The pleiotropic effects of liraglutide in obesity-linked diseases
DOI:
https://doi.org/10.15584/ejcem.2025.2.2Keywords:
cardiovascular disease, liraglutide, mental disorders, obesity, polycystic ovary syndromeAbstract
Introduction and aim. Obesity, defined by a BMI ≥30 kg/m², is a global epidemic associated with increased mortality rates and an increased prevalence of chronic diseases. Such diseases include type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), cardiovascular disease (CVD), and polycystic ovary syndrome (PCOS), besides several mental health disorders. Liraglutide, a glucagon-like peptide 1 (GLP-1) analogue, is widely recognized for its efficacy in glycemic control and weight loss and this review aims to explore the pleiotropic effects of liraglutide in obesity-related diseases.
Material and methods. Literature search was performed between 2022 and 2024 using the following databases: PubMed (MEDLINE) and Google Scholar. The comprehensive review of the literature focused on the action of liraglutide on NAFLD/ NASH, CVD, mental disorders, and PCOS. A qualitative synthesis of the data focusing on efficacy of liraglutide in obesity-related disease outcomes was performed.
Analysis of the literature. Liraglutide improves metabolic outcomes by promoting weight loss, reducing appetite, and improv ing glycemic control. In NAFLD/NASH, liraglutide reduces intrahepatic fat, liver fibrosis, and inflammation that strongly relate to the degree of weight loss. The LEADER trial showed its cardiovascular benefits in terms of reducing all-cause mortality and major cardiovascular events in patients with T2DM, although its chronotropic effects may pose risks in patients with heart fail ure. In women with PCOS, liraglutide reduces hyperandrogenism, insulin resistance, and body weight, and thus has even more favorable effects compared with metformin. Liraglutide also counteracts antipsychotic-induced weight gain and improves metabolic markers in patients with severe mental disorders.
Conclusion. Liraglutide demonstrates significant pleiotropic effects apart from weight reduction, including improved hepatic metabolism, cardiovascular protection, and better outcomes in PCOS and mental health. While semaglutide and tirzepatide may offer enhanced efficacy, liraglutide remains a promising therapeutic option for managing obesity and its related comor bidities.
Downloads
References
Lingvay I, Cohen RV, Roux CWL, Sumithran P. Obesity in adults. Lancet. 2024;404(10456):972-987. doi: 10.1016/S0140-6736(24)01210-8
Sarma S, Sockalingam S, Dash S. Obesity as a multisystem disease: Trends in obesity rates and obesity-related complications. Diabetes Obes Metab. 2021;23(1):3-16. doi: 10.1111/dom.14290
Fulton S, Décarie-Spain L, Fioramonti X, Guiard B, Nakajima S. The menace of obesity to depression and anxiety prevalence. Trends Endocrinol Metab. 2022;33(1):18-35. doi: 10.1016/j.tem.2021.10.005
Arellano-Alvarez P, Muñoz-Guerrero B, Ruiz-Barranco A, et al. Barriers in the Management of Obesity in Mexican Children and Adolescents through the COVID-19 Lockdown-Lessons Learned and Perspectives for the Future. Nutrients. 2023;15(19):4238. doi: 10.3390/nu15194238
Kelly T, Yang W, Chen CS, et al. Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond). 2008;32(9):1431-1437. doi: 10.1038/ijo.2008.102
Withrow D, Alter DA. The economic burden of obesity worldwide: a systematic review of the direct costs of obesity. Obes Rev. 2011;12(2):131-141. doi: 10.1111/j.1467-789X.2009.00712.x
Pereira S, Cline DL, Glavas MM, Covey SD, Kieffer TJ. Tissue-Specific Effects of Leptin on Glucose and Lipid Metabolism. Endocr Rev. 2021;42(1):1-28. doi: 10.1210/endrev/bnaa027
Vohra MS, Benchoula K, Serpell CJ, Hwa WE. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity. Eur J Pharmacol. 2022;915:174611. doi: 10.1016/j.ejphar.2021.174611
Loos RJF, Yeo GSH. The genetics of obesity: from discovery to biology. Nat Rev Genet. 2022;23(2):120-133. doi: 10.1038/s41576-021-00414-z
Bouchard C. Genetics of Obesity: What We Have Learned Over Decades of Research. Obesity (Silver Spring). 2021;29(5):802-820. doi: 10.1002/oby.23116
Kansra AR, Lakkunarajah S, Jay MS. Childhood and Adolescent Obesity: A Review. Front Pediatr. 2021;8:581461. doi: 10.3389/fped.2020.581461
Ling C, Rönn T. Epigenetics in Human Obesity and Type 2 Diabetes. Cell Metab. 2019;29(5):1028-1044. doi: 10.1016/j.cmet.2019.03.009
Farooqi IS, O’Rahilly S. Monogenic obesity in humans. Annu Rev Med. 2005;56:443-458. doi: 10.1146/annurev. med.56.062904.144924
Goodarzi MO. Genetics of obesity: what genetic association studies have taught us about the biology of obesity and its complications. Lancet Diabetes Endocrinol. 2018;6(3):223-236. doi: 10.1016/S2213-8587(17)30200-0
Pant R, Firmal P, Shah VK, Alam A, Chattopadhyay S. Epigenetic Regulation of Adipogenesis in Development of Metabolic Syndrome. Front Cell Dev Biol. 2021;8:619888. doi: 10.3389/fcell.2020.619888
Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease [published correction appears in Free Radic Biol Med. 2021;162:174. doi: 10.1016/j.freeradbiomed.2020.06.011
Russo P, Lauria F, Sirangelo I, et al. Association between Urinary AGEs and Circulating miRNAs in Children and Adolescents with Overweight and Obesity from the Italian I.Family Cohort: A Pilot Study. J Clin Med. 2023;12(16):5362. doi: 10.3390/jcm12165362
Palmas V, Pisanu S, Madau V, et al. Gut microbiota markers associated with obesity and overweight in Italian adults. Sci Rep. 2021;11(1):5532. doi: 10.1038/s41598-021-84928-w
Geng J, Ni Q, Sun W, Li L, Feng X. The links between gut microbiota and obesity and obesity related diseases. Biomed Pharmacother. 2022;147:112678. doi: 10.1016/j.biopha.2022.112678
Aron-Wisnewsky J, Warmbrunn MV, Nieuwdorp M, Clément K. Metabolism and Metabolic Disorders and the Microbiome: The Intestinal Microbiota Associated With Obesity, Lipid Metabolism, and Metabolic Health-Pathophysiology and Therapeutic Strategies. Gastroenterology. 2021;160(2):573-599. doi: 10.1053/j.gastro.2020.10.057
Wing RR, Tate DF, Gorin AA, et al. A self-regulation program for maintenance of weight loss. N Engl J Med. 2006;355(15):1563-1571. doi: 10.1056/NEJMoa061883
Lin X, Li H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front Endocrinol (Lausanne). 2021;12: 706978. doi: 10.3389/fendo.2021.706978
Arterburn DE, Telem DA, Kushner RF, Courcoulas AP. Benefits and Risks of Bariatric Surgery in Adults: A Review. JAMA. 2020;324(9):879-887. doi: 10.1001/jama.2020.12567
Elmaleh-Sachs A, Schwartz JL, Bramante CT, et al. Obesity Management in Adults: A Review. JAMA. 2023 Nov 28;330(20):2000-2015. doi: 10.1001/jama.2023.19897
Alruwaili H, Dehestani B, le Roux CW. Clinical Impact of Liraglutide as a Treatment of Obesity. Clin Pharmacol. 2021;13:53-60. doi: 10.2147/CPAA.S276085
Knudsen LB, Lau J. The Discovery and Development of Liraglutide and Semaglutide. Front Endocrinol (Lausanne). 2019;10:155. doi: 10.3389/fendo.2019.00155
van Can J, Sloth B, Jensen CB, et al. Effects of the once-daily GLP-1 analog liraglutide on gastric emptying, glycemic parameters, appetite and energy metabolism in obese, non-diabetic adults. Int J Obes (Lond). 2014;38(6):784-793. doi: 10.1038/ijo.2013.162
Victoza Label Reference ID: 4705241, 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/022341s036lbl.pdf. Accessed December 18, 2023.
Xutolphy ID: 4519094, 2019. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/208583s014s015lbl.pdf. Accessed December 18, 2023.
Saxenda ID: 4712253, 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/206321s012s013s014lbl.pdf. Accessed December 19, 2023.
Cao M, Pan C, Tian Y, Wang L, Zhao Z, Zhu B. Glucagon-like peptide 1 receptor agonists and the potential risk of pancreatic carcinoma: a pharmacovigilance study using the FDA Adverse Event Reporting System and literature visualization analysis. International Journal of Clinical Pharmacy, 2023,45(3):689-697. doi: 10.1007/s11096-023-01556-2
Seo YG. Side Effects Associated with Liraglutide Treatment for Obesity as Well as Diabetes. J Obes Metab Syndr. 2021;30(1):12-19. doi: 10.7570/jomes20059
A Randomized, Controlled Trial of 3 mg of Liraglutide in Weight Management. ClinicalTrials.gov, National Library of Medicine (U.S.). NCT01272219.
Nauck M, Frid A, Hermansen K, et al. Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes: the LEAD (liraglutide effect and action in diabetes)-2 study. Diabetes Care. 2009;32(1):84-90. doi: 10.2337/dc08-1355
Klein KR, Clemmensen KKB, Fong E, et al. Occurrence of Gastrointestinal Adverse Events Upon GLP-1 Receptor Agonist Initiation With Concomitant Metformin Use: A Post Hoc Analysis of LEADER, STEP 2, SUSTAIN-6, and PIONEER 6. Diabetes Care. 2024;47(2):280-284. doi: 10.2337/dc23-1791
Eguchi Y, Kitajima Y, Hyogo H, et al. Pilot study of liraglutide effects in non-alcoholic steatohepatitis and non-alcoholic fatty liver disease with glucose intolerance in Japanese patients (LEAN-J). Hepatol Res. 2015;45(3):269-278. doi: 10.1111/hepr.12351
Jalleh RJ, Rayner CK, Hausken T, Jones KL, Camilleri M, Horowitz M. Gastrointestinal effects of GLP-1 receptor agonists: mechanisms, management, and future directions. Lancet Gastroenterol Hepatol. 2024;9(10):957-964. doi: 10.1016/S2468-1253(24)00188-2
Marathe CS, Rayner CK, Jones KL, Horowitz M. Effects of GLP-1 and incretin-based therapies on gastrointestinal motor function. Exp Diabetes Res. 2011;2011:279530. doi: 10.1155/2011/279530
Müller TD, Finan B, Bloom SR, et al. Glucagon-like peptide 1 (GLP-1). Mol Metab. 2019;30:72-130. doi: 10.1016/j.molmet.2019.09.010
Pal P, Palui R, Ray S. Heterogeneity of non-alcoholic fatty liver disease: Implications for clinical practice and research activity. World J Hepatol. 2021;13(11):1584-1610. doi: 10.4254/wjh.v13.i11.1584
Pais R, Barritt AS 4th, Calmus Y, et al. NAFLD and liver transplantation: Current burden and expected challenges. J Hepatol. 2016;65(6):1245-1257. doi: 10.1016/j.jhep.2016.07.033
Pouwels S, Sakran N, Graham Y, et al. Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss. BMC Endocr Disord. 2022;22(1):63. doi: 10.1186/s12902-022-00980-1
Angulo P, Kleiner DE, Dam-Larsen S, et al. Liver Fibrosis, but No Other Histologic Features, Is Associated With Long-term Outcomes of Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology. 2015;149(2):389-397. e10. doi: 10.1053/j.gastro.2015.04.043
Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362(18):1675-1685. doi: 10.1056/NEJMoa0907929
Bugianesi E, Gentilcore E, Manini R, et al. A randomized controlled trial of metformin versus vitamin E or prescriptive diet in nonalcoholic fatty liver disease. Am J Gastroenterol. 2005;100(5):1082-1090. doi: 10.1111/j.1572-0241.2005.41583.x
Armstrong MJ, Houlihan DD, Bentham L, et al. Presence and severity of non-alcoholic fatty liver disease in a large prospective primary care cohort. J Hepatol. 2012; 56(1):234-240. doi: 10.1016/j.jhep.2011.03.020
Nevola R, Epifani R, Imbriani S, et al. GLP-1 Receptor Agonists in Non-Alcoholic Fatty Liver Disease: Current Evidence and Future Perspectives. Int J Mol Sci. 2023;24(2):1703. doi: 10.3390/ijms24021703
Yan J, Yao B, Kuang H, et al. Liraglutide, Sitagliptin, and Insulin Glargine Added to Metformin: The Effect on Body Weight and Intrahepatic Lipid in Patients With Type 2 Diabetes Mellitus and Nonalcoholic Fatty Liver Disease. Hepatology. 2019;69(6):2414-2426. doi: 10.1002/hep.30320
Guo W, Tian W, Lin L, Xu X. Liraglutide or insulin glargine treatments improves hepatic fat in obese patients with type 2 diabetes and nonalcoholic fatty liver disease in twenty-six weeks: A randomized placebo-controlled trial. Diabetes Res Clin Pract. 2020;170:108487. doi: 10.1016/j.diabres.2020.108487
Frøssing S, Nylander M, Chabanova E, et al. Effect of liraglutide on ectopic fat in polycystic ovary syndrome: A randomized clinical trial. Diabetes Obes Metab. 2018;20(1):215-218. doi: 10.1111/dom.13053
Lee HA, Kim HY. Therapeutic Mechanisms and Clinical Effects of Glucagon-like Peptide 1 Receptor Agonists in Nonalcoholic Fatty Liver Disease. Int J Mol Sci. 2023;24(11):9324. doi: 10.3390/ijms24119324
Găman MA, Epîngeac ME, Diaconu CC, et al Evaluation of oxidative stress levels in obesity and diabetes by the free oxygen radical test and free oxygen radical defence assays and correlations with anthropometric and laboratory parameters. World J Diabetes. 2020;11(5):193-201. doi: 10.4239/wjd.v11.i5.193
Haldar D, Kern B, Hodson J, et al. Outcomes of liver transplantation for non-alcoholic steatohepatitis: A European Liver Transplant Registry study. J Hepatol. 2019;71(2):313-322. doi: 10.1016/j.jhep.2019.04.011
Lee HA, Kim HY. Therapeutic Mechanisms and Clinical Effects of Glucagon-like Peptide 1 Receptor Agonists in Nonalcoholic Fatty Liver Disease. Int J Mol Sci. 2023; 24(11):9324. doi: 10.3390/ijms24119324
Armstrong MJ, Gaunt P, Aithal GP, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet. 2016;387(10019):679-690. doi: 10.1016/S0140-6736(15)00803-X
Tian F, Zheng Z, Zhang D, et al. Efficacy of liraglutide in treating type 2 diabetes mellitus complicated with non-alcoholic fatty liver disease. Biosci Rep. 2018;38(6):BSR20181304. doi: 10.1042/BSR20181304
Ohki T, Isogawa A, Iwamoto M, et al. The effectiveness of liraglutide in nonalcoholic fatty liver disease patients with type 2 diabetes mellitus compared to sitagliptin and pioglitazone. Sci World J. 2012;2012:496453. doi: 10.1100/2012/496453
Bednarz K, Kowalczyk K, Cwynar M, et al. The role of GLP-1 receptor agonists in insulin resistance with concomitant obesity treatment in polycystic ovary syndrome. Int J Mol Sci. 2022;23(8):4334. doi: 10.3390/ijms23084334
Tang A, Rabasa-Lhoret R, Castel H, et al. Effects of insulin glargine and liraglutide therapy on liver fat as measured by magnetic resonance in patients with type 2 diabetes: A randomized trial. Diabetes Care. 2015;38(7):1339-1346. doi: 10.2337/dc14-2548
Smits MM, Tonneijck L, Muskiet MH, et al. Twelve week liraglutide or sitagliptin does not affect hepatic fat in type 2 diabetes: a randomised placebo-controlled trial. Diabetologia. 2016;59(12):2588-2593. doi: 10.1007/s00125-016-4100-7
Perakakis N, Stefanakis K, Feigh M, et al. Elafibranor and liraglutide improve differentially liver health and metabolism in a mouse model of non-alcoholic steatohepatitis. Liver Int. 2021;41(8):1853-1866. doi: 10.1111/liv.14888
Eguchi Y, Kitajima Y, Hyogo H, et al. Pilot study of liraglutide effects in non-alcoholic steatohepatitis and non-alcoholic fatty liver disease with glucose intolerance in Japanese patients (LEAN-J). Hepatol Res. 2015;45(3):269-278. doi: 10.1111/hepr.12351
Matikainen N, Söderlund S, Björnson E, et al. Liraglutide treatment improves postprandial lipid metabolism and cardiometabolic risk factors in humans with adequately controlled type 2 diabetes: A single-centre randomized controlled study. Diabetes Obes Metab. 2019;21(1):84-94. doi: 10.1111/dom.13487
Yu J, Lee J, Lee SH, et al. A study on weight loss cause as per the side effect of liraglutide. Cardiovasc Ther. 2022; 2022:5201684. doi: 10.1155/2022/5201684
Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016;375(4):311-322. doi: 10.1056/NEJMoa1603827
Baggio LL, Yusta B, Mulvihill EE, et al. GLP-1 Receptor Expression Within the Human Heart. Endocrinology. 2018;159(4):1570-1584. doi: 10.1210/en.2018-00004
Baggio LL, Ussher JR, McLean BA, et al. The autonomic nervous system and cardiac GLP-1 receptors control heart rate in mice. Mol Metab. 2017;6(11):1339-1349. doi: 10.1016/j.molmet.2017.08.010
Neves JS, Vasques-Nóvoa F, Borges-Canha M, et al. Risk of adverse events with liraglutide in heart failure with reduced ejection fraction: A post hoc analysis of the FIGHT trial. Diabetes Obes Metab. 2022;24(7):1288-1299. doi: 10.1111/dom.14647
Tougaard RS, Jorsal A, Tarnow L, et al. Heart rate increases in liraglutide treated chronic heart failure patients: association with clinical parameters and adverse events. Scand Cardiovasc J. 2020;54(5):294-299. doi: 10.1080/14017431.2020.1751873
Jorsal A, Kistorp C, Holmager P, et al. Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)—a multicentre, double-blind, randomised, placebo-controlled trial. Eur J Heart Fail. 2017;19(1):69-77. doi: 10.1002/ejhf.695
Brown-Frandsen K, Emerson SS, McGuire DK, et al. Lower rates of cardiovascular events and mortality associated with liraglutide use in patients treated with basal insulin: A DEVOTE subanalysis (DEVOTE 10). Diabetes Obes Metab. 2019;21(6):1437-1444. doi: 10.1111/dom.13672
Verma S, Al-Omran M, Leiter LA, et al. Cardiovascular efficacy of liraglutide and semaglutide in individuals with diabetes and peripheral artery disease. Diabetes Obes Metab. 2022;24(7):1288-1299. doi: 10.1111/dom.14647
Pi-Sunyer X, Astrup A, Fujioka K, et al. A Randomized, Controlled Trial of 3 mg of Liraglutide in Weight Management. N Engl J Med. 2015;373(1):11-22. doi: 10.1056/NEJMoa1411892
Van Can J, Sloth B, Jensen CB, et al. Effects of the once-daily GLP-1 analog liraglutide on gastric emptying, glycemic parameters, appetite and energy metabolism in obese, non-diabetic adults. Int J Obes (Lond). 2014;38(6):784-793. doi: 10.1038/ijo.2013.162
Wegeberg AL, Hansen CS, Farmer AD, et al. Liraglutide accelerates colonic transit in people with type 1 diabetes and polyneuropathy: A randomised, double-blind, placebo-controlled trial. United European Gastroenterol J. 2020;8(6):695-704. doi: 10.1177/2050640620925968
Maselli DB, Camilleri M. Effects of GLP-1 and Its Analogs on Gastric Physiology in Diabetes Mellitus and Obesity. Adv Exp Med Biol. 2021;1307:171-192. doi: 10.1007/5584_2020_496
Krieger JP. Intestinal glucagon-like peptide-1 effects on food intake: Physiological relevance and emerging mechanisms. Peptides. 2020;131:170342. doi: 10.1016/j.peptides.2020.170342
Näslund E, Gutniak M, Skogar S, Rössner S, Hellström PM. Glucagon-like peptide 1 increases the period of postprandial satiety and slows gastric emptying in obese men. Am J Clin Nutr. 1998;68(3):525-530. doi: 10.1093/ajcn/68.3.525
March WA, Moore VM, Willson KJ, et al. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum Reprod. 2010;25(2):544-551. doi: 10.1093/humrep/dep399
Lim SS, Davies MJ, Norman RJ, Moran LJ. Overweight, obesity and central obesity in women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2012;18(6):618-637. doi: 10.1093/humupd/dms030
Yildiz BO, Knochenhauer ES, Azziz R. Impact of obesity on the risk for polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93(1):162-168. doi: 10.1210/jc.2007-1834
Wang FF, Wu Y, Zhu YH, et al. Pharmacologic therapy to induce weight loss in women who have obesity/overweight with polycystic ovary syndrome: a systematic review and network meta-analysis. Obes Rev. 2018;19(10):1424-1445. doi: 10.1111/obr.12720
Ehrmann DA. Polycystic ovary syndrome. N Engl J Med. 2005;352(12):1223-36. doi: 10.1056/NEJMra041536
Elkind-Hirsch KE, Chappell N, Shaler D, et al. Liraglutide 3 mg on weight, body composition, and hormonal and metabolic parameters in women with obesity and polycystic ovary syndrome: a randomized placebo-controlled-phase 3 study. Fertil Steril. 2022;118(2):371-381. doi: 10.1016/j.fertnstert.2022.04.027
Lim SS, Hutchison SK, Van Ryswyk E, Norman RJ, Teede HJ, Moran LJ. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database Syst Rev. 2019;3(3):CD007506. doi: 10.1002/14651858.CD007506.pub4
Saltiel AR. Insulin Signaling in the Control of Glucose and Lipid Homeostasis. Handb Exp Pharmacol. 2016;233:51-71. doi: 10.1007/164_2015_14
Hoeger KM, Dokras A, Piltonen T. Update on PCOS: Consequences, Challenges, and Guiding Treatment. J Clin Endocrinol Metab. 2021; 106(3):e1071-e1083. Doi: 10.1210/clinem/dgaa839
Jensterle M, Kocjan T, Pfeifer M, et al. Short-term combined treatment with liraglutide and metformin leads to significant weight loss in obese women with polycystic ovary syndrome and previous poor response to metformin. Eur J Endocrinol. 2014;170(3):451-459. doi: 10.1530/EJE-13-0797
Jensterle M, Kravos NA, Goricar K, et al. Short-term effectiveness of low dose liraglutide in combination with metformin versus high dose liraglutide alone in treatment of obese PCOS: randomized trial. BMC Endocr Disord. 2017;17(1):5. doi: 10.1186/s12902-017-0155-9
Tian D, Chen W, Xu Q, et al. Liraglutide monotherapy and add on therapy on obese women with polycystic ovarian syndromes: a systematic review and meta-analysis. Minerva Med. 2022;113(3):542-550. doi: 10.23736/S0026-4806.21.07085-3
Niafar M, Pourafkari L, Porhomayon J, Nader N. A systematic review of GLP-1 agonists on the metabolic syndrome in women with polycystic ovaries. Arch Gynecol Obstet. 2016;293(3):509-515. doi: 10.1007/s00404-015-3976-7
Nauck MA, Quast DR, Wefers J, Meier JJ. GLP-1 receptor agonists in the treatment of type 2 diabetes - state-of-the-art. Mol Metab. 2021;46:101102. doi: 10.1016/j.molmet.2020.101102
Jensterle M, Kocjan T, Janez A. Phosphodiesterase 4 inhibition as a potential new therapeutic target in obese women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2014;99(8):E1476-E1481. doi: 10.1210/jc.2014-1430
Jensterle M, Pirš B, Goričar K, Dolžan V, Janež A. Genetic variability in GLP-1 receptor is associated with inter-individual differences in weight lowering potential of liraglutide in obese women with PCOS: a pilot study. Eur J Clin Pharmacol. 2015;71(7):817-824. doi: 10.1007/s00228-015-1868-1
Kahal H, Aburima A, Ungvari T, et al. The effects of treatment with liraglutide on atherothrombotic risk in obese young women with polycystic ovary syndrome and controls. BMC Endocr Disord. 2015;15:14. doi: 10.1186/s12902-015-0005-6
Barnard-Kelly K, Whicher CA, Price HC, et al. Liraglutide and the management of overweight and obesity in people with severe mental illness: qualitative sub-study. BMC Psychiatry. 2022;22(1):21. doi: 10.1186/s12888-021-03666-5
Larsen JR, Vedtofte L, Jakobsen MS, et al. Effect of liraglutide treatment on prediabetes and overweight or obesity in clozapine- or olanzapine-treated patients with schizophrenia spectrum disorder: a randomized clinical trial. JAMA Psychiatry. 2017;74(7):719-728. doi: 10.1001/jamapsychiatry.2017.1220
EMA Statement on Ongoing Review of GLP-1 Receptor Agonists | European Medicines Agency, 2023. https://www.ema.europa.eu/en/news/ema-statement-ongoing-review-glp-1-receptor-agonists. Accessed October 17, 2024.
Meeting highlights from the Pharmacovigilance Risk Assessment Committee (PRAC) 8-11 April 2024 | European Medicines Agency, 2024. https://www.ema.europa.eu/en/news/meeting-highlights-pharmacovigilance-risk-assessment-committee-prac-8-11-april-2024#related-documents-66556. Accessed October 17, 2024.
Wang W, Volkow ND, Berger NA, Davis PB, Kaelber DC, Xu R. Association of semaglutide with risk of suicidal ideation in a real-world cohort. Nat Med. 2024;30(1):168-176. doi: 10.1038/s41591-023-02672-2.
Whicher CA, Price HC, Phiri P, et al. The use of liraglutide 3 mg daily in the management of overweight and obesity in people with schizophrenia, schizoaffective disorder and first episode psychosis: Results of a pilot randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab. 2021;23(6):1262-1271. doi: 10.1111/dom.14334
Lee K, Abraham S, Cleaver R. A systematic review of licensed weight-loss medications in treating antipsychotic-induced weight gain and obesity in schizophrenia and psychosis. General Hospital Psychiatry. 2022;78:58-67. doi: 10.1016/j.genhosppsych.2022.07.006
Alkhezi OS, Alahmed AA, Alfayez OM, et al. Comparative effectiveness of glucagon-like peptide-1 receptor agonists for the management of obesity in adults without diabetes: a network meta-analysis of randomized clinical trials. Obes Rev. 2023;24(3):e13543. doi: 10.1111/obr.13543
Loomba R, Hartman ML, Lawitz EJ et al. SYNERGY-NASH Investigators. Tirzepatide for Metabolic Dysfunction-Associated Steatohepatitis with Liver Fibrosis. N Engl J Med. 2024;391(4):299-310. doi: 10.1056/NEJMoa2401943
Bergmann NC, Davies MJ, Lingvay I, et al. Semaglutide for the treatment of overweight and obesity: A review. Diabetes Obes Metab. 2023;25(1):18-35. doi: 10.1111/dom.14863
Kanbay M, Copur S, Siriopol D, et al. Effect of tirzepatide on blood pressure and lipids: A meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2023;25(12):3766-3778. doi: 10.1111/dom.15272
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 European Journal of Clinical and Experimental Medicine

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our open access policy is in accordance with the Budapest Open Access Initiative (BOAI) definition: this means that articles have free availability on the public Internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from having access to the Internet itself.
All articles are published with free open access under the CC-BY Creative Commons attribution license (the current version is CC-BY, version 4.0). If you submit your paper for publication by the Eur J Clin Exp Med, you agree to have the CC-BY license applied to your work. Under this Open Access license, you, as the author, agree that anyone may download and read the paper for free. In addition, the article may be reused and quoted provided that the original published version is cited. This facilitates freedom in re-use and also ensures that Eur J Clin Exp Med content can be mined without barriers for the research needs.




