The potential of intracellular 13C MR spectroscopy to study the absolute configuration of endogenous and polarized alanine

Authors

DOI:

https://doi.org/10.15584/ejcem.2020.1.4

Keywords:

13C NMR, dynamic nuclear polarization, hyperpolarized carbon

Abstract

Introduction. Quantitative and accurate monitoring of tumor makes hyperpolarized carbon (13C) Magnetic Resonance Imaging and Spectroscopy (MRI/S) a powerful tool for in vivo metabolic and structural study. Moreover, the studies of the properties and functions in tumor tissue of the compounds of carbon (C) that are organic, are fundamental to tumor biochemistry.

Aim. To review 13C MR spectroscopy to study the absolute configuration of endogenous and polarized alanine Material and methods. An analysis of literature regarding 13C MR spectroscopy of polarized alanine.

Results. Current evidence suggests that the determination of absolute configurations of amino acids play significant role in physiological mechanisms during tumor growth and treatment.

Conclusions. Nearly 50% nuclear polarization for 13C can be achieved in various organic molecules when Dynamic Nuclear Polarization DNP is performed in a strong magnetic field and at cryogenic temperatures. 

Downloads

Download data is not yet available.

References

Brandes AH, Ward CS, Ronen SM. 17-allyamino-17-demethoxygeldanamycin treatment results in a magnetic resonance spectroscopy-detectable elevation in choline-containing metabolites associated with increased expression of choline transporter SLC44A1 and phospholipase A2. Breast Cancer Res. 2010;12(5):R84.

Jagannathan NR, Sharma U. Breast Tissue Metabolism by Magnetic Resonance Spectroscopy. Metabolites. 2017;7(2):23-27.

Maher EA, Marin-Valencia I, Bachoo RM, et al. Metabolism of [U-13 C]glucose in human brain tumors in vivo. NMR Biomed. 2012;25(11):1234-44.

Grinde MT, Moestue SA, Borgan E, Risa Ø, Engebraaten O, Gribbestad IS. 13C high-resolution-magic angle spinning MRS reveals differences in glucose metabolism between two breast cancer xenograft models with different gene expression patterns. NMR Biomed. 2011;24(10):1243-1252.

Wang W, Yi F, Ni Y, Zhao Z, Jin X, Tang, Y. Parity violation of electroweak force in phase transitions of single crystals of mD- and L- alanine and valine. J. Biol. Phys. 2000;26:51-65.

Wang WQ, Min W, Bai F, Sun L, Yi F, Wang ZM, Yan CH, Ni YM. Zhao ZX. Temperature dependent magnetic susceptibilities study on parity violating phase transitions of D- and Lalanine crystals. Tetrahedron Asymm. 2002;13:2427-2432.

Wang WQ, Min W, Liang Z, Wang LY, Chen L, Deng F. NMR and parity violation: low temperature dependence in 1H CRAMPS and 13C CP/MAS ssNMR spectra of alanine enatiomer. Biophys. Chem. 2003;103:289-298.

Sullivan R, Pyda M, Pak J, et al. Search for electroweak interactions in amino acid crystals. II The Salam hypothesis. J Phys Chem A. 2003;107:6674-6680.

Smith GG, Reddy GV. Effect of side chain on the racemisation of amino acids in aqueous solution. J Org Chem. 1989;54:4529-4535.

Ahmed AF, Teng WT, Huang CY, Dai CF, Hwang TL, Sheu JH. Anti-Inflammatory Lobane and Prenyleudesmane Diterpenoids from the Soft Coral Lobophytum varium. Mar Drugs. 2017;15(10): E300.

Rogge B, Itagaki Y, Fishkin N, et al. Retinoylserine and retinoylalanine, natural products of the moth Trichoplusia ni. J Nat Prod. 2005;68(10):1536-1540.

Moon CM, Kim YH, Ahn YK, Jeong MH, Jeong GW. Metabolic alterations in acute myocardial ischemia-reperfusion injury and necrosis using in vivo hyperpolarized [1-13C] pyruvate MR spectroscopy. Sci Rep. 2019;9(1):18427.

Can E, Mishkovsky M, Yoshihara HAI, et al. Noninvasive rapid detection of metabolic adaptation in activated human T lymphocytes by hyperpolarized 13C magnetic resonance. Sci Rep. 2020; 13;10(1):200.

Glunde K, Jie C, Bhujwalla ZM. Select item 20641983ses of the aberrant choline phospholipid metabolism in breast cancer. Cancer Res. 2004;64(12):4270-4276.

Rohm M, Savic D, Ball V, et al. Cardiac Dysfunction and Metabolic Inflexibility in a Mouse Model of Diabetes Without Dyslipidemia. Diabetes. 2018;67(6):1057-1067.

Eills J, Cavallari E, Carrera C, Budker D, Aime S, Reineri F. Real-Time Nuclear Magnetic Resonance Detection of Fumarase Activity Using Parahydrogen-Hyperpolarized [1-13C]Fumarate. J Am Chem Soc. 2019;141(51):20209-20214.

Glöggler S, Rizzitelli S, Pinaud N, et al. In vivo online magnetic resonance quantification of absolute metabolite concentrations in microdialysate. Sci Rep. 2016;4,6:36080.

Ward CS, Eriksson P, Izquierdo-Garcia JL, Brandes AH, Ronen SM. HDAC inhibition induces increased choline uptake and elevated phosphocholine levels in MCF7 breast cancer cells. PLoS One. 2013;8(4):e62610.

Darpolor MM, Kaplan DE, Pedersen PL, Glickson JD. Human Hepatocellular Carcinoma Metabolism: Imaging by Hyperpolarized 13C Magnetic Resonance Spectroscopy. J Liver Disease Transplant. 2012;1(1). doi: 10.4172/2325-9612.1000101.

Kim S, Martinez-Santiesteban F, Scholl TJ. Measuring the Spin-Lattice Relaxation Magnetic Field Dependence of Hyperpolarized [1-13C]pyruvate. J Vis Exp. 2019;(151).

Lee CY, Soliman H, Geraghty BJ, et al. Lactate topography of the human brain using hyperpolarized 13C-MRI. Neuroimage. 2020;204:116202.

van de Vena KCC, van der Graafa M, Tack CJJ, et al. Optimized [1-13C]glucose infusion protocol for 13C magnetic resonance spectroscopy at 3 T of human brain glucose metabolism under euglycemic and hypoglycemic conditions. J Neur Methods. 2010;186:68-71.

Yanga J, Johnsona C, Shena J. Detection of reduced GABA synthesis following inhibition of GABA transaminase using in vivo magnetic resonance signal of [13C]GABA C1. Journal of Neuroscience Methods. 2009;182:236-243.

Schroeder MA, Swietach P, Atherton HJ, et al. Measuring intracellular pH in the heart using hyperpolarized carbon dioxide and bicarbonate: a 13C and 31P magnetic resonance spectroscopy study. Cardiovascular Research. 2010;86:82-91.

Mayer D, Yen YF, Tropp J, Pfefferbaum A, Hurd RE, Spielman DM. Application of subsecond spiral chemical shift imaging to real-time multislice metabolic imaging of the rat in vivo after injection of hyperpolarized 13C1-pyruvate. Magn Reson Med. 2009;62(3):557-564.

Keshari KR, Wilson DM, Chen AP, et al. Hyperpolarized [2-13C]-fructose: a hemiketal DNP substrate for in vivo metabolic imaging. J Am Chem Soc. 2009;131(48):17591-17596.

Jamin Y, Gabellieri C, Smyth L, et al. Hyperpolarized (13)C magnetic resonance detection of carboxypeptidase G2 activity. Magn Reson Med. 2009;62(5):1300-1304.

Park I, Larson PE, Zierhut ML, et al. Hyperpolarized 13C magnetic resonance metabolic imaging: application to brain tumors. Neuro Oncol. 2010;12(2):133-144.

Bhattacharya P, Harris K, Lin AP, et al. Ultra-fast three dimensional imaging of hyperpolarized 13C in vivo. MAGMA. 2005;18(5):245-256.

Aime S, Dastrù W, Gobetto R, Santelia D, Viale A. Agents for polarization enhancement in MRI. Handb Exp Pharmacol. 2008;(185 Pt 1):247-272.

Schröder L, Lowery TJ, Hilty C, Wemmer DE, Pines A. Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor. Science. 2006;314(5798):446-449.

Bhattacharya P, Chekmenev EY, Perman WH, et al. Towards hyperpolarized (13)C-succinate imaging of brain cancer. J Magn Reson. 2007;186(1):150-155.

Ross BD, Bhattacharya P, Wagner S, Tran T, Sailasuta N. Hyperpolarized MR imaging: neurologic applications of hyperpolarized metabolism. AJNR Am J Neuroradiol. 2010;31(1):24-33.

Golman K, Petersson JS, Magnusson P, et al. Cardiac metabolism measured noninvasively by hyperpolarized 13C MRI. Magn Reson Med. 2008;59(5):1005-1013.

Hancu I, Wood SJ, Piel J, et al. Three-frequency RF coil designed for optimized imaging of hyperpolarized, 13C-labeled compounds. Magn Reson Med. 2008;60(4):928-933.

Mayer D, Yen YF, Levin YS, et al. In vivo application of sub-second spiral chemical shift imaging (CSI) to hyperpolarized 13C metabolic imaging: comparison with phase-encoded CSI. J Magn Reson. 2010;204(2):340-345.

Lingwood MD, Han S. Dynamic nuclear polarization of 13C in aqueous solutions under ambient conditions. J Magn Reson. 2009;201(2):137-145.

Marjańska M, Iltis I, Shestov AA, et al. In Vivo 13C Spectroscopy in the Rat Brain using Hyperpolarized [1-13C]pyruvate and [2-13C]pyruvate. J Magn Reson. 2010;206(2):210-218.

Hu S, Chen AP, Zierhut ML, et al. In vivo carbon-13 dynamic MRS and MRSI of normal and fasted rat liver with hyperpolarized 13C-pyruvate. Mol Imaging Biol. 2009;11(6):399-407.

Chen AP, Leung K, Lam W, Hurd RE, Vigneron DB, Cunningham CH. Design of spectral-spatial outer volume suppression RF pulses for tissue specific metabolic characterization with hyperpolarized 13C pyruvate. J Magn Reson. 2009;200(2):344-348.

Ferdia A. Gallagher, Mikko I. Kettunen, Sam E. 13C MR Spectroscopy Measurements of Glutaminase Activity in Human Hepatocellular Carcinoma Cells Using Hyperpolarized 13C-Labeled Glutamine. Mag Res Med. 2008; 60:253-257.

Downloads

Published

2020-03-30

How to Cite

Leksa, N., Pękala, A., Pardak, P., Dziedzic, R., Bartusik-Aebisher, D., Filip, R., Galiniak, S., & Aebisher, D. (2020). The potential of intracellular 13C MR spectroscopy to study the absolute configuration of endogenous and polarized alanine. European Journal of Clinical and Experimental Medicine, 18(1), 20–23. https://doi.org/10.15584/ejcem.2020.1.4

Issue

Section

REVIEW PAPERS

Most read articles by the same author(s)

<< < 1 2 3 4 5 6