Contribution of semiquantitative analysis with dynamic contrast enhanced magnetic resonance imaging to the differential diagnosis of focal liver lesions

Authors

DOI:

https://doi.org/10.15584/ejcem.2023.2.6

Keywords:

adult liver cancer, benign hepatoma, perfusion imaging

Abstract

Introduction and aim. We aimed to evaluate the usefulness of dynamic contrast-enhanced (DCE) MRI semiquantitative analysis values in focal liver lesions (FLL) to provide additional qualities that can be used in daily practice in the differential diagnosis of lesions.

Material and methods. This retrospective study included 91 patients with liver masses on DCE-MRI. The sensitivity and specificity of time intensity curves (TIC) and semiquantitative analysis values were evaluated to differentiate benign and malignant lesions.

Results. The study included 91 patients (376 lesions), aged between 28-81 years. Of the lesions, 303 were malignant and 73 were benign. In TIC semiquantitative analysis, it was found that “Tpeak” and “wash-out” rate values showed differences, especially in the differentiation of HCC, metastasis, and hemangioma. Area under curve, maximum relative enhancement, and “wash-in” and “wash-out” values of metastases and hemangiomas were different. Brevity of enhancement values of HSK, hemangiomas, and metastases were found to be different. The risk of malignancy was found to be high when the “wash-out” ratio was above 0.08 (sensitivity: 64.3%, specificity: 70.4%).

Conclusion. We think that the 0.08 threshold value we found for the washout ratio with DCE-MRI semiquantitative analysis data will be useful in daily practice in the differentiation of malignant and benign FLL.

Downloads

Download data is not yet available.

References

Matos AP, Velloni F, Ramalho M, AlObaidy M, Rajapaksha A, Semelka RC. Focal liver lesions: Practical magnetic resonance imaging approach. World J Hepatol. 2015;7(16):1987-2008. doi: 10.4254/wjh.v7.i16.1987

Cogley JR, Miller FH. MR imaging of benign focal liver lesions. Radiol Clin North Am. 2014;52(4):657-682. doi: 10.1016/j.rcl.2014.02.005

Watanabe A, Ramalho M, AlObaidy M, Kim HJ, Velloni FG, Semelka RC. Magnetic resonance imaging of the cirrhotic liver: An update. World J Hepatol. 2015;7(3):468-487. doi: 10.4254/wjh.v7.i3.468

Belghiti J, Cauchy F, Paradis V, Vilgrain V. Diagnosis and management of solid benign liver lesions. Nat Rev Gastroenterol Hepatol. 2014;11(12):737-749. doi: 10.1038/nrgastro.2014.151

Ronot M, Lambert S, Daire JL, et al. Can we justify not doing liver perfusion imaging in 2013?. Diagn Interv Imaging. 2013;94(12):1323-1336. doi: 10.1016/j.diii.2013.06.005

Cannella R, Sartoris R, Grégory J, et al. Quantitative magnetic resonance imaging for focal liver lesions: bridging the gap between research and clinical practice. Br J Radiol. 2021;94(1122):20210220. doi: 10.1259/bjr.20210220

Hussain SM, Semelka RC. Hepatic imaging: comparison of modalities. Radiol Clin North Am. 2005;43(5):929-ix. doi: 10.1016/j.rcl.2005.05.006

Ronot M, Clift AK, Vilgrain V, Frilling A. Functional imaging in liver tumours. J Hepatol. 2016;65(5):1017-1030. doi: 10.1016/j.jhep.2016.06.024

Bader TR, Herneth AM, Blaicher W, et al. Hepatic perfusion after liver transplantation: noninvasive measurement with dynamic single-section CT. Radiology. 1998;209(1):129-134. doi: 10.1148/radiology.209.1.9769823

Leggett DA, Kelley BB, Bunce IH, Miles KA. Colorectal cancer: diagnostic potential of CT measurements of hepatic perfusion and implications for contrast enhancement protocols. Radiology. 1997;205(3):716-720. doi: 10.1148/radiology.205.3.9393526

Van Beers BE, Leconte I, Materne R, Smith AM, Jamart J, Horsmans Y. Hepatic perfusion parameters in chronic liver disease: dynamic CT measurements correlated with disease severity. AJR Am J Roentgenol. 2001;176(3):667-673. doi: 10.2214/ajr.176.3.1760667

Nino-Murcia M, Olcott EW, Jeffrey RB Jr, Lamm RL, Beaulieu CF, Jain KA. Focal liver lesions: pattern-based classification scheme for enhancement at arterial phase CT. Radiology. 2000;215(3):746-751. doi: 10.1148/radiology.215.3.r00jn03746

Ippolito D, Colombo M, Trattenero C, et al. Diagnostic Value of Semiquantitative Analysis of Dynamic Susceptibility Contrast Magnetic Resonance Imaging with GD-EOB-DTPA in Focal Liver Lesions Characterization: A Feasibility Study. Gastroenterol Res Pract. 2015;2015:630273. doi: 10.1155/2015/630273

Reimer P, Saini S, Kwong KK, Cohen MS, Weissleder R, Brady TJ. Dynamic gadolinium-enhanced echo-planar MR imaging of the liver: effect of pulse sequence and dose on enhancement. J Magn Reson Imaging. 1994;4(3):331-335. doi: 10.1002/jmri.1880040318

Materne R, Smith AM, Peeters F, et al. Assessment of hepatic perfusion parameters with dynamic MRI. Magn Reson Med. 2002;47(1):135-142. doi: 10.1002/mrm.10045

Van Beers BE, Materne R, Annet L, et al. Capillarization of the sinusoids in liver fibrosis: noninvasive assessment with contrast-enhanced MRI in the rabbit. Magn Reson Med. 2003;49(4):692-699. doi: 10.1002/mrm.10420

Annet L, Materne R, Danse E, Jamart J, Horsmans Y, Van Beers BE. Hepatic flow parameters measured with MR imaging and Doppler US: correlations with degree of cirrhosis and portal hypertension. Radiology. 2003;229(2):409-414. doi: 10.1148/radiol.2292021128

Alicioglu B, Guler O, Bulakbasi N, Akpinar S, Tosun O, Comunoglu C. Utility of semiquantitative parameters to differentiate benign and malignant focal hepatic lesions. Clin Imaging. 2013;37(4):692-696. doi: 10.1016/j.clinimag.2013.01.012

Chandarana H, Taouli B. Diffusion and perfusion imaging of the liver. Eur J Radiol. 2010;76(3):348-358. doi: 10.1016/j.ejrad.2010.03.016

Koh DM, Padhani AR. Functional magnetic resonance imaging of the liver: parametric assessments beyond morphology. Magn Reson Imaging Clin N Am. 2010;18(3):565-xii. doi: 10.1016/j.mric.2010.07.002

Pahwa S, Liu H, Chen Y, et al. Quantitative perfusion imaging of neoplastic liver lesions: A multi-institution study. Sci Rep. 2018;8(1):4990. doi: 10.1038/s41598-018-20726-1

Ghodasara S, Pahwa S, Dastmalchian S, Gulani V, Chen Y. Free-Breathing 3D Liver Perfusion Quantification Using a Dual-Input Two-Compartment Model. Sci Rep. 2017;7(1):17502. doi: 10.1038/s41598-017-17753-9

Totman JJ, O'gorman RL, Kane PA, Karani JB. Comparison of the hepatic perfusion index measured with gadolinium-enhanced volumetric MRI in controls and in patients with colorectal cancer. Br J Radiol. 2005;78(926):105-109. doi: 10.1259/bjr/13525061

Koh TS, Thng CH, Hartono S, et al. Dynamic contrast-enhanced MRI of neuroendocrine hepatic metastases: A feasibility study using a dual-input two-compartment model. Magn Reson Med. 2011;65(1):250-260. doi: 10.1002/mrm.22596

Taouli B, Johnson RS, Hajdu CH, et al. Hepatocellular carcinoma: perfusion quantification with dynamic contrast-enhanced MRI. AJR Am J Roentgenol. 2013;201(4):795-800. doi: 10.2214/AJR.12.9798

Ippolito D, Trattenero C, Talei Franzesi C, et al. Dynamic Contrast-Enhanced Magnetic Resonance Imaging With Gadolinium Ethoxybenzyl Diethylenetriamine Pentaacetic Acid for Quantitative Assessment of Vascular Effects on Hepatocellular-Carcinoma Lesions Treated by Transarterial Chemoembolization or Radiofrequency Ablation. J Comput Assist Tomogr. 2016;40(5):692-700. doi: 10.1097/RCT.0000000000000427

Campos M, Candelária I, Papanikolaou N, et al. Perfusion Magnetic Resonance as a Biomarker for Sorafenib-Treated Advanced Hepatocellular Carcinoma: A Pilot Study. GE Port J Gastroenterol. 2019;26(4):260-267. doi: 10.1159/000493351

Braren R, Altomonte J, Settles M, et al. Validation of preclinical multiparametric imaging for prediction of necrosis in hepatocellular carcinoma after embolization. J Hepatol. 2011;55(5):1034-1040. doi: 10.1016/j.jhep.2011.01.049

Michielsen K, De Keyzer F, Verslype C, Dymarkowski S, van Malenstein H, Oyen R, Maleux G, et al. Pretreatment DCE-MRI for prediction of pfs in patients with inoperable HCC treated with TACE. Cancer Imaging 2011;11(1A):114. doi: 10.1102/1470-7330.2011.9058

Hsu CY, Shen YC, Yu CW, et al. Dynamic contrast-enhanced magnetic resonance imaging biomarkers predict survival and response in hepatocellular carcinoma patients treated with sorafenib and metronomic tegafur/uracil. J Hepatol. 2011;55(4):858-865. doi: 10.1016/j.jhep.2011.01.032

Kim KA, Park MS, Ji HJ, et al. Diffusion and perfusion MRI prediction of progression-free survival in patients with hepatocellular carcinoma treated with concurrent chemoradiotherapy. J Magn Reson Imaging. 2014;39(2):286-292. doi: 10.1002/jmri.24161

Chen BB, Hsu CY, Yu CW, et al. Early perfusion changes within 1 week of systemic treatment measured by dynamic contrast-enhanced MRI may predict survival in patients with advanced hepatocellular carcinoma. Eur Radiol. 2017;27(7):3069-3079. doi: 10.1007/s00330-016-4670-2

Coenegrachts K, Bols A, Haspeslagh M, Rigauts H. Prediction and monitoring of treatment effect using T1-weighted dynamic contrast-enhanced magnetic resonance imaging in colorectal liver metastases: potential of whole tumour ROI and selective ROI analysis. Eur J Radiol. 2012;81(12):3870-3876. doi: 10.1016/j.ejrad.2012.07.022

De Bruyne S, Van Damme N, Smeets P, et al. Value of DCE-MRI and FDG-PET/CT in the prediction of response to preoperative chemotherapy with bevacizumab for colorectal liver metastases. Br J Cancer. 2012;106(12):1926-1933. doi: 10.1038/bjc.2012.184

Hirashima Y, Yamada Y, Tateishi U, et al. Pharmacokinetic parameters from 3-Tesla DCE-MRI as surrogate biomarkers of antitumor effects of bevacizumab plus FOLFIRI in colorectal cancer with liver metastasis. Int J Cancer. 2012;130(10):2359-2365. doi: 10.1002/ijc.26282

Galbraith SM, Lodge MA, Taylor NJ, et al. Reproducibility of dynamic contrast-enhanced MRI in human muscle and tumours: comparison of quantitative and semi-quantitative analysis. NMR Biomed. 2002;15(2):132-142. doi: 10.1002/nbm.731

Chen J, Si Y, Zhao K, et al. Evaluation of quantitative parameters of dynamic contrast-enhanced magnetic resonance imaging in qualitative diagnosis of hepatic masses. BMC Med Imaging. 2018;18(1):56. doi: 10.1186/s12880-018-0299-8

Ippolito D, Colombo M, Trattenero C, et al. Diagnostic Value of Semiquantitative Analysis of Dynamic Susceptibility Contrast Magnetic Resonance Imaging with GD-EOB-DTPA in Focal Liver Lesions Characterization: A Feasibility Study. Gastroenterol Res Pract. 2015;2015:630273. doi: 10.1155/2015/630273

Goh V, Padhani AR. Imaging tumor angiogenesis: functional assessment using MDCT or MRI?. Abdom Imaging. 2006;31(2):194-199. doi: 10.1007/s00261-005-0387-4

Leach MO, Brindle KM, Evelhoch JL, et al. Assessment of antiangiogenic and antivascular therapeutics using MRI: recommendations for appropriate methodology for clinical trials. Br J Radiol. 2003;76 Spec No 1:S87-S91. doi: 10.1259/bjr/15917261

Thng CH, Koh TS, Collins DJ, Koh DM. Perfusion magnetic resonance imaging of the liver. World J Gastroenterol. 2010;16(13):1598-1609. doi: 10.3748/wjg.v16.i13.1598

Materne R, Van Beers BE, Smith AM, et al. Non-invasive quantification of liver perfusion with dynamic computed tomography and a dual-input one-compartmental model. Clin Sci (Lond). 2000;99(6):517-525.

Abdullah SS, Pialat JB, Wiart M, et al. Characterization of hepatocellular carcinoma and colorectal liver metastasis by means of perfusion MRI. J Magn Reson Imaging. 2008;28(2):390-395. doi: 10.1002/jmri.21429

Ito K. Hepatocellular carcinoma: conventional MRI findings including gadolinium-enhanced dynamic imaging. Eur J Radiol. 2006;58(2):186-199. doi:10.1016/j.ejrad.2005.11.039

Donati F, Boraschi P, Gigoni R, Salemi S, Falaschi F, Bartolozzi C. Focal nodular hyperplasia of the liver: diffusion and perfusion MRI characteristics. Magn Reson Imaging. 2013;31(1):10-16. doi: 10.1016/j.mri.2012.06.031

Yu JS, Rofsky NM. Hepatic metastases: perilesional enhancement on dynamic MRI. AJR Am J Roentgenol. 2006;186(4):1051-1058. doi: 10.2214/AJR.04.169

Taouli B. Diffusion-weighted MR, imaging for liver lesion characterization: a critical look. Radiology. 2012;262:378-380.

Soyer P, Corno L, Boudiaf M, et al. Differentiation between cavernous hemangiomas and untreated malignant neoplasms of the liver with free-breathing diffusion-weighted MR imaging: comparison with T2-weighted fast spin-echo MR imaging. Eur J Radiol. 2011;80:316–24.

Wagner M, Doblas S, Daire JL, et al. Diffusion-weighted MR imaging for the regional characterization of liver tumors. Radiology. 2012;264:464-472.

Donato H, França M, Candelária I, Caseiro-Alves F. Liver MRI: From basic protocol to advanced techniques. Eur J Radiol. 2017;93:30-39. doi: 10.1016/j.ejrad.2017.05.028

Quantitative Imaging Biomarkers Alliance. 2021. Available from: https://www.rsna. org/en/research/quantitative-imaging- biomarkers-alliance. Accessed February 1, 2021.

Biomarker Inventory. Available from: https://www.myesr.org/research/biomarkers-inventory. Accessed February 1, 2021.

Weiss J, Ruff C, Grosse U, Grözinger G, Horger M, Nikolaou K, et al. Assessment of hepatic perfusion using GRASP MRI: bringing liver MRI on a new level. Invest Radiol. 2019; 54:737-743. doi: 10.1097/RLI.0000000000000586

Downloads

Published

2023-06-30

How to Cite

Düzkalır, H. G., Kış, N., Urgun, D. A., Ağaçlı, M. O., & Kılıçoğlu, Z. G. (2023). Contribution of semiquantitative analysis with dynamic contrast enhanced magnetic resonance imaging to the differential diagnosis of focal liver lesions. European Journal of Clinical and Experimental Medicine, 21(2), 344–356. https://doi.org/10.15584/ejcem.2023.2.6

Issue

Section

ORIGINAL PAPERS