):2. doi: 10.1007/s11886-020-01434-7
Romiti GF, Corica B, Lip GYH, Proietti M. Prevalence and Impact of Atrial Fibrillation in Hospitalized Patients with COVID-19: A Systematic Review and Meta-Analysis. J Clin Med. 2021;10(11):2490. doi: 10.3390/jcm10112490
Beri A, Kotak K. Cardiac injury, arrhythmia, and sudden death in a COVID-19 patient. HeartRhythm Case Rep. 2020;6(7):367-369. doi: 10.1016/j.hrcr.2020.05.001
Bakhshi H, Donthi N, Ekanem E, et al. The clinical spectrum of myocardial injury associated with COVID-19 infection. J Community Hosp Intern Med Perspect. 2020;10(6):521-522. doi: 10.1080/20009666.2020.1809910
Giustino G, Pinney SP, Lala A, et al. Coronavirus and Cardiovascular Disease, Myocardial Injury, and Arrhythmia: JACC Focus Seminar. J Am Coll Cardiol. 2020;76(17):2011-2023. doi: 10.1016/j.jacc.2020.08.059
Izquierdo-Marquisá A, Cubero-Gallego H, Aparisi Á, Vaquerizo B, Ribas-Barquet N. Myocardial Injury in COVID-19 and Its Implications in Short- and Long-Term Outcomes. Front Cardiovasc Med. 2022;9:901245. doi: 10.3389/fcvm.2022.901245
Taghdiri A. Inflammation and arrhythmogenesis: a narrative review of the complex relationship. Int J Arrhythmia. 2024;25(1):4. doi: 10.1186/s42444-024-00110-z
Zequn Z, Yujia W, Dingding Q, Jiangfang L. Off-label use of chloroquine, hydroxychloroquine, azithromycin and lopinavir/ritonavir in COVID-19 risks prolonging the QT interval by targeting the hERG channel. Eur J Pharmacol. 2021;893:173813. doi: 10.1016/j.ejphar.2020.173813
Chen CY, Wang FL, Lin CC. Chronic hydroxychloroquine use associated with QT prolongation and refractory ventricular arrhythmia. Clin Toxicol (Phila). 2006;44(2):173-175. doi: 10.1080/15563650500514558
Roden DM, Harrington RA, Poppas A, Russo AM. Considerations for Drug Interactions on QTc in Exploratory COVID-19 Treatment. Circulation. 2020;141(24):e906-e907. doi: 10.1161/circulationaha.120.047521
Watson OJ, Barnsley G, Toor J, Hogan AB, Winskill P, Ghani AC. Global impact of the first year of COVID-19 vaccination: a mathematical modelling study. Lancet Infect Dis. 2022;22(9):1293-1302. doi: 10.1016/s1473-3099(22)00320-6
Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020;383(27):2603-2615. doi: 10.1056/NEJMoa2034577
Kuodi P, Gorelik Y, Zayyad H, et al. Association between BNT162b2 vaccination and reported incidence of post-COVID-19 symptoms: cross-sectional study 2020-21, Israel. NPJ Vaccines. 2022;7(1):101. doi: 10.1038/s41541-022-00526-5
Krishna BA, Metaxaki M, Wills MR, Sithole N. Reduced Incidence of Long Coronavirus Disease Referrals to the Cambridge University Teaching Hospital Long Coronavirus Disease Clinic. Clin Infect Dis. 2023;76(4):738-740. doi: 10.1093/cid/ciac630
Ayoubkhani D, Bosworth ML, King S, et al. Risk of Long COVID in People Infected With Severe Acute Respiratory Syndrome Coronavirus 2 After 2 Doses of a Coronavirus Disease 2019 Vaccine: Community-Based, Matched Cohort Study. Open Forum Infect Dis. 2022;9(9):ofac464. Doi: 10.1093/ofid/ofac464
Mercadé-Besora N, Li X, Kolde R, et al. The role of COVID-19 vaccines in preventing post-COVID-19 thromboembolic and cardiovascular complications. Heart. 2024;110(9):635-643. doi: 10.1136/heartjnl-2023-323483
Pillay J, Gaudet L, Wingert A, et al. Incidence, risk factors, natural history, and hypothesised mechanisms of myocarditis and pericarditis following covid-19 vaccination: living evidence syntheses and review. BMJ. 2022;378:e069445. doi: 10.1136/bmj-2021-069445
Klein NP, Lewis N, Goddard K, et al. Surveillance for Adverse Events After COVID-19 mRNA Vaccination. JAMA. 2021;326(14):1390-1399. doi: 10.1001/jama.2021.15072
Gao J, Feng L, Li Y, et al. A Systematic Review and Meta-analysis of the Association Between SARS-CoV-2 Vaccination and Myocarditis or Pericarditis. Am J Prev Med. 2023;64(2):275-284. doi: 10.1016/j.amepre.2022.09.002
Krishna BA, Metaxaki M, Sithole N, Landín P, Martín P, Salinas-Botrán A. Cardiovascular disease and covid-19: A systematic review. Int J Cardiol Heart Vasc. 2024;54:101482. doi: 10.1016/j.ijcha.2024.101482
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 European Journal of Clinical and Experimental Medicine

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our open access policy is in accordance with the Budapest Open Access Initiative (BOAI) definition: this means that articles have free availability on the public Internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from having access to the Internet itself.
All articles are published with free open access under the CC-BY Creative Commons attribution license (the current version is CC-BY, version 4.0). If you submit your paper for publication by the Eur J Clin Exp Med, you agree to have the CC-BY license applied to your work. Under this Open Access license, you, as the author, agree that anyone may download and read the paper for free. In addition, the article may be reused and quoted provided that the original published version is cited. This facilitates freedom in re-use and also ensures that Eur J Clin Exp Med content can be mined without barriers for the research needs.




