Circulatory and ventilatory power markers in patients with diabetes mellitus – influence of glycemic control

Authors

  • Letícia Menegalli Santos Cardiopulmonary Physiotherapy Laboratory, Department of Physical Therapy, Federal University of Sao Carlos, Sao Carlos, Sao Paulo, Brazil https://orcid.org/0000-0003-4973-7276
  • Claudio Donisete Da Silva Cardiopulmonary Physiotherapy Laboratory, Department of Physical Therapy, Federal University of Sao Carlos, Sao Carlos, Sao Paulo, Brazil https://orcid.org/0000-0002-4989-4434
  • Laura Beatriz Lorevice Cardiopulmonary Physiotherapy Laboratory, Department of Physical Therapy, Federal University of Sao Carlos, Sao Carlos, Sao Paulo, Brazil https://orcid.org/0000-0002-7751-8073
  • Clara Italiano Monteiro Cardiopulmonary Physiotherapy Laboratory, Department of Physical Therapy, Federal University of Sao Carlos, Sao Carlos, Sao Paulo, Brazil https://orcid.org/0000-0003-3952-5691
  • Paula Angélica Ricci Cardiopulmonary Physiotherapy Laboratory, Department of Physical Therapy, Federal University of Sao Carlos, Sao Carlos, Sao Paulo, Brazil https://orcid.org/0000-0001-6629-7933
  • Audrey Borghi-Silva Cardiopulmonary Physiotherapy Laboratory, Department of Physical Therapy, Federal University of Sao Carlos, Sao Carlos, Sao Paulo, Brazil https://orcid.org/0000-0002-3891-6941
  • Renata Gonçalves Mendes Cardiopulmonary Physiotherapy Laboratory, Department of Physical Therapy, Federal University of Sao Carlos, Sao Carlos, Sao Paulo, Brazil https://orcid.org/0000-0003-4683-2657

DOI:

https://doi.org/10.15584/ejcem.2022.3.10

Keywords:

cardiopulmonary exercise test, glycemic control, type 2 diabetes mellitus

Abstract

Introduction and aim. Cardiorespiratory function has been shown to be impaired in individuals with type 2 diabetes mellitus (T2DM). Some deficiencies in cardiopulmonary exercise test (CPET)-derived variables are known, however, the influence of glycemic control on cardiovascular integrity indices as circulatory power (CP) and ventilatory power (VP), deserve to be instigated. The aim was to investigate the influence of glycemic control on CP and VP indices in T2DM.

Material and methods. T2DM individuals of both sexes aged between 40 and 64 years were allocated into two groups: Good glycemic control (GGC, n=11; HbA1c≤7%) and insufficient glycemic control (IGC, n=26; HbA1c>7%). All participants underwent a CPET on a treadmill using a gas analyzer and a laboratory blood test. CP values were obtained by the product of peak of oxygen uptake and systolic blood pressure (SBP) and VP by dividing SBP by the ventilatory efficiency (VE/VCO2 slope). The level of significance was set at p<0.05.

Results. No baseline differences were found between the groups, except for the expected fasting glucose and glycated hemoglobin. No differences were found between GGC and IGC groups for CP (4756.05±1061.67 and 4434.15±1247.83 mmHg.ml.kg-1min-1, p=0.460) and VP (5.85±1.08 and 5.86±1.31 mmHg, p=0.978), respectively.

Conclusion. CP and VP were similar in individuals with T2DM regardless of glycemic control. Predictive ability of these variables in health outcomes deserves to be further investigated in T2DM.

Downloads

Download data is not yet available.

References

Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843.

Anjos DM da C dos, Araújo IL, Barros VM, Pereira DAG, Pereira DS. Avaliação da capacidade funcional em idosos diabéticos. Fisioterapia e Pesquisa. 2012;19(1):73‒78.

Gregg EW, Beckles GL, Williamson DF, et al. Diabetes and physical disability among older U.S. adults. Diabetes Care. 2000;23(9):1272‒1277.

Wei M, Gibbons LW, Mitchell TL, Kampert JB, Lee CD, Blair SN. The association between cardiorespiratory fitness and impaired fasting glucose and type 2 diabetes mellitus in men. Ann Intern Med. 1999;130(2):89‒96.

Silva DAS, Naghavi M, Duncan BB, Schmidt MI, de Souza M de FM, Malta DC. Physical inactivity as risk factor for mortality by diabetes mellitus in Brazil in 1990, 2006, and 2016. Diabetol Metab Syndr. 2019;11:23.

Pereira DAG, Rodrigues RS, Samora GAR, et al. Capacidade funcional de indivíduos com insuficiência cardíaca avaliada pelo teste de esforço cardiopulmonar e classificação da New York Heart Association. Fisioterapia e Pesquisa. 2012;19(1):52‒56.

Miranda HS. O Imaginário nas escolas de Reggio Emilia. In: SEMINÁRIO EDUCAÇÃO, IMAGINAÇÃO E AS LINGUAGENS ARTÍSTICOCULTURAIS DA UNESC. Vol 1. UNESC; 2005.

Wang N, Liu Y, Ma Y, Wen D. High-intensity interval versus moderate-intensity continuous training: Superior metabolic benefits in diet-induced obesity mice. Life Sci. 2017;191:122‒131.

Castello-Simões V, Minatel V, Karsten M, et al. Circulatory and Ventilatory Power: Characterization in Patients with Coronary Artery Disease. Arquivos Brasileiros de Cardiologia. 2015;104(6):476‒485.

Forman DE, Guazzi M, Myers J, et al. Ventilatory power: a novel index that enhances prognostic assessment of patients with heart failure. Circ Heart Fail. 2012;5(5):621‒626.

Hirashiki A, Adachi S, Nakano Y, et al. Circulatory power and ventilatory power over time under goal-oriented sequential combination therapy for pulmonary arterial hypertension. Pulm Circ. 2017;7(2):448‒454.

Mezzani A. Cardiopulmonary Exercise Testing: Basics of Methodology and Measurements. Ann Am Thorac Soc. 2017;14(1):3‒11.

Queiroz KC, Silva IN, Alfenas R de CG. Associação entre fatores nutricionais e o controle glicêmico de crianças e adolescentes com diabetes melito tipo 1. Arquivos Brasileiros de Endocrinologia & Metabologia. 2010;54(3):319‒325.

Silva FM, Steemburgo T, Azevedo MJ de, Mello VD de. Papel do índice glicêmico e da carga glicêmica na prevenção e no controle metabólico de pacientes com diabetes melito tipo 2. Arquivos Brasileiros de Endocrinologia & Metabologia. 2009;53(5):560‒571.

El-Habashy MM, Agha MA, El-Basuni HA. Impact of diabetes mellitus and its control on pulmonary functions and cardiopulmonary exercise tests. Egyptian Journal of Chest Diseases and Tuberculosis. 2014;63(2):471‒476.

Rossaneis MA, Andrade SM de, Gvozd R, et al. Fatores associados ao controle glicêmico de pessoas com diabetes mellitus. Ciência & Saúde Coletiva. 2019;24(3):997‒1005.

Stolar M. Glycemic Control and Complications in Type 2 Diabetes Mellitus. The American Journal of Medicine. 2010;123(3):3‒11.

Netto AP, Andriolo A, Fraige Filho F, et al. Atualização sobre hemoglobina glicada (HbA1C) para avaliação do controle glicêmico e para o diagnóstico do diabetes: aspectos clínicos e laboratoriais. Jornal Brasileiro de Patologia e Medicina Laboratorial. 2009;45(1):31‒48.

Matheus. Diretrizes e Posicionamentos. Sociedade Brasileira de Diabetes. https://www.diabetes.org.br/profissionais/publicacoes/diretrizes-e-posicionamentos-1. Accessed September 13, 2018.

Balady GJ, Arena R, Sietsema K, et al. Clinician’s Guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation. 2010;122(2):191‒225.

Wasserman K. Principles of Exercise Testing and Interpretation. 3rd ed. Lippincott, Williams E Comercial Wilkins; 1999.

Cohen-Solal A, Tabet JY, Logeart D, Bourgoin P, Tokmakova M, Dahan M. A non-invasively determined surrogate of cardiac power ('circulatory power’) at peak exercise is a powerful prognostic factor in chronic heart failure. Eur Heart J. 2002;23(10):806‒814.

Munro, B. H. Correlation. Statistical Methods for Health Care Research. 4th ed. Lippincott; 2001.

Morgan CL, Currie CJ, Peters JR. Relationship between diabetes and mortality: a population study using record linkage. Diabetes Care. 2000;23(8):1103‒1107.

Zilliox LA, Russell JW. Physical activity and dietary interventions in diabetic neuropathy: a systematic review. Clin Auton Res. 2019;29(4):443‒455.

Poitras VJ, Hudson RW, Tschakovsky ME. Exercise intolerance in Type 2 diabetes: is there a cardiovascular contribution? Journal of Applied Physiology. 2018;124(5):1117‒1139.

American Heart Association. Committee on Exercise: Exercise Testing and Training of Apparently Healthy Individuals: A Handbook for Physicians. 1972.

Niranjan V, McBrayer DG, Ramirez LC, Raskin P, Hsia CCW. Glycemic Control and Cardiopulmonary Function in Patients With Insulin-Dependent Diabetes Mellitusfn1fn1This work was supported by the American Lung Association of Texas. C.C.W. Hsia is a recipient of the Established Investigator Award from the American Heart Association. The American Journal of Medicine. 1997;103(6):504‒513.

Italiano Monteiro C, Polaquini Simões R, Domingues Heubel A, et al. Arterial stiffness can predict cardiorespiratory fitness in type 2 diabetic patients? European Journal of Clinical and Experimental Medicine. 2022;(1):28‒35.

Downloads

Published

2022-09-30

How to Cite

Menegalli Santos, L., Da Silva, C. D., Lorevice, L. B., Monteiro, C. I., Ricci, P. A., Borghi-Silva, A., & Gonçalves Mendes, R. (2022). Circulatory and ventilatory power markers in patients with diabetes mellitus – influence of glycemic control. European Journal of Clinical and Experimental Medicine, 20(3), 323–329. https://doi.org/10.15584/ejcem.2022.3.10

Issue

Section

ORIGINAL PAPERS

Most read articles by the same author(s)