Neuroprotective effects of Vernonia amygdalina and Moringa oleifera in alloxan-induced diabetic Wistar rats
DOI:
https://doi.org/10.15584/ejcem.2025.4.20Keywords:
acetylcholinesterase, diabetes mellitus, hippocampus, Moringa oleifera, Vernonia amygdalinaAbstract
Introduction and aim. Diabetes mellitus is a metabolic disorder that affects multiple organs, including the hippocampus, a key region involved in memory. This study aimed to investigate the neuroprotective and antidiabetic effects of Vernonia amygdalina and Moringa oleifera in an alloxan-induced diabetic rat model.
Materials and methods. Thirty-five adult Wistar rats were randomized into seven groups and treated with aqueous extracts of V. amygdalina, M. oleifera, their combination, or glibenclamide for 30 days following alloxan-induced diabetes. Fasting blood glucose (FBG), hippocampal acetylcholinesterase (AChE) activity, cognitive performance (Morris Water Maze test) and histopathological changes in the hippocampus were evaluated.
Results. Alloxan significantly increased FBG (20.68±1.04 mmol/L), AChE activity (40.40±0.40 nmol/mL), and escape latency (51.75±4.39 sec), and reduced hippocampal cell density. Treatment with V. amygdalina and M. oleifera reduced FBG (8.29±0.93 mmol/L), AChE activity (34.50±0.30 nmol/mL), and escape latency (3.39±0.45 sec), and improved hippocampal histoarchitecture.
Conclusion. V. amygdalina and M. oleifera demonstrated neuroprotective and antidiabetic effects in diabetic rats. These results support their potential as adjunct agents to prevent diabetes-induced cognitive dysfunction.
Downloads
References
Al-Lawati JA. Diabetes Mellitus: A Local and Global Public Health Emergency! Oman Med J. 2017;32(3):177-179. doi: 10.5001/omj.2017.34
Hossain MJ, Al-Mamun M, Islam MR. Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Sci Rep. 2024;22;7(3):e2004. doi: 10.1002/hsr2.2004.
Petersmann A, Müller-Wieland D, Müller UA, et al. Definition, Classification and diagnosis of diabetes mellitus. Exp. Clin. Endocrinol. Diabetes. 2014;122(7):384-386. doi: 10.1055/s-0034-1366278
Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of Type 2 Diabetes Mellitus. Int J Mol Sci. 2020;21(17):6275. doi: 10.3390/ijms21176275
Lenzen S. The pancreatic beta cell: an intricate relation between anatomical structure, the signalling mechanism of glucose-induced insulin secretion, the low antioxidative defence, the high vulnerability and sensitivity to diabetic stress. ChemTexts. 2021;7(2):1-6. doi: 10.1007/s40828-021-00140-3
Xie J, Wang M, Long Z, et al. Global burden of type 2 diabetes in adolescents and young adults, 1990-2019: systematic analysis of the Global Burden of Disease Study 2019. BMJ. 2022:e072385. doi: 10.1136/bmj-2022-072385
Sami W, Ansari T, Butt NS, Hamid MRA. Effect of diet on type 2 diabetes mellitus: A review. Int J Health Sci (Qassim). 2017;11(2):65-71.
International Diabetes Federation. IDF Diabetes Atlas, 10th edn. Brussels, Belgium: International Diabetes Federation; 2021.
Shaikh FA, Bhuvan KC, Htar TT, Gupta M, Kumari Y. Cognitive Dysfunction in Diabetes Mellitus. Type 2 Diabetes - Pathophysiol Mod Manag. 2019. Available online at: https://www.intechopen.com/books/type-2-diabetes-from_pathophysiology-to-modern-management/cognitive-dysfunction. Accessed Jan 13, 2020. doi: 10.5772/intechopen.85940
Yarube I, Gwarzo I. Cognitive impairment and reduced antioxidant capacity in patients with type 2 diabetes. Sahel Med. J. 2019;22(4):171. doi: 10.4103/smj.smj_37_18
Bashir J, Yarube IU. Occurrence of mild cognitive impairment with hyperinsulinaemia in Africans with advanced type 2 diabetes mellitus. IBRO Neurosci Rep. 2022;12:182-187. doi: 10.1016/j.ibneur.2022.02.003
Olayinka JN, Irek E, Adeoluwa OA, et al. Memory function decline among Nigerian type 2 diabetic patients: Preliminary results from an ongoing multi‐centre case control study. Alzheimers Dement. 2024;20(2)e085483. doi: 10.1002/alz.085483
Adebayo RY, Odeigha LO, Alabi AN, Mohammed A, Obalowu IA, Ademola CO. Body mass index, blood pressure, and cognitive impairment among type 2 diabetic patients in a primary care setting, North-Central Nigeria. AAMR. 2022;5(1):158. doi: 10.4081/aamr.2022.158
Eze CO, Ezeokpo BC, Kalu UA, et al. The prevalence of cognitive impairment amongst Type 2 diabetes mellitus patients at Abakaliki South-East Nigeria. Diabetes Metab Syndr. 2015;2(1):1-3. doi: 10.24966/dmd-201x/100003
Lewis, S. Hippocampus plays multiple choice. Nat. Rev. Neurosci. 2012;13:600. doi: 10.1038/nrn3327
Turgut YB, Turgut M. A mysterious term hippocampus involved in learning and memory. Childs Nerv Syst. 2011;27(12):2023-2025. doi: 10.1007/s00381-011-1513-y
Pamidi N, Satheesha Nayak BN. Effect of streptozotocin induced diabetes on rat hippocampus. Bratisl Lek Listy. 2012;113(10):583-588. doi: 10.4149/bll_2012_130
Sadeghi A, Hami J, Razavi S, Esfandiary E, Hejazi Z. The Effect of Diabetes Mellitus on Apoptosis in Hippocampus: Cellular and Molecular Aspects. Int J Prev Med. 2016;7:57. doi: 10.4103/2008-7802.178531
Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol. 2018;14(10):591-604. doi: 10.1038/s41574-018-0048-7
Ansari T, Sawane M. Association of Hyperlipidemia and Hyperglycemia With Cognitive Function in Type 2 Diabetes: A Cross-Sectional Analysis. Cureus. 2024;16(10):e72227. doi: 10.7759/cureus.72227.
Njan AA, Adenuga FO, Ajayi AM, et al. Neuroprotective and memory-enhancing effects of methanolic leaf extract of Peristrophe bicalyculata in rat model of type 2 diabetes mellitus. Heliyon. 2020;6(5):e04011. doi: 10.1016/j.heliyon.2020.e04011
Amin SN, Younan SM, Youssef MF, Rashed LA, Mohamady I. A histological and functional study on hippocampal formation of normal and diabetic rats. F1000Res. 2013;2:151. doi: 10.12688/f1000research.2-151.v1
Hegazy HG, Ali EHA. Modulation of monoamines and amino-acids neurotransmitters in cerebral cortex and hippocampus of female senile rats by ginger and lipoic acid. Afr J Pharm Pharmaco. 2011;5(8):1080-1085. doi: 10.5897/ajpp11.299
Rawshani A, Rawshani A, Franzén S, et al. Risk Factors, Mortality, and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2018;379(7):633-644. doi: 10.1056/NEJMoa1800256
Singh SK, Rai PK, Mehta S, Singh RK, Watal G. Curative effect of Cynodon dactylon against STZ induced hepatic injury in diabetic rats. Indian J Clin Biochem. 2009;24(4):410-413. doi: 10.1007/s12291-009-0073-3
Udeogu C, Ejiofor CC, Nwakulite A. Effects of Moringa oleifera Leaves Methanolic Extract on Alloxan- Induced Diabetic Albino Rats. AJRIMPS. 2019:1-8. doi: 10.9734/ajrimps/2019/v7i230119
Obembe OO, Raji Y. Effects of aqueous extract of Moringa oleifera seed on cadmium-induced reproductive toxicity in male Wistar rats. Afr Health Sci. 2018;18(3):653-663. doi: 10.4314/ahs.v18i3.23
Amaglo NK, Bennett RN, Lo Curto RB, et al. Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L., grown in Ghana. Food Chem. 2010;122(4):1047-1054. doi: 10.1016/j.foodchem.2010.03.073
Bhatta R, Saravanan M, Baruah L, Sampath KT. Nutrient content, in vitro ruminal fermentation characteristics and methane reduction potential of tropical tannin-containing leaves. J Sci Food Agric. 2012;92(15):2929-2935. doi: 10.1002/jsfa.5703
Panda S, Kar A, Sharma P, Sharma A. Cardioprotective potential of N,α-L-rhamnopyranosyl vincosamide, an indole alkaloid, isolated from the leaves of Moringa oleifera in isoproterenol induced cardiotoxic rats: in vivo and in vitro studies. Bioorg Med Chem Lett. 2013;23(4):959-962. doi: 10.1016/j.bmcl.2012.12.060
Mathur M, Yadav S, Katariya PK, Kamal R. In vitro propagation and biosynthesis of steroidal sapogenins from various morphogenetic stages of Moringa oleifera Lam., and their antioxidant potential. Acta Physiol. Plant. 2014;36(7):1749-1762. doi: 10.1007/s11738-014-1549-1
Ogunrinola OO, Fajana OO Adu OB, et al. The effects of Vernonia amygdalina leaves on lipid profile in cadmium-induced rat. MOJ Toxicol. 2019;5(2):83-87. doi: 10.15406/moji.2019.05.00159
Oyeyemi IT, Akinlabi AA, Adewumi A, et al. Vernonia amygdalina: a folkloric herb with anthelminthic properties. Beni-Suef Univ J Basic Appl Sci. 2018;7:43-49. doi: 10.1016/j.bjbas.2017.07.007
Yedjou CG, Sims JN, Njiki S, Tsabang N, Ogungbe IV, Tchounwou PB. Vernonia amygdalina Delile exhibits a potential for the treatment of acute promyelocytic leukemia. Glob J Adv Eng Technol Sci. 2018;5(8):1-9. doi: 10.5281/zenodo.1343591
Oladele JO, Oyeleke OM, Oladele OT, Olaniyan M. Neuroprotective mechanism of Vernonia amygdalina in a rat model of neurodegenerative diseases. Toxicol Rep. 2020;7:1223-1232. doi: 10.1016/j.toxrep.2020.09.005
Agbai EO, Njoku GO, Mounmbegna PPE, Ofoego UC. Methanolic extracts of Vernonia amygdalina Del and Ocimum gratissimum improve liver function in streptozotocin-induced diabetic Wistar rats. J Med Appl Biosci. 2012;4:30-41.
Thilza BI, Sanni A, Zakari IA, et al. In vitro antimicrobial activity of water extract of Moringa oleifera leave stalk on bacteria normally implicated in eye diseases. Academia Arena. 2010;2:80-82.
Mähler M, Berard M, Feinstein R, et al. FELASA recommendations for the health monitoring of mouse, rat, hamster, guinea pig and rabbit colonies in breeding and experimental units. Lab Anim. 2014;48:178-192. doi: 10.1177/0023677213516312
Ibrahim RM, Abdelhafez HM, El-Shamy SAEM, Eid FA, Mashaal A. Arabic gum ameliorates systemic modulation in Alloxan monohydrate-induced diabetic rats. Sci. Rep. 2023;13(1):5005. doi: 10.1038/s41598-023-31897-x
Banda M, Nyirenda J, Muzandu K, Sijumbila G, Mudenda S. Antihyperglycemic and Antihyperlipidemic Effects of Aqueous Extracts of Lannea edulis in Alloxan-Induced Diabetic Rats. Front. Pharmacol. 2018;9:1099. doi: 10.3389/fphar.2018.01099
Khan R, Ahmad W, Ahmed M. Stellaria media attenuates the hyperglycemia and hyperlipidemia in alloxan-induced diabetic rat. Bangladesh J. Pharmacol. 2019;14(2):80-86. doi: 10.3329/bjp.v14i2.39847
Woldekidan S, Mulu A, Ergetie W, et al. Evaluation of Antihyperglycemic Effect of Extract of Moringa stenopetala (Baker f.) Aqueous Leaves on Alloxan-Induced Diabetic Rats. Diabetes Metab Syndr Obes. 2021;14:185-192. doi: 10.2147/DMSO.S266794.
Warri AO, Moke EG, Balogun AO, Nzeh KC, Umukoro EK, Erhirhie EO. Acute toxicity and hypoglycemic effect of a polyherbal formulation on blood glucose in oral glucose tolerance test (OGTT) and Alloxan-Induced diabetic rats. Biol. med. natural prod. chem. 2021;10(2):111-115. doi: 10.14421/biomedich.2021.102.111-115
Stewart CA, Morris RGM. The water maze. In: Sahgal A, ed. Behavioral Neuroscience, Volume I: A Practical Approach. Oxford: Oxford University Press; 1993:107-122.
Ebuehi OAT, Adeyelu TT. Impact of AlCl₃-induced neurotoxicity in protein-malnourished Sprague-Dawley rats. Int J Brain Cogn Sci. 2015;4:33-40.
Khan W, Parveen R, Chester K, Parveen S, Ahmad S. Hypoglycemic Potential of Aqueous Extract of Moringa oleifera Leaf and In Vivo GC-MS Metabolomics. Front Pharmacol. 2017;8:577. doi: 10.3389/fphar.2017.00577.
Tran TTL, Ly HT, Le TKO, Le VM. Anti-hyperglycemic effect of herbal formula of Moringa oleifera, Vernonia amygdalina and Centella asiatica extracts in streptozotocin-induced hyperglycemic mice. PRMCM. 2024;11:100428. doi: 10.1016/j.prmcm.2024.100428
Nkono BLNY, Rouamba A, Duceac IA, Verestiuc L. Antihyperglycemic effect of Vernonia amygdalina and in vitro evaluation of its antiproliferative activity on human osteosarcoma MG-63. Pan Afr Med J. 2022;42:222. doi: 10.11604/pamj.2022.42.222.33149.
El-Moez SIA, El-Badawi AY, Omer HAA. Assessment of antimicrobial effect of Moringa: in vitro and in vivo evaluation. Afr J Microbiol Res. 2014;8:3630-3638.
Chuang PH, Lee CW, Chou JY, Murugan M, Shieh BJ, Chen HM. Anti-fungal activity of crude extracts and essential oil of Moringa oleifera Lam. Bioresour Technol. 2007;98(1):232-236. doi: 10.1016/j.biortech.2005.11.003
Nimemibo-Uadia R. Effect of Vernonia amygdalina in alloxan-induced diabetic albino rats. J Med Lab Sci. 2002;12:25-31.
Momoh MA, Adedokun MO, Mora AT, Agboke AA. Antidiabetic activity and acute toxicity evaluation of aqueous leaf extract of Vernonia amygdalina. Afr J Biotechnol. 2014;13:4586-4593. doi: 10.5897/ajb2014.13995
Csernansky JG, Martin M, Shah R, Bertchume A, Colvin J, Dong H. Cholinesterase inhibitors ameliorate behavioral deficits induced by MK-801 in mice. Neuropsychopharmacology. 2005;30(12):2135-2143. doi: 10.1038/sj.npp.1300761
Muthuraju S, Maiti P, Solanki P, et al. Cholinesterase inhibitors ameliorate spatial learning deficits in rats following hypobaric hypoxia. Exp Brain Res. 2010;203(3):583-592. doi: 10.1007/s00221-010-2266-7
Rahmath A, Nisha R, Ahamed SM, et al. Neuroprotective effect of Moringa oleifera in scopolamine-induced cognitive impairment and oxidative stress in Wistar albino rats. Res J Pharm Biol Chem Sci. 2015;6:1736-1744.
Kirisattayakul W, Wattanathorn J, Tong-Un T, Muchimapura S, Wannanon P, Jittiwat J. Cerebroprotective effect of Moringa oleifera against focal ischemic stroke induced by middle cerebral artery occlusion. Oxid Med Cell Longev. 2013;2013:951415. doi: 10.1155/2013/951415
Devi L, Diwakar L, Raju TR, Kutty BM. Selective neurodegeneration of hippocampus and entorhinal cortex correlates with spatial learning impairments in rats with bilateral ibotenate lesions of ventral subiculum. Brain Res. 2003;960(1-2):9-15. doi: 10.1016/s0006-8993(02)03699-5
Sutalangka C, Wattanathorn J, Muchimapura S, Thukham-mee W. Moringa oleifera mitigates memory impairment and neurodegeneration in animal model of age-related dementia. Oxid Med Cell Longev. 2013;2013:695936. doi: 10.1155/2013/695936
Aguwa US, Okeke SM, Okeke CM, et al. Comparing the neuroprotective effects of aqueous and methanolic extracts of Vernonia amygdalina on the cerebellum of adult male wistar rats. International Annals of Science. 2020;9(1):145-159. doi: 10.21467/ias.9.1.145-159
Aguwa US, Ogbuokiri DK, Eze CS, et al. Evaluating the Neuroprotective Effects of the Aqueous and Methanolic Extracts of Vernonia amygdalina on the Hippocampus of Adult Male Wistar Rats. Int J Pathog Res. 2020;5(2):1-16. doi: 10.9734/ijpr/2020/v5i230127
Olumide MD, Ajayi OA, Akinboye OE. Comparative study of proximate, mineral and phytochemical analysis of the leaves of Ocimum gratissimum, Vernonia amygdalina and Moringa oleifera. J Med Plants Res. 2019;13:351-356. doi: 10.5897/jmpr2019.6775
Libro R, Giacoppo S, Soundara Rajan T, Bramanti P, Mazzon E. Natural Phytochemicals in the Treatment and Prevention of Dementia: An Overview. Molecules. 2016;21(4):518. doi: 10.3390/molecules21040518
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 European Journal of Clinical and Experimental Medicine

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our open access policy is in accordance with the Budapest Open Access Initiative (BOAI) definition: this means that articles have free availability on the public Internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from having access to the Internet itself.
All articles are published with free open access under the CC-BY Creative Commons attribution license (the current version is CC-BY, version 4.0). If you submit your paper for publication by the Eur J Clin Exp Med, you agree to have the CC-BY license applied to your work. Under this Open Access license, you, as the author, agree that anyone may download and read the paper for free. In addition, the article may be reused and quoted provided that the original published version is cited. This facilitates freedom in re-use and also ensures that Eur J Clin Exp Med content can be mined without barriers for the research needs.




