Clinical application of monoclonal antibodies in targeted therapy

Authors

  • Maciej Superson Student’s Scientific Club “URcell” at the Medical College of Rzeszów University, Rzeszów, Poland supervisors: Dorota Bartusik-Aebisher, Sabina Galiniak
  • Katarzyna Szmyt Student’s Scientific Club “URcell” at the Medical College of Rzeszów University, Rzeszów, Poland supervisors: Dorota Bartusik-Aebisher, Sabina Galiniak
  • Katarzyna Szymańska Student’s Scientific Club “URcell” at the Medical College of Rzeszów University, Rzeszów, Poland supervisors: Dorota Bartusik-Aebisher, Sabina Galiniak
  • Kamil Walczak Student’s Scientific Club “URcell” at the Medical College of Rzeszów University, Rzeszów, Poland supervisors: Dorota Bartusik-Aebisher, Sabina Galiniak
  • Jeremi Wnorowski Student’s Scientific Club “URcell” at the Medical College of Rzeszów University, Rzeszów, Poland supervisors: Dorota Bartusik-Aebisher, Sabina Galiniak
  • Łukasz Zarębski Student’s Scientific Club “URcell” at the Medical College of Rzeszów University, Rzeszów, Poland supervisors: Dorota Bartusik-Aebisher, Sabina Galiniak https://orcid.org/0000-0003-2524-7950

DOI:

https://doi.org/10.15584/ejcem.2019.4.9

Keywords:

cancer, inflammatory bowel diseases, Alzheimer’s disease, immunotherapy, targeted therapy

Abstract

Introduction. Recently, monoclonal antibodies (mAbs) have become powerful human therapeutics in the diagnosis and treatment of many diseases. Drugs based on mAbs are approved for the treatment of cardiovascular, respiratory, hematology, autoimmunology, and oncology diseases.

Aim. To present the current state of knowledge about the application of mAbs in the therapy of various diseases such as cancer, autoimmune and Alzheimer’s diseases.

Material and methods. We conducted a thorough review of the scientific literature from the following databases: EBSCO, PubMed, Science Direct, and Springer Link.

Analysis of the literature. Currently, the Food and Drug Administration (FDA) has approved more than 50 therapeutic mAbs which are applied in various clinical trials. Action of mAb are based on various mechanisms, including directly targeting the cells, modifying the host response, recognizing and degrading molecules as well as delivering cytotoxic moieties.

Conclusion. Despite some limitations including side effects, and therapeutic challenges, monoclonal antibodies are an attractive option for the development of new therapies and molecular drug targets against a wide range of common diseases due to their specificity and flexibility. MAbs are considered as a great hope for medicine, and effective and safe drugs in the treatment of various diseases. 

Downloads

Download data is not yet available.

References

Singh S, Kumar NK, Dwiwedi P, et al. Monoclonal antibodies: a review. Curr Clin Pharmacol. 2018;13(2):85-99.

Sakanaka C. Antibody Therapeutics: Bench to Bedside. Yakugaku Zasshi. 2017;137(7):817-822.

He B, You L, Uematsu K, et al. A monoclonal antibody against Wnt-1 induces apoptosis in human cancer cells. Neoplasia. 2004;6(1):7-14.

Kong DH, Kim MR, Jang JH, Na HJ, Lee S. A review of anti-angiogenic targets for monoclonal antibody cancer therapy. Int J Mol Sci. 2017;18(8):1786.

Chames P, Van Regenmortel M, Weiss E, Baty D. Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol. 2009;157(2):220-233.

Martinelli E, De Palma R, Orditura M, De Vita F, Ciardiello F. Anti‐epidermal growth factor receptor monoclonal antibodies in cancer therapy. Clin Exp Immunol. 2009;158(1):1-9.

Mazzarella L, Guida A, Curigliano G. Cetuximab for treating non-small cell lung cancer. Expert Opin Biol Ther. 2018;18(4):483-493.

Guren TK, Thomsen M, Kure EH, et al. Cetuximab in treatment of metastatic colorectal cancer: final survival analyses and extended RAS data from the NORDIC-VII study. British J Cancer. 2017;116(10):1271-1278.

Matsuda N, Wang X, Lim B, et al. Safety and efficacy of panitumumab plus neoadjuvant chemotherapy in patients with primary her2-negative inflammatory breast cancer. JAMA Oncol. 2018;4(9):1207-1213.

Markman B, Javier Ramos F, Capdevila J, Tabernero J. EGFR and KRAS in colorectal cancer. Adv Clin Chem. 2010;51:71-119.

Heinemann V, Stintzing, S, Kirchner T, Boeck S, Jung A. Clinical relevance of EGFR-and KRAS-status in colorectal cancer patients treated with monoclonal antibodies directed against the EGFR. Cancer Treat Rev. 2009;35(3):262-271.

Siddiqui AD,Piperdi B. KRAS mutation in colon cancer: a marker of resistance to EGFR-I therapy. Ann Surg Oncol. 2010;17(4):1168-1176.

Hsieh MC, Wu CF, Chen CW, Shi CS, Huang WS, Kuan FC. Hypomagnesemia and clinical benefits of anti-EGFR monoclonal antibodies in wild-type KRAS metastatic colorectal cancer: A systematic review and meta-analysis. Sci Rep. 2018;8(1):2047.

Price TJ, Peeters M, Kim TW, et al. Panitumumab versus cetuximab in patients with chemotherapy-refractory wild-type KRAS exon 2 metastatic colorectal cancer (ASPECCT): a randomised, multicentre, open-label, non-inferiority phase 3 study. Lancet Oncol. 2014;15(6):569-579.

Price T, Kim TW, Li J, et al. Final results and outcomes by prior bevacizumab exposure, skin toxicity, and hypomagnesaemia from ASPECCT: randomized phase 3 non-inferiority study of panitumumab versus cetuximab in chemorefractory wild-type KRAS exon 2 metastatic colorectal cancer. Eur J Cancer. 2016;68:51-59.

Vesci L, Carollo V, Rosi A, De Santis R. Therapeutic efficacy of intra-tumor AvidinOX and low systemic dose biotinylated cetuximab, with and without cisplatin, in an orthotopic model of head and neck cancer. Oncol Lett. 2019;17(3):3529-3536.

Krämer I, Lipp HP. Bevacizumab, a humanized anti-angiogenic monoclonal antibody for the treatment of colorectal cancer. J Clin Pharm Ther. 2007;32(1):1-14.

Ducreux M, Adenis A, Pignon JP, et al. Efficacy and safety of bevacizumab-based combination regimens in patients with previously untreated metastatic colorectal cancer: final results from a randomised phase II study of bevacizumab plus 5-fluorouracil, leucovorin plus irinotecan versus bevacizumab plus capecitabine plus irinotecan (FNCLCC ACCORD 13/0503 study). Eur J Cancer. 2013;49(6):1236-1245.

Hiranuma O, Uchino J, Yamada T, et al. Rationale and Design of a Phase II Trial of Osimertinib Combined With Bevacizumab in Patients With Untreated Epidermal Growth Factor Receptor-mutated Non-small-cell Lung Cancer and Malignant Pleural and/or Pericardial Effusion (SPIRAL II Study). Clin Lung Cancer. 2019. doi: 10.1016/j.cllc.2019.02.016.

Bamias A, Gibbs E, Khoon Lee C, et al. Bevacizumab with or after chemotherapy for platinum-resistant recurrent ovarian cancer: exploratory analyses of the AURELIA trial. Ann Oncol. 2017;28(8):1842-1848.

Diaz RJ, Ali S, Qadir MG, De La Fuente MI, Ivan ME, Komotar RJ. The role of bevacizumab in the treatment of glioblastoma. J Neurooncol. 2017;133(3):455-467.

Iqbal N, Iqbal N. Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications. Mol Biol Int. 2014;2014:852748.

Albanell J, Codony J, Rovira A, Mellado B, Gascón P. Mechanism of action of anti-HER2 monoclonal antibodies: scientific update on trastuzumab and 2C4. Adv Exp Med Biol. 2003;532:253-268.

GBG GERMAN BREAST GROUP, Pirvulescu C, Uhlig M, von Minckwitz G. Trastuzumab Improves the Efficacy of Chemotherapy in Breast Cancer Treatment beyond Progression. Breast Care (Basel). 2008;3(5):364-365.

D'Alesio C, Bellese G, Gagliani MC, et al. Cooperative antitumor activities of carnosic acid and Trastuzumab in ERBB2+ breast cancer cells. J Exp Clin Cancer Res. 2017;36(1):154.

Láng I, Bell R, Feng FY, et al. Trastuzumab retreatment after relapse on adjuvant trastuzumab therapy for human epidermal growth factor receptor 2-positive breast cancer: final results of the Retreatment after HErceptin Adjuvant trial. Clin Oncol (R Coll Radiol). 2014;26(2):81-89.

Dominici LS, Negron Gonzalez VM, Buzdar AU, et al. Cytologically proven axillary lymph node metastases are eradicated in patients receiving preoperative chemotherapy with concurrent trastuzumab for HER2-positive breast cancer. Cancer. 2010;116(12):2884-2889.

Huszno J, Leś D, Sarzyczny-Słota D, Nowara E. Cardiac side effects of trastuzumab in breast cancer patients - single centere experiences. Contemp Oncol (Pozn). 2013;17(2):190-195.

Armitage JO, Gascoyne RD, Lunning MA, Cavalli F. Non-Hodgkin lymphoma. Lancet. 2017;390(10091):298-310.

Plosker GL, Figgitt DP. Rituximab: a review of its use in non-Hodgkin's lymphoma and chronic lymphocytic leukaemia. Drugs. 2003;63(8):803-843.

Weiner GJ. Rituximab: mechanism of action. Semin Hematol. 2010;47(2):115-123.

Dotan E, Aggarwal C, Smith MR. Impact of Rituximab (Rituxan) on the Treatment of B-Cell Non-Hodgkin's Lymphoma. P T. 2010;35(3):148-157.

Pishko A, Nasta SD. The role of novel immunotherapies in non-Hodgkin lymphoma. Transl Cancer Res. 2017;6(1):93-103.

Bischof Delaloye A. The role of nuclear medicine in the treatment of non-Hodgkin's lymphoma (NHL). Leuk Lymphoma. 2003;44(4):29-36.

Johnston PB, Bondly C, Micallef IN. Ibritumomab tiuxetan for non-Hodgkin's lymphoma. Expert Rev Anticancer Ther. 2006;6(6):861-869.

Iagaru A, Mittra ES, Ganjoo K, Knox SJ, Goris ML. 131I-Tositumomab (Bexxar) vs. 90Y-Ibritumomab (Zevalin) therapy of low-grade refractory/relapsed non-Hodgkin lymphoma. Mol Imaging Biol. 2010;12(2):198-203.

Baron J, Wang ES. Gemtuzumab ozogamicin for the treatment of acute myeloid leukemia. Expert Rev Clin Pharmacol. 2018;11(6):549-559.

Appelbaum FR, Bernstein ID. Gemtuzumab ozogamicin for acute myeloid leukemia. Blood. 2017;130(22):2373-2376.

Franca R, Favretto D, Granzotto M, Decorti G, Rabusin M, Stocco G. Epratuzumab and Blinatumomab as Therapeutic Antibodies for Treatment of Pediatric Acute Lymphoblastic Leukemia: Current Status and Future Perspectives. Curr Med Chem. 2017;24(11):1050-1065.

Clowse ME, Wallace DJ, Furie RA, et al. Efficacy and Safety of Epratuzumab in Moderately to Severely Active Systemic Lupus Erythematosus: Results From Two Phase III Randomized, Double-Blind, Placebo-Controlled Trials. Arthritis Rheumatol. 2017;69(2):362-375.

Mease PJ. Certolizumab pegol in the treatment of rheumatoid arthritis: a comprehensive review of its clinical efficacy and safety. Rheumatology (Oxford). 2011;50(2):261-270.

Umeda M, Koga T, Ichinose K, et al. Efficacy of infliximab as a switched biologic in rheumatoid arthritis patients in daily clinical practice. Immunol Med. 2018;41(4):181-186.

Pelechas E, Voulgari PV, Drosos AA. Golimumab for Rheumatoid Arthritis. J Clin Med. 2019;8(3):387.

Mok CC. Rituximab for the treatment of rheumatoid arthritis: an update. Drug Des Devel Ther. 2013;8:87-100.

Cohen MD, Keystone E. Rituximab for Rheumatoid Arthritis. Rheumatol Ther. 2015;2(2):99-111.

Cook AD, Hamilton JA. Investigational therapies targeting the granulocyte macrophage colony-stimulating factor receptor-α in rheumatoid arthritis: focus on mavrilimumab. Ther Adv Musculoskelet Dis. 2018;10(2):29-38.

Nard FD, Todoerti M, Grosso V, et al. Risk of hepatitis B virus reactivation in rheumatoid arthritis patients undergoing biologic treatment: Extending perspective from old to newer drugs. World J Hepatol. 2015;7(3):344-361.

Bar P, Galiniak S, Bartusik-Aebisher D, et al. Infliximab in therapy of inflammatory bowels diseases. Eur J Clin Exp Med. 2019;17(1):79-82.

Plevris N, Chuah CS, Allen RM, et al. Real-world effectiveness and safety of Vedolizumab for the treatment of Inflammatory Bowel Disease: The Scottish Vedolizumab Cohort. J Crohns Colitis. 2019. doi: 10.1093/ecco-jcc/jjz042.

Yajnik V, Khan N, Dubinsky M, et al. Efficacy and Safety of Vedolizumab in Ulcerative Colitis and Crohn's Disease Patients Stratified by Age. Adv Ther. 2017;34(2):542-559.

Szymanska E, Dadalski M, Grajkowska W, Szymanska S, Pronicki M, Kierkus J.Adalimumab for endoscopic and histopathological mucosal healing in paediatric patients with moderate to severe Crohn's disease. Prz Gastroenterol. 2017;12(1):44-48.

Asgharpour A, Cheng J, Bickston SJ. Adalimumab treatment in Crohn's disease: an overview of long-term efficacy and safety in light of the EXTEND trial. Clin Exp Gastroenterol. 2013;6:153-160.

Li Z, Richards S, Surks HK, Jacobs A, Panzara MA. Clinical pharmacology of alemtuzumab, an anti-CD52 immunomodulator, in multiple sclerosis. Clin Exp Immunol. 2018;194(3):295-314.

Ruck T, Bittner S, Wiendl H, Meuth SG. Alemtuzumab in Multiple Sclerosis: Mechanism of Action and Beyond. Int J Mol Sci. 2015;16(7):16414-16439.

Helliwell CL, Coles A J. Monoclonal antibodies in multiple sclerosis treatment: current and future steps. Ther Adv Neurol Disord. 2009;2(4):195-203.

Syed YY. Ocrelizumab: A Review in Multiple Sclerosis. CNS Drugs. 2018;32(9):883-890.

Mendiola-Precoma J, Berumen LC, Padilla K, Garcia-Alcocer G. Therapies for Prevention and Treatment of Alzheimer's Disease. Biomed Res Int. 2016;2016:2589276.

van Dyck CH. Anti-Amyloid-β Monoclonal Antibodies for Alzheimer's Disease: Pitfalls and Promise. Biol Psychiatry. 2018;83(4):311-319.

Barrera-Ocampo A, Lopera F. Amyloid-beta immunotherapy: the hope for Alzheimer disease? Colomb Med (Cali). 2016;47(4):203-212.

Carlson C, Siemers E, Hake A, et al. Amyloid-related imaging abnormalities from trials of solanezumab for Alzheimer's disease. Alzheimers Dement (Amst). 2016;2:75-85.

Rygiel K. Novel strategies for Alzheimer's disease treatment: An overview of anti-amyloid beta monoclonal antibodies. Indian J Pharmacol. 2016;48(6):629-636.

Mo JJ, Li JY, Yang Z, Liu Z, Feng JS. Efficacy and safety of anti-amyloid-β immunotherapy for Alzheimer's disease: a systematic review and network meta-analysis. Ann Clin Transl Neurol. 2017;4(12):931-942.

Abushouk AI, Elmaraezy A, Aglan A, et al. Bapineuzumab for mild to moderate Alzheimer's disease: a meta-analysis of randomized controlled trials. BMC Neurol. 2017;17(1):66.

Panza F, Seripa D, Lozupone M, et al. The potential of solanezumab and gantenerumab to prevent Alzheimer's disease in people with inherited mutations that cause its early onset. Expert Opin Biol Ther. 2018;18(1):25-35.

Cummings JL, Cohen S, van Dyck CH, et al. ABBY: A phase 2 randomized trial of crenezumab in mild to moderate Alzheimer disease. Neurology. 2018;90(21):e1889-e1897.

Landen JW, Andreasen N, Cronenberger CL, et al. Ponezumab in mild-to-moderate Alzheimer's disease: Randomized phase II PET-PIB study. Alzheimers Dement (N Y). 2017;3(3):393-401.

Sevigny J, Chiao P1, Bussière T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer's disease. Nature. 2016;537(7618):50-56.

Logovinsky V, Satlin A, Lai R, et al. Safety and tolerability of BAN2401--a clinical study in Alzheimer's disease with a protofibril selective Aβ antibody. Alzheimers Res Ther. 2016;8(1):14.

Qureshi IA, Tirucherai G, Ahlijanian MK, Kolaitis G, Bechtold C, Grundman M. A randomized, single ascending dose study of intravenous BIIB092 in healthy participants. Alzheimers Dement (N Y). 2018;4:746-755.

Panza F, Solfrizzi V, Seripa D, et al. Tau-based therapeutics for Alzheimer's disease: active and passive immunotherapy. Immunotherapy. 2016;8(9):1119-1134.

Downloads

Published

2019-12-30

How to Cite

Superson, M., Szmyt, K., Szymańska, K., Walczak, K., Wnorowski, J., & Zarębski, Łukasz. (2019). Clinical application of monoclonal antibodies in targeted therapy. European Journal of Clinical and Experimental Medicine, 17(4), 338–346. https://doi.org/10.15584/ejcem.2019.4.9

Issue

Section

REVIEW PAPERS