Natural and Synthetic Coumarins and their Pharmacological Activity

Authors

  • Tomasz Kubrak Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszów; Department of Biochemistry, Faculty of Medicine, University of Rzeszów https://orcid.org/0000-0002-9905-7087
  • Rafał Podgórski Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszów; Department of Biochemistry, Faculty of Medicine, University of Rzeszów https://orcid.org/0000-0002-7565-7184
  • Monika Stompor Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszów; Department of Biochemistry, Faculty of Medicine, University of Rzeszów https://orcid.org/0000-0001-5618-8899

DOI:

https://doi.org/10.15584/ejcem.2017.2.12

Keywords:

coumarins, antimicrobial agents, neuroprotection, natural products in medicine

Abstract

Coumarins are a structurally diverse group of natural substances derives from plants that display a host of bioactivities. In this paper, we will introduce the reader to coumarins and their applications as medicinal substances. The great diversity in courmarin structure will be discussed along with their extensive use as pharmaceutical agents. Coumarins display a wide range of antimicrobial activity and applications of coumarins as antifungal and antiviral agents will be addressed. Other properties of coumarins such as their role in neuroprotection, anticancer, and as antioxidants will also be reviewed.

Downloads

Download data is not yet available.

References

Venugopala KN, Rashmi V, Odhav B. Review on Natural Coumarin Lead Compounds for Their Pharmacological Activity. Bio Med Res Int. 2013;963248:1-14.

Kohlmünzer S. Farmakognozja. Podręcznik dla studentów farmacji. Wydawnictwo Lekarskie PZWL;2000.

Borges F, Roleira F, Milhazes N, Santana L, Uriarte E. Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. CurrMed Chem. 2005;12(8):887-916.

Superchi S, Phi D, Salvadori P, et al. Synthesis and Toxicity to Mammalian Cells of the Carrot Dihydroisocoumarins. Chem Res Toxicol. 1993;6:46-49.

Piller NB. A comparison of the effectiveness of some anti inflammatory drugs on thermal oedema. Brit J ExperPath. 1975;56:554–60.

Witaicenis A, Seito LN, Di Stasi LC. Intestinal anti-inflammatory activity of esculetin and 4-methylesculetin in the trinitrobenzenesulphonic acid model of rat colitis. ChemBiol Interact. 2010;186(2):211–18.

Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE, Nicolaides DN. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr Pharm Design. 2004;10(30):3813–33.

Hirsh J, Dalen JE, Anderson DR, et al. Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest. 1998;119(1):8–21.

Lacy A, O’Kennedy R. Studies on Coumarins and Coumarin-Related Compounds to Determine their Therapeutic Role in the Treatment of Cancer. Curr. Pharm. Design. 2004;10:3797-811.

Raja SB, Murali MR, Roopa K, Devaraj SN. Imperatorin a furocoumarin inhibits periplasmic Cu-Zn SOD of Shigelladysenteriaetheir by modulates its resistance towards phagocytosis during host pathogen interaction. Biomed Pharmacother. 2011;5:560-68.

Basile A, Sorbo S, Spadaro V, et al. Antimicrobial and Antioxidant Activities of Coumarins from the Roots of Ferulagocampestris (Apiaceae). Molecules 2009;14:939-52.

Chiang CC, Cheng MJ, Peng CF, Huang HY, Chen IS. A novel dimeric coumarin analog and antimycobacterial constituents from Fatouapilosa. ChemBiodivers. 2010;7:1728-36.

Wang CM, Zhou W, Li CX, Chen H, Shi ZQ, Fan YJ. Efficacy of osthol, a potent coumarin compound, in controlling powdery mildew caused by Sphaerothecafuliginea. J Asian Nat Prod Res. 2009;11:783-91.

Bourgaud F, Hehn A, Larbat R, et al. Biosynthesis of coumarins in plants: a major pathway still to be unravelled for cytochrome P450 enzymes. PhytochemRev. 2006;5(2-3):293–308.

McKee TC, Fuller RW, Covington CD, et al. New pyranocoumarins isolated from Calophyllumlanigerum and Calophyllumteysmannii. J Nat Prod. 1996;59:754-58.

Spino C, Dodier M, Sotheeswaran S. Anti-HIV coumarins from calophyllum seed oil. Bioorg Med Chem Lett. 1998;8:3475–78.

Patil AD, Freyer AJ, Eggleston DS, et al. The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophylluminophyllum Linn. J Med Chem. 1993;36:4131–38.

Margolis-Nunno H, Robinson R, Ben-Hur E, Chin S, Orme T, Horowitz B. Elimination of potential mutagenicity in platelet concentrates that are virally inactivated with psoralens and ultraviolet A light. Transfusion 1995;35(10):855-62.

Sancho R, Marquez N, Gomez-Gonzalo M, et al. Imperatorin inhibits HIV-1 replication through an Sp1-dependent pathway. J Biol Chem. 2004;279:37349–59.

Iranshahi M, Askari M, Sahebkar A, Hadjipavlou-Litina D. Evaluation of antioxidant, anti-inflammatory and lipoxygenase inhibitory activities of the prenylatedcoumarinumbelliprenin. DARU J Pharm Sci. 2009;17:99–103.

Lee BC, Lee SY, Lee HJ, et al. Anti-oxidative and photo-protective effects of coumarins isolated from Fraxinuschinensis. Arch Pharm Res. 2007;30(10):1293-301.

Łuczaj W, Jarocka-Karpowicz I, Bielawska K, Skrzydlewska E. Sweet grass protection against oxidative stress formation in the rat brain. Metab Brain Dis. 2015;30:183–90.

Łuczaj W, Stankiewicz-Kranc A, Milewska E, Roszkowska-Jakimiec W, Skrzydlewska E. Effect of sweet grass extract against oxidative stress in rat liver and serum. Food ChemToxicol. 2012;50:135-40.

Martin-Aragòn S, Benedi JM, Villar AM. Effects of the antioxidant (6,7-dihydroxycoumarin) esculetin on the glutathione system and lipid peroxidation in mice. Gerontology. 1998;44:21-25.

Whang WK, Park HS, Ham I, et al. Natural compounds, fraxin and chemicals structurally related to fraxin protect cells from oxidative stress. ExpMol Med. 2005;37:436–46.

Molina-Jiménez MF, Sánchez-Reus MI, Andres D, Cascales M, Benedi J. Neuroprotective effect of fraxetin and myricetin against rotenone-induced apoptosis in neuroblastoma cells. Brain Res. 2004;1009(1-2):9-16.

Orhan I, Tosun F, Sener B. Coumarin, anthroquinone and stilbene derivatives with anticholinesterase activity. Z Naturforsch C 2008;63:366-70.

Montanari S, Bartolini M, Neviani P, et al. Multitarget strategy to address Alzheimer’s Disease: design, synthesis, biological evaluation, and computational studies of coumarin-based derivatives. Chem Med Chem. 2016;11(12):1296-308.

Chen X, Pi R, Zou Y, et al. Attenuation of experimental autoimmune encephalomyelitis in C57 BL/6 mice by osthole, a natural coumarin. Eur J Pharmacol. 2010;629:40–6.

da Silva VB, Kawano DF, Carvalho I, da Conceição EC, de Freitas O, da Silva CH. Psoralen and bergapten: in silico metabolism and toxicophoric analysis of drugs used to treat vitiligo. J Pharm Pharm Sci. 2009;12(3):378-87.

Lohr C, Raquet N, Schrenk D. Application of the concept of relative photomutagenic potencies to selected furocoumarins in V79 cells. Toxicol In Vitro 2010;24(2):558-66.

Viola G, Fortunato E, Cecconet L, Del Giudice L, Dall'Acqua F, Basso G. Central role of mitochondria and p53 in PUVA-induced apoptosis in human keratinocytes cell line NCTC-2544. ToxicolApplPharmacol. 2008;227(1):84-96.

Asawanonda P, Amornpinyokeit N, Nimnuan C. Topical 8-methoxypsoralen enhances the therapeutic results of targeted narrowband ultraviolet B phototherapy for plaque-type psoriasis. J EurAcadDermatolVenereol. 2008;22(1):50-55.

SeckinD,UstaI,Yazici Z, Senol A. Topical 8-methoxypsoralen increases the efficacy of narrowband ultraviolet B in psoriasis. PhotodermatolPhotoimmunolPhotomed. 2009;25(5):237-41.

Miyazaki M, Yamazaki H, Takeuchi H, Kamataki T. Mechanisms of chemopreventive effects of 8-methoxypsoralen against 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone- induced mouse lung adenomas. Carcinogenesis. 2005;11:1947-55.

Bissaccia E, Vonderheid EC, Geskin L. Safety of a new, single, integrated, closed photopheresis system in patients with cutaneous T-cell lymphoma. Br J Dermatol. 2009;161(1):167-69.

Stadler K, Frey B, Munoz LE, et al. Photopheresis with UV-A light and 8-methoxypsoralen leads to cell death and to release of blebs with anti-inflammatory phenotype in activated and non-activated lymphocytes. BiochemBiophys Res Commun. 2009;386(1):71-76.

Zhang XQ, Zheng M, Mou KH, Feng J. Effects of 8-Methoxypsoralen on intracellular Ca(2+)i and cytoskeleton actin organization in human melanocytes in vitro. J Zhejiang Univ Med Sci. 2009;38(4):348-51.

Kolodziej H, Kayser O, Woerdenbag HJ, van Uden W, Pras N. Structure-cytotoxicity relationships of a series of natural and semi-synthetic simple coumarins as assessed in two human tumour cell lines. Z NaturforschC. 1997;52:240-44.

Myers RB, Parker M, Grizzle WE. The effects of coumarin and suramin on the growth of malignant renal and prostatic cell lines. J Cancer Res ClinOncol. 1994;120:S11-13.

Bielawska K, Malinowska M, Cyuńczyk M. Wpływ kumaryn na organizm człowieka. BromatChemToksykol. 2014;2:213–21.

Kawase M, Sakagami H, Hashimoto K, Tani S, Hauer H, Chatterjee SS. Structure-cytotoxic activity relationships of simple hydroxylated coumarins. Anticancer Res. 2003;23:3243-46.

Budzisz E, Brzezinska E, Krajewska U, Rozalski M. Cytotoxic effects, alkylating properties and molecular modelling of coumarin derivatives and their phosphonic analogues. Eur J Med Chem. 2003;38:597-603.

Manolov I, Kostova I, Netzeva T, Konstantinov S, Karaivanova M. Cytotoxic activity of cerium complexes with coumarin derivatives. Molecular modeling of the ligands. Arch Pharm. 2000;333(4):93-98.

Egan D, James P, Cooke D, O’Kennedy R. Studies on the cytostatic and cytotoxic effects and mode of action of 8-nitro-7-hydroxycoumarin. Cancer Lett. 1997;118:201-11.

Benci K, Mandić L, Suhina T, et al. Novel coumarin derivatives containing 1,2,4-triazole, 4,5-dicyanoimidazole and purine moieties: synthesis and evaluation of their cytostatic activity. Molecules 2012;17:11010-25.

Yang D, Gu T, Wang T, Tang Q, Ma C. Effects of osthole on migration and invasion in breast cancer cells. BiosciBiotechBiochem.2010;74:1430-34.

Zhang ZR, Leung WN, Cheung HY, Chan CW. Osthole: A review on its bioactivities, pharmacological properties, and potential as alternative medicine. Evid Based Complement Alternat Med. 2015;2015:919616.

Rosselli S, Maggio AM, Faraone N, et al. The cytotoxic properties of natural coumarins isolated from roots of Ferulagocampestris (Apiaceae) and of synthetic ester derivatives of aegelinol. Nat Prod Commun. 2009;4(12):1701-06.

Guilet D, Helesbeux JJ, Seraphin D, Sevenet T, Richomme P, Bruneton J. Novel cytotoxic 4-phenylfuranocoumarins from Calophyllumdispar. J Nat Prod. 2001;64:563-68.

Panno ML, Giordano F, Palma MG, et al. Evidence that bergapten, independently of its photoactivation, enhances p53 gene expression and induces apoptosis in human breast cancer cells. Curr Cancer Drug Targets 2009;9:469-81.

Panno ML, Giordano F, Mastroianni F, et al. Breast cancer cell survival signal is affected by bergapten combined with an ultraviolet irradiation. FEBS Lett. 2010;584: 2321-26.

Panno ML, Giordano F, Rizza P, et al. Bergapten induces proteasome-dependent degradation of ER in breast cancer cells: Involvement of SMAD4 in the ubiquitination process. Breast Cancer Res Treat. 2012;136:443–55.

Santoro M, Guido C, De Amicis F, et al. Bergapten induces metabolic reprogramming in breast cancer cells. Oncol Rep. 2016;35:568-76.

Rasul A, Khan M, Yu B, Ma T, Yang H. Xanthoxyletin, a coumarin induces S phase arrest and apoptosis in human gastric adenocarcinoma SGC-7901 cells. Asian Pac J Cancer Prev. 2011;12:1219-23.

Lee S, Sivakumar K, Shin WS, Xie F, Wang Q. Synthesis and anti-angiogenesis activity of coumarin derivatives. Bioorg Med Chem Lett. 2006;16:4596-99.

Vijay Avin BR, Thirusangu P, Lakshmi Ranganatha V, Firdouse A, Prabhakar BT, Khanum SA. Synthesis and tumor inhibitory activity of novel coumarin analogs targeting angiogenesis and apoptosis. Eur J Med Chem. 2014;75:211-21.

Madari H, Panda D, Wilson L, Jacobs RS. Dicoumarol: a unique microtubule stabilizing natural product that is synergistic with Taxol. Cancer Res. 2003;63:1214-20.

Kang AY, Young LR, Dingfelder C, Peterson S. Effects of furanocoumarins from apiaceous vegetables on the catalytic activity of recombinant human cytochrome P-450 1A2. Protein J. 2011;30:447-56.

Downloads

Published

2017-06-30

How to Cite

Kubrak, T., Podgórski, R., & Stompor, M. (2017). Natural and Synthetic Coumarins and their Pharmacological Activity. European Journal of Clinical and Experimental Medicine, 15(2), 169–175. https://doi.org/10.15584/ejcem.2017.2.12

Issue

Section

REVIEW PAPERS