Detection of gastrointestinal cancers using salivary biomarkers – a systematic review
DOI:
https://doi.org/10.15584/ejcem.2025.3.11Keywords:
cancer diagnosis, gastrointestinal cancers, salivary biomarkersAbstract
Introduction and aim. Cancers of the gastrointestinal tract are highly prevalent worldwide, with usually symptomless presentations making diagnosis at an early stage challenging. At the same time, salivary biomarkers are a promising method of early diagnosis in different malignancies. To this end, the present systematic review was carried out to investigate if salivary biomarkers can help with the early detection of gastrointestinal cancer and ascertain their diagnostic value.
Material and methods. Major electronic databases were searched using a combination of keywords and Boolean operators to retrieve all existing literature on the topic from April 2024 until inception. Clinical studies with relevant information were included in the quantitative synthesis.
Analysis of the literature. A total of 48 studies exploring the use of potential salivary biomarkers in esophageal, gastric, colorectal, pancreatic, hepatocellular and biomarkers were included in the present review. All studies retrieved statistically significant correlations between the presence of certain markers in the saliva and development of gastrointestinal cancers.
Conclusion. Salivary biomarkers can help detect different gastrointestinal cancers. However, more studies are required to determine their diagnostic value. The use of artificial intelligence might help clinicians in exploiting these biomarkers.
Downloads
References
Arnold M, Abnet CC, Neale RE, et al. Global Burden of 5 Major Types of Gastrointestinal Cancer. Gastroenterology. 2020;159(1):335-349.e15. doi: 10.1053/j.gastro.2020.02.068
Parab TM, DeRogatis MJ, Boaz AM, et al. Gastrointestinal stromal tumors: a comprehensive review. J Gastrointest Oncol. 2019;10(1):144-154. doi: 10.21037/jgo.2018.08.20
Majumdar SR, Fletcher RH, Evans AT. How does colorectal cancer present? Symptoms, duration, and clues to location. Am J Gastroenterol. 1999;94(10):3039-3045. doi: 10.1111/j.1572-0241.1999.01454.x
Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F. Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol Biomarkers Prev. 2014;23(5):700-713. doi: 10.1158/1055-9965.Epi-13-1057
Stoffel EM, Brand RE, Goggins M. Pancreatic Cancer: Changing Epidemiology and New Approaches to Risk Assessment, Early Detection, and Prevention. Gastroenterology. 2023;164(5):752-765. doi: 10.1053/j.gastro.2023.02.012
Davis J, Kellerman R. Gastrointestinal Conditions: Colorectal Cancer Screening and Prevention. FP Essent. 2022;516: 17-22.
Wood LD, Canto MI, Jaffee EM, Simeone DM. Pancreatic Cancer: Pathogenesis, Screening, Diagnosis, and Treatment. Gastroenterology. 2022;163(2):386-402.e1. Doi: 10.1053/j.gastro.2022.03.056
Bahbah EI, Noehammer C, Pulverer W, Jung M, Weinhaeusel A. Salivary biomarkers in cardiovascular disease: An insight into the current evidence. Febs J. 2021;288(22): 6392-6405. doi: 10.1111/febs.15689
Liang D, Lu H. Salivary biological biomarkers for Alzheimer’s disease. Arch Oral Biol. 2019;105:5-12. doi: 10.1016/j.archoralbio.2019.06.004
Aznab M, Shahhosseini R, Safaei M, Mozaffari HR. Salivary and serum levels of soluble E-cadherin in patients with gastrointestinal cancers: A comparative study. Journal of Cancer Research and Therapeutics. 2023;19(7):1982-1987. doi: 10.4103/jcrt.jcrt_702_22
Graham DG, Khan S, Sehgal V, Hamoudi R, Rosenfeld A, Lovat L. Combined analysis of salivary RNA expression and demographic, symptom and risk factor data can accurately predict those at risk of developing or with esophageal cancer. Conference Abstract. Gastroenterology. 2016;150(4):S69-S70.
Li K, Lin Y, Luo Y, et al. A signature of saliva-derived exosomal small RNAs as predicting biomarker for esophageal carcinoma: a multicenter prospective study. Mol Cancer. 2022;21(1):21. doi: 10.1186/s12943-022-01499-8
Li K, Lin Y, Zhou Y, et al. Salivary Extracellular MicroRNAs for Early Detection and Prognostication of Esophageal Cancer: A Clinical Study. Gastroenterology. 2023;165(4):932-945.e9. doi: 10.1053/j.gastro.2023.06.021
Shu J, Ma J, Ren X, et al. The Abnormal Glycopatterns of Salivary Glycoproteins in Esophageal Squamous Cell Carcinoma Patients. Front Chem. 2021;9637730. doi: 10.3389/fchem.2021.637730
Stone TC, Ward V, Hogan A, et al. Using saliva epigenetic data to develop and validate a multivariable predictor of esophageal cancer status. Epigenomics. 2024;16(2):109-125. doi: 10.2217/epi-2023-0248
Wu W, Hou W, Wu Z, Wang Y, Yi Y, Lin W. [miRNA-144 in the saliva is a genetic marker for early diagnosis of esophageal cancer]. Nan Fang Yi Ke Da Xue Xue Bao. 2013;33(12):1783-1786.
Xie Z, Chen G, Zhang X, et al. Salivary MicroRNAs as Promising Biomarkers for Detection of Esophageal Cancer. PLoS ONE. 2013;8(4)e57502. doi: 10.1371/journal.pone.0057502
Xie ZJ, Chen G, Zhang XC, Li DF, Huang J, Li ZJ. Saliva supernatant miR-21: a novel potential biomarker for esophageal cancer detection. Asian Pac J Cancer Prev. 2012;13(12):6145-6149. doi: 10.7314/apjcp.2012.13.12.6145
Ye M, Ye P, Zhang W, Rao J, Xie Z. Diagnostic values of salivary versus and plasma microRNA-21 for early esophageal cancer. Nan fang yi ke da xue xue bao = Journal of Southern Medical University. 2014;34(6):885-889.
Bel’skaya LV, Sarf EA, Shalygin SP, Postnova TV, Kosenok VK. Identification of salivary volatile organic compounds as potential markers of stomach and colorectal cancer: A pilot study. Journal of Oral Biosciences. 2020;62(2):212-221. doi: 10.1016/j.job.2020.05.002
Chen WD, Zhang X, Zhang MJ, et al. Salivary Fusobacterium nucleatum serves as a potential diagnostic biomarker for gastric cancer. World J Gastroenterol. 2022;28(30):4120-4132. doi: 10.3748/wjg.v28.i30.4120
Huang K, Gao X, Wu L, et al. Salivary Microbiota for Gastric Cancer Prediction: An Exploratory Study. Front Cell Infect Microbiol. 2021;11:640309. doi: 10.3389/fcimb.2021.640309
Kaczor-Urbanowicz KE, Saad M, Grogan TR, et al. Performance of Salivary Extracellular RNA Biomarker Panels for Gastric Cancer Differs between Distinct Populations. Cancers. 2022;14(15)3632. doi: 10.3390/cancers14153632
Koopaie M, Ghafourian M, Manifar S, et al. Evaluation of CSTB and DMBT1 expression in saliva of gastric cancer patients and controls. BMC Cancer. 2022;22(1):473. doi: 10.1186/s12885-022-09570-9
Li F, Yoshizawa JM, Kim KM, et al. Discovery and validation of salivary extracellular RNA biomarkers for noninvasive detection of gastric cancer. Clin Chem. 2018;64(10):1513-1521. doi: 10.1373/clinchem.2018.290569
Shu J, Yu H, Du H, et al. Identification of N-and O-linked glycans recognized by AAL in saliva of patients with atrophic gastritis and gastric cancer. Cancer Biomarkers. 2018;22(4):669-681. doi: 10.3233/CBM-171087
Shu J, Yu H, Li X, et al. Salivary glycopatterns as potential biomarkers for diagnosis of gastric cancer. Oncotarget. 2017;8(22):35718-35727. doi: 10.18632/oncotarget.16082
Swarup N, Cheng J, Choi I, et al. Multi-faceted attributes of salivary cell-free DNA as liquid biopsy biomarkers for gastric cancer detection. Biomarker Research. 2023;11(1):90. doi: 10.1186/s40364-023-00524-2
Xiao H, Zhang Y, Kim Y, et al. Differential Proteomic Analysis of Human Saliva using Tandem Mass Tags Quantification for Gastric Cancer Detection. Sci Rep. 2016;6:22165. doi: 10.1038/srep22165
Xu F, Jiang M. Evaluation of predictive role of carcinoembryonic antigen and salivary mRNA biomarkers in gastric cancer detection. Medicine (Baltimore). 2020;99(22): e20419. doi: 10.1097/md.0000000000020419
Holten-Andersen L, Christensen IJ, Jensen SB, et al. Saliva and plasma TIMP-1 in patients with colorectal cancer: A prospective study. Scandinavian Journal of Gastroenterology. 2012;47(10):1234-1241. doi: 10.3109/00365521.2012.711855
Kiseleva EV, Nefedev FS, Zakharenko AA, Zaraiski MI, Seliverstov RY. Semi-Quantitative Analysis of Mirna-21 in Saliva and Blood Plasma as a Non-Invasive Method for Diagnosing Colorectal Cancer, Lung Cancer and Glial Tumors. Voprosy Onkologii. 2023;69(5):863-870. doi: 10.37469/0507-3758-2023-69-5-863-870
Koopaie M, Manifar S, Talebi MM, et al. Assessment of salivary miRNA, clinical, and demographic characterization in colorectal cancer diagnosis. Transl Oncol. 2024;41:101880. doi: 10.1016/j.tranon.2024.101880
Kuwabara H, Iwabuthi A, Soya R, et al. Salivary metabolomics for colorectal cancer detection. Annals of Oncology. 2019;30:v46. doi: 10.1093/annonc/mdz239.058
Kuwabara H, Katsumata K, Iwabuchi A, et al. Salivary metabolomics with machine learning for colorectal cancer detection. Cancer Sci. 2022;113(9):3234-3243. doi: 10.1111/cas.15472
Lázaro-Sánchez AD, Salces-Ortiz P, Velásquez LI, Orozco-Beltrán D, Díaz-Fernández N, Juárez-Marroquí A. HLA-G as a new tumor biomarker: detection of soluble isoforms of HLA-G in the serum and saliva of patients with colorectal cancer. Clin Transl Oncol. 2020;22(7):1166-1171. doi: 10.1007/s12094-019-02244-2
Rapado-González Ó, Majem B, Álvarez-Castro A, et al. A novel saliva-based mirna signature for colorectal cancer diagnosis. J Clin Med. 2019;8(12):2029. doi: 10.3390/jcm8122029
Rapado-González Ó, Majem B, Diaz-Pena R, et al. MicroRNA expression profiling in saliva from patients with colorectal cancer. Clin Exp Metastasis. 2018;35(3):201. doi: 10.1007/s10585-018-9911-0
Sazanov AA, Kiselyova EV, Zakharenko AA, Romanov MN, Zaraysky MI. Plasma and saliva miR-21 expression in colorectal cancer patients. J Appl Genet. 2017;58(2):231-237. doi: 10.1007/s13353-016-0379-9
Waniczek D, Świętochowska E, Śnietura M, Kiczmer P, Lorenc Z, Muc-Wierzgoń M. Salivary Concentrations of Chemerin, α-Defensin 1, and TNF-α as Potential Biomarkers in the Early Diagnosis of Colorectal Cancer. Metabolites. 2022;12(8):704. doi: 10.3390/metabo12080704
Zhang X, Zhang Y, Gui X, et al. Salivary Fusobacterium nucleatum serves as a potential biomarker for colorectal cancer. iScience. 2022;25(5):104203. doi: 10.1016/j.isci.2022.104203
Asai Y, Itoi T, Sofuni A, et al. Early Detection of Pancreatic Cancer using Salivary Metabolomics. Gastroenterology. 2018;154(6):S517:S518. doi: 10.1016/S0016-5085(18)31952-8
Asai Y, Itoi T, Sugimoto M, et al. Elevated polyamines in saliva of pancreatic cancer. Cancers. 2018;10(2):43. doi: 10.3390/cancers10020043
Farrell JJ, Zhang L, Sugimoto M, et al. Multiple salivary biomarkers for pancreatic cancer detection. Gastroenterology. 2009;136(5):A147. doi: 10.1016/S0016-5085(09)60662-4
Gao S, Chen LY, Wang P, Liu LM, Chen Z. MicroRNA expression in salivary supernatant of patients with pancreatic cancer and its relationship with ZHENG. BioMed Research International. 2014;2014. doi: 10.1155/2014/756347
Liu HJ, Guo YY, Li DJ. Predicting novel salivary biomarkers for the detection of pancreatic cancer using biological feature-based classification. Pathology Research and Practice. 2017;213(4):394-399. doi: 10.1016/j.prp.2016.09.017
Machida T, Tomofuji T, Maruyama T, et al. miR‑1246 and miR‑4644 in salivary exosome as potential biomarkers for pancreatobiliary tract cancer. Oncol Rep. 2016;36(4):2375-2381. doi: 10.3892/or.2016.5021
Xie Z, Chen X, Li J, et al. Salivary HOTAIR and PVT1 as novel biomarkers for early pancreatic cancer. Oncotarget. 2016;7(18):25408-25419. doi: 10.18632/oncotarget.8323
Xie Z, Yin X, Gong B, et al. Salivary microRNAs show potential as a noninvasive biomarker for detecting resectable pancreatic cancer. Cancer Prev Res (Phila). 2015;8(2):165-173. doi: 10.1158/1940-6207.Capr-14-0192
Wong DT, Zhang L, Farrell J, et al. Salivary biomarkers for pancreatic cancer detection. Journal of Clinical Oncology. 2009;27(15):4630.
Ding F, Sun K, Sun N, Jiang Q, Cao M, Wu Z. ITRAQ-based proteomics reveals SOD2 as a potential salivary biomarker in liver cancer. International Journal of Biological Markers. 2019;34(3):221-231. doi: 10.1177/1724600819841619
He J, Zheng Z, Liu T, Ao Y, Yang Y, Hu H. Salivary orosomucoid 1 as a biomarker of hepatitis B associated hepatocellular carcinoma. Sc Rep. 2022;12(1):15347. doi: 10.1038/s41598-022-18894-2
Hershberger CE, Rodarte AI, Siddiqi S, et al. Salivary Metabolites are Promising Non-Invasive Biomarkers of Hepatocellular Carcinoma and Chronic Liver Disease. Liver Cancer Int. 2021;2(2):33-44. doi: 10.1002/lci2.25
Mariam A, Miller-Atkins G, Moro A, et al. Salivary miR-NAs as non-invasive biomarkers of hepatocellular carcinoma: a pilot study. PeerJ. 2022;10:e12715. doi: 10.7717/peerj.12715
Sun R, Ren Z, Lu H, Zheng S, Yu Z. Biomarkers detection for hepatocellular carcinoma based on salivary transcriptomic. Hepatology International. 2017;11(1):S405. Doi: 10.1007/s12072-016-9783-9
Kiseleva EV, Nefedev FS, Zakharenko AA, Zaraiski MI. A model for predicting colorectal cancer (CRC) based on determining the expression level of miRNA-21 in saliva and plasma. Voprosy Onkologii. 2022;68(5):622-627. doi: 10.37469/0507-3758-2022-68-5-622-627
Griffin-Sobel JP. Gastrointestinal Cancers: Screening and Early Detection. Semin Oncol Nurs. 2017;33(2):165-171. doi: 10.1016/j.soncn.2017.02.004
Dongiovanni P, Meroni M, Casati S, et al. Salivary biomarkers: novel noninvasive tools to diagnose chronic inflammation. International Journal of Oral Science. 2023;15(1):27. doi: 10.1038/s41368-023-00231-6
Gomar-Vercher S, Simón-Soro A, Montiel-Company JM, Almerich-Silla JM, Mira A. Stimulated and unstimulated saliva samples have significantly different bacterial profiles. PLoS One. 2018;13(6):e0198021. doi: 10.1371/journal.pone.0198021
Al Habobe H, Haverkort EB, Nazmi K, Van Splunter AP, Pieters RHH, Bikker FJ. The impact of saliva collection methods on measured salivary biomarker levels. Clinica Chimica Acta. 2024;552:117628. doi: 10.1016/j.cca.2023.117628
Kessler K, Hornemann S, Rudovich N, et al. Saliva Samples as A Tool to Study the Effect of Meal Timing on Metabolic And Inflammatory Biomarkers. Nutrients. 2020;12(2):340.
Xi X, Li T, Huang Y, et al. RNA Biomarkers: Frontier of Precision Medicine for Cancer. Noncoding RNA. 2017;3(1). doi: 10.3390/ncrna3010009
Lee UN, Su X, Hieber DL, et al. CandyCollect: at-home saliva sampling for capture of respiratory pathogens. Lab Chip. 2022;22(18):3555-3564. doi: 10.1039/d1lc01132d
Campbell C, Roblin D, Padmanabhan N, et al. Saliva-based SARS-CoV-2 serology using at-home collection kits returned via mail. Sci Rep. 2022;12(1):14061. doi: 10.1038/s41598-022-17057-7
Burnett-Hartman AN, Lee JK, Demb J, Gupta S. An Update on the Epidemiology, Molecular Characterization, Diagnosis, and Screening Strategies for Early-Onset Colorectal Cancer. Gastroenterology. 2021;160(4):1041-1049. doi: 10.1053/j.gastro.2020.12.068
Weledji EP, Enoworock G, Mokake M, Sinju M. How Grim is Pancreatic Cancer? Oncol Rev. 2016;10(1):294. doi: 10.4081/oncol.2016.294
Lange NF, Radu P, Dufour JF. Prevention of NAFLD-associated HCC: Role of lifestyle and chemoprevention. J Hepatol. 2021;75(5):1217-1227. doi: 10.1016/j.jhep.2021.07.025
Konyn P, Ahmed A, Kim D. Current epidemiology in hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol. 2021;15(11):1295-1307. doi: 10.1080/17474124.2021.1991792
Chattopadhyay I, Panda M. Recent trends of saliva omics biomarkers for the diagnosis and treatment of oral cancer. J Oral Biosci. 2019;61(2):84-94. doi: 10.1016/j.job.2019.03.002
Pappa E, Kousvelari E, Vastardis H. Saliva in the “Omics” era: A promising tool in paediatrics. Oral Dis. 2019;25(1): 16-25. doi: 10.1111/odi.12886
Adeoye J, Su YX. Artificial intelligence in salivary biomarker discovery and validation for oral diseases. Oral Dis. 2024;30(1):23-37. doi: 10.1111/odi.14641
Li LS, Guo XY, Sun K. Recent advances in blood-based and artificial intelligence-enhanced approaches for gastrointestinal cancer diagnosis. World J Gastroenterol. 2021;27(34):5666-5681. doi: 10.3748/wjg.v27.i34.5666
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 European Journal of Clinical and Experimental Medicine

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our open access policy is in accordance with the Budapest Open Access Initiative (BOAI) definition: this means that articles have free availability on the public Internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from having access to the Internet itself.
All articles are published with free open access under the CC-BY Creative Commons attribution license (the current version is CC-BY, version 4.0). If you submit your paper for publication by the Eur J Clin Exp Med, you agree to have the CC-BY license applied to your work. Under this Open Access license, you, as the author, agree that anyone may download and read the paper for free. In addition, the article may be reused and quoted provided that the original published version is cited. This facilitates freedom in re-use and also ensures that Eur J Clin Exp Med content can be mined without barriers for the research needs.




