Innate defenses to intestinal cell death in necrotizing enterocolitis – spotlight on macrophage efferocytosis and its efficacy in rescuing inflamed intestinal mucosa
DOI:
https://doi.org/10.15584/ejcem.2023.2.20Keywords:
efferocytosis, inflammation and immune responses, intestinal cell death, macrophage, necrotizing enterocolitisAbstract
Introduction and aim. Necrotizing enterocolitis (NEC) is a grave gastrointestinal disease of preterm infants which is widely prevalent in the neonatal intensive care units. Current treatment options are very limited with high mortality and morbidity. With no disease specific interventions, understanding nascent cellular events that occur immediately after microbial insult can offer insights for devising novel treatment options for curtailing the disease progression in NEC. In this regard, intestinal cell death in NEC is a primordial cell-signaling event and is regarded as a harbinger of future pathological derangements such as increased intestinal permeability, intestinal dys-homeostasis, and systemic inflammation.
Material and methods. We performed PubMed search of relevant articles that describes the host response to intestinal cell death in NEC by cellular battalion including dendritic cells, lymphocytes, neutrophils and macrophages which are important in containing intestinal inflammation.
Analysis of the literature. We particularly focused this review on enumerating macrophage efferocytosis, and pertinent novel treatment modalities based on this physiological process that has inherent capability for down regulating inflammation and promoting tissue repair in NEC. We highlighted its mechanistic aspect including mediators, receptors and signaling mechanisms and its physiological significance.
Conclusion. Macrophage efferocytosis is an overlooked and undervalued physiological defense mechanism to clear the dying intestinal epithelial cells for facilitating tissue healing and restoring the intestinal homeostasis. Any impairment of this critical defense mechanism can result in rapid clinical progression and systemic complications. Understanding its importance in the pathogenesis of NEC is important for designing novel therapeutic interventions to attenuate disease progression.
Downloads
References
Alsaied A, Islam N, Thalib L. Global incidence of Necrotizing Enterocolitis: a systematic review and Meta-analysis. BMC Pediatrics. 2020;20(1):344. doi: 10.1186/s12887-020-02231-5
Han SM, Hong CR, Knell J, et al. Trends in incidence and outcomes of necrotizing enterocolitis over the last 12 years: A multicenter cohort analysis. J Pediatr Surg. 2020;55(6):998-1001. doi: 10.1016/j.jpedsurg.2020.02.046
Gephart SM, McGrath JM, Effken JA, Halpern MD. Necrotizing enterocolitis risk: state of the science. Adv Neonatal Care. 2012;12(2):77-89. doi: 10.1097/ANC.0b013e31824cee94
Bode L. Human Milk Oligosaccharides in the Prevention of Necrotizing Enterocolitis: A Journey From in vitro and in vivo Models to Mother-Infant Cohort Studies. Front Pediatr. 2018;6:385. doi: 10.3389/fped.2018.00385
Petrosyan M, Guner YS, Williams M, Grishin A, Ford HR. Current concepts regarding the pathogenesis of necrotizing enterocolitis. Pediatr Surg Int. 2009;25(4):309-318. doi: 10.1007/s00383-009-2344-8
Jilling T, Lu J, Jackson M, Caplan MS. Intestinal epithelial apoptosis initiates gross bowel necrosis in an experimental rat model of neonatal necrotizing enterocolitis. Pediatr Res. 2004;55(4):622-629. doi: 10.1203/01.Pdr.0000113463.70435.74
Andón FT, Fadeel B. Programmed Cell Death: Molecular Mechanisms and Implications for Safety Assessment of Nanomaterials. Acc Chem Res. 2013;46(3):733-742. doi: 10.1021/ar300020b
Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature. 2015;517(7534):311-320. doi: 10.1038/nature14191
Werts AD, Fulton WB, Ladd MR, et al. A Novel Role for Necroptosis in the Pathogenesis of Necrotizing Enterocolitis. Cell Mol Gastroenterol Hepatol. 2020;9(3):403-423. doi: 10.1016/j.jcmgh.2019.11.002
Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nature Reviews Microbiology. 2009;7(2):99-109. doi: 10.1038/nrmicro2070
Hu D, Liu H. [Pyroptosis is involved in the pathogenesis of necrotizing enterocolitis]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2018;34(12):1070-1074.
Kroemer G, Levine B. Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol. 2008;9(12):1004-1010. doi: 10.1038/nrm2529
Yu Y, Shiou SR, Guo Y, et al. Erythropoietin protects epithelial cells from excessive autophagy and apoptosis in experimental neonatal necrotizing enterocolitis. PLoS One. 2013;8(7):e69620. doi: 10.1371/journal.pone.0069620
Ballance WA, Dahms BB, Shenker N, Kliegman RM. Pathology of neonatal necrotizing enterocolitis: a ten-year experience. J Pediatr. 1990;117(1 Pt 2):S6-S13. doi: 10.1016/s0022-3476(05)81124-2
Currie AJ, Curtis S, Strunk T, et al. Preterm infants have deficient monocyte and lymphocyte cytokine responses to group B streptococcus. Infect Immun. 2011;79(4):1588-1596. doi: 10.1128/IAI.00535-10
Dembinski J, Behrendt D, Martini R, Heep A, Bartmann P. Modulation of pro- and anti-inflammatory cytokine production in very preterm infants. Cytokine. 2003;21(4):200-6. doi: 10.1016/s1043-4666(02)00498-2
Tatad AM, Nesin M, Peoples J, et al. Cytokine expression in response to bacterial antigens in preterm and term infant cord blood monocytes. Neonatology. 2008;94(1):8-15. doi: 10.1159/000112541
Sadeghi K, Berger A, Langgartner M, et al. Immaturity of infection control in preterm and term newborns is associated with impaired toll-like receptor signaling. J Infect Dis. 2007;195(2):296-302. doi: 10.1086/509892
Sharma AA, Jen R, Butler A, Lavoie PM. The developing human preterm neonatal immune system: a case for more research in this area. Clin Immunol. 2012;145(1):61-68. doi: 10.1016/j.clim.2012.08.006
Tissières P, Ochoda A, Dunn-Siegrist I, et al. Innate Immune Deficiency of Extremely Premature Neonates Can Be Reversed by Interferon-γ. PLOS ONE. 2012;7(3):e32863. doi: 10.1371/journal.pone.0032863
Strunk T, Hibbert J, Doherty D, et al. Impaired Cytokine Responses to Live Staphylococcus epidermidis in Preterm Infants Precede Gram-positive, Late-onset Sepsis. Clin Infect Dis. 2021;72(2):271-278. doi: 10.1093/cid/ciaa063
Hibbert J, Strunk T, Simmer K, Richmond P, Burgner D, Currie A. Plasma cytokine profiles in very preterm infants with late-onset sepsis. PLoS One. 2020;15(5):e0232933. doi: 10.1371/journal.pone.0232933
Prince LR, Maxwell NC, Gill SK, et al. Macrophage Phenotype Is Associated with Disease Severity in Preterm Infants with Chronic Lung Disease. PLOS ONE. 2014;9(8):e103059. doi: 10.1371/journal.pone.0103059
Milcic TL. The complete blood count. Neonatal Netw. 2010;29(2):109-115. doi: 10.1891/0730-0832.29.2.109
Bektas S, Goetze B, Speer CP. Decreased adherence, chemotaxis and phagocytic activities of neutrophils from preterm neonates. Acta Paediatr Scand. 1990;79(11):1031-1038. doi: 10.1111/j.1651-2227.1990.tb11379.x
Bialek R, Bartmann P. Is there an effect of immunoglobulins and G-CSF on neutrophil phagocytic activity in preterm infants? Infection. 1998;26(6):375-378. doi: 10.1007/bf02770839
Falconer AE, Carr R, Edwards SW. Impaired neutrophil phagocytosis in preterm neonates: lack of correlation with expression of immunoglobulin or complement receptors. Biol Neonate. 1995;68(4):264-269. doi: 10.1159/000244245
Källman J, Schollin J, Schalèn C, Erlandsson A, Kihlström E. Impaired phagocytosis and opsonisation towards group B streptococci in preterm neonates. Arch Dis Child Fetal Neonatal Ed. 1998;78(1):F46-F50. doi: 10.1136/fn.78.1.f46
Strunk T, Currie A, Richmond P, Simmer K, Burgner D. Innate immunity in human newborn infants: prematurity means more than immaturity. J Matern Fetal Neonatal Med. 2011;24(1):25-31. doi: 10.3109/14767058.2010.482605
Wisgrill L, Groschopf A, Herndl E, et al. Reduced TNF-α response in preterm neonates is associated with impaired nonclassic monocyte function. J Leukoc Biol. 2016;100(3):607-612. doi: 10.1189/jlb.4A0116-001RR
Marchant EA, Kan B, Sharma AA, et al. Attenuated innate immune defenses in very premature neonates during the neonatal period. Pediatr Res. 2015;78(5):492-497. doi:10.1038/pr.2015.132
Holloway JA, Thornton CA, Diaper ND, Howe DT, Warner JO. Phenotypic analysis of circulating dendritic cells during the second half of human gestation. Pediatr Allergy Immunol. Mar 2009;20(2):119-25. doi: 10.1111/j.1399-3038.2008.00771.x
Melville J, Moss T. The immune consequences of preterm birth. Review. Front Neurosci. 22013;7(79). doi: 10.3389/fnins.2013.00079
Pérez A, Bellón JM, Gurbindo MD, Muñoz-Fernández MA. Impairment of stimulation ability of very-preterm neonatal monocytes in response to lipopolysaccharide. Hum Immunol. 2010;71(2):151-157. doi: 10.1016/j.humimm.2009.11.011
van den Berg JP, Westerbeek EA, Berbers GA, van Gageldonk PG, van der Klis FR, van Elburg RM. Transplacental transport of IgG antibodies specific for pertussis, diphtheria, tetanus, haemophilus influenzae type b, and Neisseria meningitidis serogroup C is lower in preterm compared with term infants. Pediatr Infect Dis J. 2010;29(9):801-805. doi: 10.1097/inf.0b013e3181dc4f77
Kaur K, Chowdhury S, Greenspan NS, Schreiber JR. Decreased expression of tumor necrosis factor family receptors involved in humoral immune responses in preterm neonates. Blood. 2007;110(8):2948-2954. doi: 10.1182/blood-2007-01-069245
D'Angio CT. Active immunization of premature and low birth-weight infants: a review of immunogenicity, efficacy, and tolerability. Paediatr Drugs. 2007;9(1):17-32. doi: 10.2165/00148581-200709010-00003
Walker JC, Smolders MA, Gemen EF, Antonius TA, Leuvenink J, de Vries E. Development of lymphocyte subpopulations in preterm infants. Scand J Immunol. 2011;73(1):53-58. doi: 10.1111/j.1365-3083.2010.02473.x
McGreal EP, Hearne K, Spiller OB. Off to a slow start: under-development of the complement system in term newborns is more substantial following premature birth. Immunobiology. 2012;217(2):176-186. doi: 10.1016/j.imbio.2011.07.027
Sharma AA, Jen R, Brant R, et al. Hierarchical maturation of innate immune defences in very preterm neonates. Neonatology. 2014;106(1):1-9. doi: 10.1159/000358550
Abraham C, Medzhitov R. Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenterology. 2011;140(6):1729-1737. doi: 10.1053/j.gastro.2011.02.012
Brandtzaeg P. Induction of secretory immunity and memory at mucosal surfaces. Vaccine. 2007;25(30):5467-84. doi: 10.1016/j.vaccine.2006.12.001
Brandtzaeg P. Function of mucosa-associated lymphoid tissue in antibody formation. Immunol Invest. 2010;39(4-5):303-355. doi: 10.3109/08820131003680369
McGhee JR, Fujihashi K. Inside the Mucosal Immune System. PLOS Biology. 2012;10(9):e1001397. doi: 10.1371/journal.pbio.1001397
Rescigno M, Urbano M, Valzasina B, et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol. 2001;2(4):361-367. doi: 10.1038/86373
Kucharzik T, Hudson JT, 3rd, Lügering A, et al. Acute induction of human IL-8 production by intestinal epithelium triggers neutrophil infiltration without mucosal injury. Gut. 2005;54(11):1565-72. doi: 10.1136/gut.2004.061168
Reizis B, Bunin A, Ghosh HS, Lewis KL, Sisirak V. Plasmacytoid dendritic cells: recent progress and open questions. Annu Rev Immunol. 2011;29:163-183. doi: 10.1146/annurev-immunol-031210-101345
Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, Ouellette AJ. Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol. 2000;1(2):113-8. doi: 10.1038/77783
Nair MG, Guild KJ, Du Y, et al. Goblet cell-derived resistin-like molecule beta augments CD4+ T cell production of IFN-gamma and infection-induced intestinal inflammation. J Immunol. 2008;181(7):4709-4715. doi: 10.4049/jimmunol.181.7.4709
Kim JM, Eckmann L, Savidge TC, Lowe DC, Witthöft T, Kagnoff MF. Apoptosis of human intestinal epithelial cells after bacterial invasion. J Clin Invest. 1998;102(10):1815-1823. doi: 10.1172/jci2466
Schulz O, Jaensson E, Persson EK, et al. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J Exp Med. 2009;206(13):3101-3114. doi: 10.1084/jem.20091925
Blander JM. On cell death in the intestinal epithelium and its impact on gut homeostasis. Curr Opin Gastroenterol. 2018;34(6):413-419. doi: 10.1097/MOG.0000000000000481
Huang F-P, Platt N, Wykes M, et al. A Discrete Subpopulation of Dendritic Cells Transports Apoptotic Intestinal Epithelial Cells to T Cell Areas of Mesenteric Lymph Nodes. J Exp Med. 2000;191(3):435-444. doi: 10.1084/jem.191.3.435
Huang FP, Platt N, Wykes M, et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J Exp Med. 2000;191(3):435-444. doi: 10.1084/jem.191.3.435
Jang MH, Sougawa N, Tanaka T, et al. CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes. J Immunol. 2006;176(2):803-810. doi: 10.4049/jimmunol.176.2.803
Albert ML, Pearce SF, Francisco LM, et al. Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med. 1998;188(7):1359-1368. doi: 10.1084/jem.188.7.1359
Chang S-Y, Ko H-J, Kweon M-N. Mucosal dendritic cells shape mucosal immunity. Exp Mol Med. 2014;46(3):e84-e84. doi: 10.1038/emm.2014.16
Kołodziej D, Pajtasz-Piasecka E. [Role of dendritic cells in recognizing antigens: their binding, transformation and presentation to T lymphocytes]. Postepy Hig Med Dosw. 2003;57(2):149-170.
Guermonprez P, Valladeau J, Zitvogel L, Théry C, Amigorena S. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol. 2002;20:621-667. doi: 10.1146/annurev.immunol.20.100301.064828
Stagg AJ, Kamm MA, Knight SC. Intestinal dendritic cells increase T cell expression of alpha4beta7 integrin. Eur J Immunol. May 2002;32(5):1445-54. doi: 10.1002/1521-4141(200205)32:5<1445::Aid-immu1445>3.0.Co;2-e
Stagg AJ, Hart AL, Knight SC, Kamm MA. The dendritic cell: its role in intestinal inflammation and relationship with gut bacteria. Gut. 2003;52(10):1522-1529. doi: 10.1136/gut.52.10.1522
Rigby RJ, Knight SC, Kamm MA, Stagg AJ. Production of interleukin (IL)-10 and IL-12 by murine colonic dendritic cells in response to microbial stimuli. Clin Exp Immunol. 2005;139(2):245-256. doi: 10.1111/j.1365-2249.2004.02674.x
Blander JM. Death in the intestinal epithelium-basic biology and implications for inflammatory bowel disease. FEBS J. 2016;283(14):2720-2730. doi: 10.1111/febs.13771
Pang Y, Du X, Xu X, Wang M, Li Z. Impairment of regulatory T cells in patients with neonatal necrotizing enterocolitis. Int Immunopharm. 2018;63:19-25. doi: 10.1016/j.intimp.2018.07.029
Wallace KL, Zheng L-B, Kanazawa Y, Shih DQ. Immunopathology of inflammatory bowel disease. World J Gastroenterol. 2014;20(1):6-21. doi: 10.3748/wjg.v20.i1.6
Zhang Y-Z, Li Y-Y. Inflammatory bowel disease: pathogenesis. World J Gastroenterol. 2014;20(1):91-99. doi: 10.3748/wjg.v20.i1.91
Weitkamp J-H, Koyama T, Rock MT, et al. Necrotising enterocolitis is characterised by disrupted immune regulation and diminished mucosal regulatory (FOXP3)/effector (CD4, CD8) T cell ratios. Gut. 2013;62(1):73-82. doi: 10.1136/gutjnl-2011-301551
Omenetti S, Pizarro TT. The Treg/Th17 Axis: A Dynamic Balance Regulated by the Gut Microbiome. Front Immunol. 2015;6:639. doi: 10.3389/fimmu.2015.00639
Pang Y, Du X, Xu X, Wang M, Li Z. Impairment of regulatory T cells in patients with neonatal necrotizing enterocolitis. Int Immunopharmacol. 2018;63:19-25. doi: 10.1016/j.intimp.2018.07.029
Pang Y, Du X, Xu X, Wang M, Li Z. Monocyte activation and inflammation can exacerbate Treg/Th17 imbalance in infants with neonatal necrotizing enterocolitis. Int Immunopharmacol. Jun 2018;59:354-360. doi: 10.1016/j.intimp.2018.04.026
Egan CE, Sodhi CP, Good M, et al. Toll-like receptor 4-mediated lymphocyte influx induces neonatal necrotizing enterocolitis. J Clin Invest. 2016;126(2):495-508. doi: 10.1172/JCI83356
Schmitt H, Neurath MF, Atreya R. Role of the IL23/IL17 Pathway in Crohn's Disease. Front Immunol. 2021;12:622934-622934. doi: 10.3389/fimmu.2021.622934
Zhou GX, Liu ZJ. Potential roles of neutrophils in regulating intestinal mucosal inflammation of inflammatory bowel disease. J Digest Dis. 2017;18(9):495-503. doi: 10.1111/1751-2980.12540
Wéra O, Lancellotti P, Oury C. The Dual Role of Neutrophils in Inflammatory Bowel Diseases. J Clin Med. 2016;5(12):118. doi: 10.3390/jcm5120118
Fournier BM, Parkos CA. The role of neutrophils during intestinal inflammation. Mucosal Immunology. 2012;5(4):354-366. doi: 10.1038/mi.2012.24
Cesaro A, Abakar-Mahamat A, Brest P, et al. Differential expression and regulation of ADAM17 and TIMP3 in acute inflamed intestinal epithelia. Am J Physiol Gastrointest Liver Physiol. Jun 2009;296(6):G1332-43. doi: 10.1152/ajpgi.90641.2008
Kucharzik T, Walsh SV, Chen J, Parkos CA, Nusrat A. Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins. Am J Pathol. Dec 2001;159(6):2001-9. doi: 10.1016/s0002-9440(10)63051-9
Prame Kumar K, Nicholls AJ, Wong CHY. Partners in crime: neutrophils and monocytes/macrophages in inflammation and disease. Cell Tissue Res. 2018;371(3):551-565. doi: 10.1007/s00441-017-2753-2
Pelletier M, Maggi L, Micheletti A, et al. Evidence for a cross-talk between human neutrophils and Th17 cells. Blood. 2010;115(2):335-343. doi: 10.1182/blood-2009-04-216085
Li Y, Wang W, Yang F, Xu Y, Feng C, Zhao Y. The regulatory roles of neutrophils in adaptive immunity. Cell Communication and Signaling. 2019;17(1):147. doi: 10.1186/s12964-019-0471-y
Li T, Wang C, Liu Y, et al. Neutrophil Extracellular Traps Induce Intestinal Damage and Thrombotic Tendency in Inflammatory Bowel Disease. Journal of Crohn's and Colitis. 2019;14(2):240-253. doi: 10.1093/ecco-jcc/jjz132
Castro-Dopico T, Fleming A, Dennison TW, et al. GM-CSF Calibrates Macrophage Defense and Wound Healing Programs during Intestinal Infection and Inflammation. Cell Rep. 2020;32(1):107857-107857. doi: 10.1016/j.celrep.2020.107857
Hine AM, Loke Pn. Intestinal Macrophages in Resolving Inflammation. J Immunol. 2019;203(3):593. doi: 10.4049/jimmunol.1900345
Mahida YR. The Key Role of Macrophages in the Immunopathogenesis of Inflammatory Bowel Disease. Inflammatory Bowel Diseases. 2000;6(1):21-33. doi: 10.1097/00054725-200002000-00004
Rosales C, Uribe-Querol E. Phagocytosis: A Fundamental Process in Immunity. Biomed Res Int. 2017;2017:9042851-9042851. doi: 10.1155/2017/9042851
Rincón M, Anguita J, Nakamura T, Fikrig E, Flavell RA. Interleukin (IL)-6 directs the differentiation of IL-4-producing CD4+ T cells. J Exp Med. 1997;185(3):461-9. doi: 10.1084/jem.185.3.461
Coffman RL, von der Weid T. Multiple pathways for the initiation of T helper 2 (Th2) responses. J Exp Med. 1997;185(3):373-375. doi: 10.1084/jem.185.3.373
Trinchieri G. Interleukin-12: a cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cells type 1 and cytotoxic lymphocytes. Blood. 1994;84(12):4008-4027. doi: 10.1182/blood.V84.12.4008.bloodjournal84124008
Williams JM, Duckworth CA, Burkitt MD, Watson AJM, Campbell BJ, Pritchard DM. Epithelial cell shedding and barrier function: a matter of life and death at the small intestinal villus tip. Vet Pathol. 2015;52(3):445-455. doi: 10.1177/0300985814559404
Kourtzelis I, Hajishengallis G, Chavakis T. Phagocytosis of Apoptotic Cells in Resolution of Inflammation. Mini Review. Front Immunol. 2020;11(553). doi: 10.3389/fimmu.2020.00553
Doran AC, Yurdagul A, Tabas I. Efferocytosis in health and disease. Nat Rev Immunol. 2020;20(4):254-267. doi: 10.1038/s41577-019-0240-6
Szondy Z, Garabuczi E, Joós G, Tsay GJ, Sarang Z. Impaired clearance of apoptotic cells in chronic inflammatory diseases: therapeutic implications. Frontiers in immunology. 2014;5:354-354. doi: 10.3389/fimmu.2014.00354
Ravichandran KS. "Recruitment signals" from apoptotic cells: invitation to a quiet meal. Cell. 2003;113(7):817-20. doi: 10.1016/s0092-8674(03)00471-9
Truman LA, Ford CA, Pasikowska M, et al. CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood. 2008;112(13):5026-36. doi: 10.1182/blood-2008-06-162404
Ravichandran KS. Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. J Exp Med. 2010;207(9):1807-1817. doi: 10.1084/jem.20101157
Elliott MR, Chekeni FB, Trampont PC, et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature. Sep 10 2009;461(7261):282-6. doi: 10.1038/nature08296
Gude DR, Alvarez SE, Paugh SW, et al. Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a "come-and-get-me" signal. Faseb J 2008;22(8):2629-2638. doi: 10.1096/fj.08-107169
Muñoz LE, Peter C, Herrmann M, Wesselborg S, Lauber K. Scent of dying cells: The role of attraction signals in the clearance of apoptotic cells and its immunological consequences. Autoimmunity Reviews. 2010/04/01/ 2010;9(6):425-430. doi: 10.1016/j.autrev.2009.11.016
Bournazou I, Pound JD, Duffin R, et al. Apoptotic human cells inhibit migration of granulocytes via release of lactoferrin. J Clin Invest. 2009;119(1):20-32. doi: 10.1172/jci36226
Lee S-A, Kim D, Min C, et al. Phagocyte Chemoattraction Is Induced through the Mcp-1-Ccr2 Axis during Efferocytosis. Cells. 2021;10(11):3115. doi: 10.3390/cells10113115
COUILLIN I, GOMBAULT A, Baron L. ATP release and purinergic signaling in NLRP3 inflammasome activation. Mini Review. Front Immunol. 2013;3(414)doi: 10.3389/fimmu.2012.00414
Kao J, Houck K, Fan Y, et al. Characterization of a novel tumor-derived cytokine. Endothelial-monocyte activating polypeptide II. J Biol Chem. 1994;269(40):25106-19.
Arandjelovic S, Ravichandran KS. Phagocytosis of apoptotic cells in homeostasis. Nature immunology. 2015;16(9):907-917. doi: 10.1038/ni.3253
Lauber K, Blumenthal SG, Waibel M, Wesselborg S. Clearance of Apoptotic Cells: Getting Rid of the Corpses. Molecular Cell. 2004;14(3):277-287. doi: 10.1016/S1097-2765(04)00237-0
Gardai SJ, Bratton DL, Ogden CA, Henson PM. Recognition ligands on apoptotic cells: a perspective. Journal of Leukocyte Biology. 2006;79(5):896-903. doi: 10.1189/jlb.1005550
Mariño G, Kroemer G. Mechanisms of apoptotic phosphatidylserine exposure. Cell Res. 2013;23(11):1247-1248. doi: 10.1038/cr.2013.115
Ferraro-Peyret C, Quemeneur L, Flacher M, Revillard J-P, Genestier L. Caspase-Independent Phosphatidylserine Exposure During Apoptosis of Primary T Lymphocytes. J Immunol. 2002;169(9):4805. doi: 10.4049/jimmunol.169.9.4805
Lee SH, Meng XW, Flatten KS, Loegering DA, Kaufmann SH. Phosphatidylserine exposure during apoptosis reflects bidirectional trafficking between plasma membrane and cytoplasm. Cell Death Differ. 2013;20(1):64-76. doi: 10.1038/cdd.2012.93
Borisenko GG, Matsura T, Liu S-X, et al. Macrophage recognition of externalized phosphatidylserine and phagocytosis of apoptotic Jurkat cells—existence of a threshold. Archives of Biochemistry and Biophysics. 2003;413(1):41-52. doi: 10.1016/S0003-9861(03)00083-3
Gardai SJ, McPhillips KA, Frasch SC, et al. Cell-Surface Calreticulin Initiates Clearance of Viable or Apoptotic Cells through trans-Activation of LRP on the Phagocyte. Cell. 2005;123(2):321-334. doi: 10.1016/j.cell.2005.08.032
Arosa FA, de Jesus O, Porto G, Carmo AM, de Sousa M. Calreticulin is expressed on the cell surface of activated human peripheral blood T lymphocytes in association with major histocompatibility complex class I molecules. J Biol Chem. 1999;274(24):16917-16922.
Barth ND, Marwick JA, Vendrell M, Rossi AG, Dransfield I. The "Phagocytic Synapse" and Clearance of Apoptotic Cells. Front Immunol. 2017;8:1708. doi: 10.3389/fimmu.2017.01708
Franz S, Frey B, Sheriff A, et al. Lectins detect changes of the glycosylation status of plasma membrane constituents during late apoptosis. Cytometry A. 2006;69(4):230-239. doi: 10.1002/cyto.a.20206
Spisek R, Charalambous A, Mazumder A, Vesole DH, Jagannath S, Dhodapkar MV. Bortezomib enhances dendritic cell (DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood. 2007;109(11):4839-4845. doi: 10.1182/blood-2006-10-054221
Spisek R, Dhodapkar MV. Towards a better way to die with chemotherapy: role of heat shock protein exposure on dying tumor cells. Cell Cycle. 2007;6(16):1962-1965. doi: 10.4161/cc.6.16.4601
Brown EJ, Frazier WA. Integrin-associated protein (CD47) and its ligands. Trends in Cell Biology. 2001;11(3):130-135. doi: 10.1016/S0962-8924(00)01906-1
Oronsky B, Carter C, Reid T, Brinkhaus F, Knox SJ. Just eat it: A review of CD47 and SIRP-α antagonism. Seminars in Oncology. 2020;47(2):117-124. doi: 10.1053/j.seminoncol.2020.05.009
Kojima Y, Volkmer J-P, McKenna K, et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature. 2016;536(7614):86-90. doi: 10.1038/nature18935
Park YJ, Liu G, Lorne EF, et al. PAI-1 inhibits neutrophil efferocytosis. Proc Natl Acad Sci U S A. Aug 19 2008;105(33):11784-11789. doi: 10.1073/pnas.0801394105
Brown S, Heinisch I, Ross E, Shaw K, Buckley CD, Savill J. Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment. Nature. 2002;418(6894):200-203. doi: 10.1038/nature00811
Barkal AA, Brewer RE, Markovic M, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature. 2019;572(7769):392-396. doi: 10.1038/s41586-019-1456-0
Elliott MR, Koster KM, Murphy PS. Efferocytosis Signaling in the Regulation of Macrophage Inflammatory Responses. J Immunol. 2017;198(4):1387-1394. doi: 10.4049/jimmunol.1601520
Penberthy KK, Ravichandran KS. Apoptotic cell recognition receptors and scavenger receptors. Immunol Rev. 2016;269(1):44-59. doi: 10.1111/imr.12376
Green DR, Oguin TH, Martinez J. The clearance of dying cells: table for two. Cell Death Differ. 2016;23(6):915-926. doi: 10.1038/cdd.2015.172
Das S, Sarkar A, Ryan KA, et al. Brain angiogenesis inhibitor 1 is expressed by gastric phagocytes during infection with Helicobacter pylori and mediates the recognition and engulfment of human apoptotic gastric epithelial cells. FASEB J. 2014;28(5):2214-2224. doi: 10.1096/fj.13-243238
Kobayashi N, Karisola P, Peña-Cruz V, et al. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity. 2007;27(6):927-940. doi: 10.1016/j.immuni.2007.11.011
Ocaña-Guzman R, Torre-Bouscoulet L, Sada-Ovalle I. TIM-3 Regulates Distinct Functions in Macrophages. Front Immunol. 2016;7:229-229. doi: 10.3389/fimmu.2016.00229
Simhadri VR, Andersen JF, Calvo E, Choi S-C, Coligan JE, Borrego F. Human CD300a binds to phosphatidylethanolamine and phosphatidylserine, and modulates the phagocytosis of dead cells. Blood. 2012;119(12):2799-2809. doi: 10.1182/blood-2011-08-372425
Nakahashi-Oda C, Fujiyama S, Nakazawa Y, et al. CD300a blockade enhances efferocytosis by infiltrating myeloid cells and ameliorates neuronal deficit after ischemic stroke. Science Immunology. 2021;6(64):eabe7915. doi: doi: 10.1126/sciimmunol.abe7915
Nakahashi-Oda C, Tahara-Hanaoka S, Shoji M, et al. Apoptotic cells suppress mast cell inflammatory responses via the CD300a immunoreceptor. J Exp Med. 2012;209(8):1493-503. doi: 10.1084/jem.20120096
Park SY, Jung MY, Kim HJ, et al. Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor. Cell Death & Differentiation. 2008;15(1):192-201. doi: 10.1038/sj.cdd.4402242
Park SY, Jung MY, Lee SJ, et al. Stabilin-1 mediates phosphatidylserine-dependent clearance of cell corpses in alternatively activated macrophages. J Cell Sci. 2009;122(Pt 18):3365-73. doi: 10.1242/jcs.049569
Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S. Identification of a factor that links apoptotic cells to phagocytes. Nature. 2002;417(6885):182-7. doi: 10.1038/417182a
Mevorach D, Mascarenhas JO, Gershov D, Elkon KB. Complement-dependent clearance of apoptotic cells by human macrophages. J Exp Med. 1998;188(12):2313-20. doi: 10.1084/jem.188.12.2313
van der Meer JHM, van der Poll T, van ‘t Veer C. TAM receptors, Gas6, and protein S: roles in inflammation and hemostasis. Blood. 2014;123(16):2460-2469. doi: 10.1182/blood-2013-09-528752
Stitt TN, Conn G, Gore M, et al. The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell. 1995;80(4):661-670. doi: 10.1016/0092-8674(95)90520-0
Moodley Y, Rigby P, Bundell C, et al. Macrophage recognition and phagocytosis of apoptotic fibroblasts is critically dependent on fibroblast-derived thrombospondin 1 and CD36. Am J Pathol. 2003;162(3):771-779. doi: 10.1016/s0002-9440(10)63874-6
Gheibi Hayat SM, Bianconi V, Pirro M, Sahebkar A. Efferocytosis: molecular mechanisms and pathophysiological perspectives. Immunology & Cell Biology. 2019;97(2):124-133. doi: 10.1111/imcb.12206
Abdolmaleki F, Farahani N, Gheibi Hayat SM, et al. The Role of Efferocytosis in Autoimmune Diseases. Review. Front Immunol. 2018;9:1645. doi: 10.3389/fimmu.2018.01645
Martinez J, Almendinger J, Oberst A, et al. Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc Natl Acad Sci U S A. 2011;108(42):17396-401. doi: 10.1073/pnas.1113421108
Sanjuan MA, Dillon CP, Tait SW, et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature. 2007;450(7173):1253-7. doi: 10.1038/nature06421
Briken V. "With a little help from my friends": efferocytosis as an antimicrobial mechanism. Cell Host Microbe. 2012;12(3):261-3. doi: 10.1016/j.chom.2012.08.008
Martin CJ, Booty MG, Rosebrock TR, et al. Efferocytosis is an innate antibacterial mechanism. Cell host & microbe. 2012;12(3):289-300. doi: 10.1016/j.chom.2012.06.010
Fujimoto I, Pan J, Takizawa T, Nakanishi Y. Virus clearance through apoptosis-dependent phagocytosis of influenza A virus-infected cells by macrophages. J Virol. 2000;74(7):3399-3403. doi: 10.1128/jvi.74.7.3399-3403.2000
Korns D, Frasch S, Fernandez-Boyanapalli R, Henson P, Bratton D. Modulation of Macrophage Efferocytosis in Inflammation. Review. Front Immunol. 2011;2(57)doi: 10.3389/fimmu.2011.00057
Tiemessen MM, Jagger AL, Evans HG, van Herwijnen MJ, John S, Taams LS. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci U S A. 2007;104(49):19446-19451. doi: 10.1073/pnas.0706832104
Bystrom J, Evans I, Newson J, et al. Resolution-phase macrophages possess a unique inflammatory phenotype that is controlled by cAMP. Blood. 2008;112(10):4117-27. doi: 10.1182/blood-2007-12-129767
Schif-Zuck S, Gross N, Assi S, Rostoker R, Serhan CN, Ariel A. Saturated-efferocytosis generates pro-resolving CD11b low macrophages: modulation by resolvins and glucocorticoids. Eur J Immunol. 2011;41(2):366-379. doi: 10.1002/eji.201040801
Gery I, Davies P. 13 - Immunoregulatory Products of Macrophages. In: Cohen S, Pick E, Oppenheim JJ, eds. Biology of the Lymphokines. Academic Press; 1979:347-367.
Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41(1):49-61. doi: 10.1016/j.immuni.2014.06.010
Kohli K, Pillarisetty VG, Kim TS. Key chemokines direct migration of immune cells in solid tumors. Cancer Gene Therapy. 2021;doi: 10.1038/s41417-021-00303-x
Li J, Tan J, Martino MM, Lui KO. Regulatory T-Cells: Potential Regulator of Tissue Repair and Regeneration. Review. Front Immunol. 2018;9(585)doi: 10.3389/fimmu.2018.00585
Akisu M, Küllahçioğlu Girgin F, Baka M, Hüsseyinov A, Kültürsay N. The role of recombinant human erythropoietin in lipid peroxidation and platelet-activating factor generation in a rat model of necrotizing enterocolitis. Eur J Pediatr Surg. 2001;11(3):167-72. doi: 10.1055/s-2001-15485
Okur H, Küçükaydin M, Köse K, Kontaş O, Doğam P, Kazez A. Hypoxia-induced necrotizing enterocolitis in the immature rat: the role of lipid peroxidation and management by vitamin E. J Pediatr Surg. 1995;30(10):1416-9. doi: 10.1016/0022-3468(95)90395-x
Aceti A, Beghetti I, Martini S, Faldella G, Corvaglia L. Oxidative Stress and Necrotizing Enterocolitis: Pathogenetic Mechanisms, Opportunities for Intervention, and Role of Human Milk. Oxid Med Cell Longev. 2018;2018:7397659. doi: 10.1155/2018/7397659
Yurdagul A, Doran AC, Cai B, Fredman G, Tabas IA. Mechanisms and Consequences of Defective Efferocytosis in Atherosclerosis. Review. Frontiers in Cardiovascular Medicine. 2018;4:86. doi: 10.3389/fcvm.2017.00086
Gounopoulos P, Merki E, Hansen LF, Choi SH, Tsimikas S. Antibodies to oxidized low density lipoprotein: epidemiological studies and potential clinical applications in cardiovascular disease. Minerva Cardioangiol. Dec 2007;55(6):821-37.
Chang MK, Bergmark C, Laurila A, et al. Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: evidence that oxidation-specific epitopes mediate macrophage recognition. Proc Natl Acad Sci U S A. 25 1999;96(11):6353-6358. doi: 10.1073/pnas.96.11.6353
Mihi B, Good M. Impact of Toll-Like Receptor 4 Signaling in Necrotizing Enterocolitis: The State of the Science. Clin Perinatol. 2019;46(1):145-157. doi: 10.1016/j.clp.2018.09.007
Hackam DJ, Sodhi CP. Toll-Like Receptor-Mediated Intestinal Inflammatory Imbalance in the Pathogenesis of Necrotizing Enterocolitis. Cell Mol Gastroenterol Hepatol. 2018;6(2):229-238.e1. doi: 10.1016/j.jcmgh.2018.04.001
Wang L, Li H, Tang Y, Yao P. Potential Mechanisms and Effects of Efferocytosis in Atherosclerosis. Review. Front Endocrinol. 2021;11(1113)doi: 10.3389/fendo.2020.585285
N AG, Bensinger SJ, Hong C, et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity. 2009;31(2):245-258. doi: 10.1016/j.immuni.2009.06.018
Komura H, Miksa M, Wu R, Goyert SM, Wang P. Milk fat globule epidermal growth factor-factor VIII is down-regulated in sepsis via the lipopolysaccharide-CD14 pathway. J Immunol. 2009;182(1):581-587. doi: 10.4049/jimmunol.182.1.581
Feng X, Deng T, Zhang Y, Su S, Wei C, Han D. Lipopolysaccharide inhibits macrophage phagocytosis of apoptotic neutrophils by regulating the production of tumour necrosis factor α and growth arrest-specific gene 6. Immunology. 2011;132(2):287-295. doi: 10.1111/j.1365-2567.2010.03364.x
Welch JS, Ricote M, Akiyama TE, Gonzalez FJ, Glass CK. PPARgamma and PPARdelta negatively regulate specific subsets of lipopolysaccharide and IFN-gamma target genes in macrophages. Proc Natl Acad Sci U S A. 2003;100(11):6712-6717. doi: 10.1073/pnas.1031789100
Pender SL, Braegger C, Gunther U, et al. Matrix metalloproteinases in necrotising enterocolitis. Pediatr Res. 2003;54(2):160-164. doi: 10.1203/01.Pdr.0000072326.23442.C3
Betancur PA, Abraham BJ, Yiu YY, et al. A CD47-associated super-enhancer links pro-inflammatory signalling to CD47 upregulation in breast cancer. Nat Commun. 2017;8:14802. doi: 10.1038/ncomms14802
McPhillips K, Janssen WJ, Ghosh M, et al. TNF-alpha inhibits macrophage clearance of apoptotic cells via cytosolic phospholipase A2 and oxidant-dependent mechanisms. J Immunol. 2007;178(12):8117-8126. doi: 10.4049/jimmunol.178.12.8117
Wei J, Tang D, Lu C, et al. Irf5 deficiency in myeloid cells prevents necrotizing enterocolitis by inhibiting M1 macrophage polarization. Mucosal Immunology. 2019;12(4):888-896. doi: 10.1038/s41385-019-0169-x
Vincent D, Klinke M, Eschenburg G, et al. NEC is likely a NETs dependent process and markers of NETosis are predictive of NEC in mice and humans. Sci Rep. 2018;8(1):12612-12612. doi: 10.1038/s41598-018-31087-0
Chen K, Murao A, Arif A, et al. Inhibition of Efferocytosis by Extracellular CIRP-Induced Neutrophil Extracellular Traps. J Immunol. 2021;206(4):797-806. doi: 10.4049/jimmunol.2000091
Friggeri A, Banerjee S, Xie N, et al. Extracellular histones inhibit efferocytosis. Mol Med. 2012;18(1):825-833. doi: 10.2119/molmed.2012.00005
Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418(6894):191-195. doi: 10.1038/nature00858
Rock KL, Kono H. The inflammatory response to cell death. Annu Rev Pathol. 2008;3:99-126. doi: 10.1146/annurev.pathmechdis.3.121806.151456
Moretti R, Pansiot J, Bettati D, et al. Blood-brain barrier dysfunction in disorders of the developing brain. Front Neurosci. 2015;9:40. doi: 10.3389/fnins.2015.00040
van der Heide M, Mebius MJ, Bos AF, et al. Hypoxic/ischemic hits predispose to necrotizing enterocolitis in (near) term infants with congenital heart disease: a case control study. BMC Pediatrics. 2020;20(1):553. doi: 10.1186/s12887-020-02446-6
Radi R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proceedings of the National Academy of Sciences. 2018;115(23):5839. doi: 10.1073/pnas.1804932115
Sampah MES, Hackam DJ. Prenatal Immunity and Influences on Necrotizing Enterocolitis and Associated Neonatal Disorders. Review. Front Immunol. 2021;12:1367. doi: 10.3389/fimmu.2021.650709
Smith PL, Hagberg H, Naylor AS, Mallard C. Neonatal peripheral immune challenge activates microglia and inhibits neurogenesis in the developing murine hippocampus. Dev Neurosci. 2014;36(2):119-131. doi: 10.1159/000359950
Favrais G, van de Looij Y, Fleiss B, et al. Systemic inflammation disrupts the developmental program of white matter. Ann Neurol. 2011;70(4):550-565. doi: 10.1002/ana.22489
Wang KC, Fan LW, Kaizaki A, Pang Y, Cai Z, Tien LT. Neonatal lipopolysaccharide exposure induces long-lasting learning impairment, less anxiety-like response and hippocampal injury in adult rats. Neuroscience. 2013;234:146-157. doi: 10.1016/j.neuroscience.2012.12.049
Márquez-Ropero M, Benito E, Plaza-Zabala A, Sierra A. Microglial Corpse Clearance: Lessons From Macrophages. Review. Frontiers in Immunology. 2020;11(506)doi: 10.3389/fimmu.2020.00506
Allendorf DH, Puigdellívol M, Brown GC. Activated microglia desialylate their surface, stimulating complement receptor 3-mediated phagocytosis of neurons. Glia. 2020;68(5):989-998. doi: 10.1002/glia.23757
Butler CA, Popescu AS, Kitchener EJA, Allendorf DH, Puigdellívol M, Brown GC. Microglial phagocytosis of neurons in neurodegeneration, and its regulation. J Neurochem. 2021;158(3):621-639. doi: 10.1111/jnc.15327
Neniskyte U, Vilalta A, Brown GC. Tumour necrosis factor alpha-induced neuronal loss is mediated by microglial phagocytosis. FEBS Lett. 2014;588(17):2952-2956. doi: 10.1016/j.febslet.2014.05.046
Bialas AR, Stevens B. TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat Neurosci. 2013;16(12):1773-1782. doi: 10.1038/nn.3560
Lehrman EK, Wilton DK, Litvina EY, et al. CD47 Protects Synapses from Excess Microglia-Mediated Pruning during Development. Neuron. 2018;100(1):120-134.e6. doi: 10.1016/j.neuron.2018.09.017
Gitik M, Liraz-Zaltsman S, Oldenborg PA, Reichert F, Rotshenker S. Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPα (signal regulatory protein-α) on phagocytes. J Neuroinflammation. 2011;8:24. doi: 10.1186/1742-2094-8-24
Diaz-Aparicio I, Paris I, Sierra-Torre V, et al. Microglia Actively Remodel Adult Hippocampal Neurogenesis through the Phagocytosis Secretome. J Neurosci. 2020;40(7):1453-1482. doi: 10.1523/jneurosci.0993-19.2019
Cunningham CL, Martínez-Cerdeño V, Noctor SC. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2013;33(10):4216-4233. doi: 10.1523/JNEUROSCI.3441-12.2013
Hakim-Mishnaevski K, Flint-Brodsly N, Shklyar B, Levy-Adam F, Kurant E. Glial Phagocytic Receptors Promote Neuronal Loss in Adult Drosophila Brain. Cell Rep. 2019;29(6):1438-1448.e3. doi: 10.1016/j.celrep.2019.09.086
Janda E, Boi L, Carta AR. Microglial Phagocytosis and Its Regulation: A Therapeutic Target in Parkinson’s Disease? Mini Review. Front Mol Neurosci. 2018;11:144. doi: 10.3389/fnmol.2018.00144
Sha Q, Truong-Tran AQ, Plitt JR, Beck LA, Schleimer RP. Activation of airway epithelial cells by toll-like receptor agonists. Am J Respir Cell Mol Biol. 2004;31(3):358-364. doi: 10.1165/rcmb.2003-0388OC
Andonegui G, Bonder CS, Green F, et al. Endothelium-derived Toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs. J Clin Invest. 2003;111(7):1011-1120. doi: 10.1172/jci16510
Perros F, Lambrecht BN, Hammad H. TLR4 signalling in pulmonary stromal cells is critical for inflammation and immunity in the airways. Respiratory Research. 2011/12/01 2011;12(1):125. doi: 10.1186/1465-9921-12-125
Jasper AE, McIver WJ, Sapey E, Walton GM. Understanding the role of neutrophils in chronic inflammatory airway disease. F1000Res. 2019;8:F1000 Faculty Rev-557. doi: 10.12688/f1000research.18411.1
Kobayashi SD, Braughton KR, Whitney AR, et al. Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils. Proceedings of the National Academy of Sciences. 2003;100(19):10948. doi: 10.1073/pnas.1833375100
Fadok VA, Bratton DL, Guthrie L, Henson PM. Differential effects of apoptotic versus lysed cells on macrophage production of cytokines: role of proteases. J Immunol. 2001;166(11):6847-54. doi: 10.4049/jimmunol.166.11.6847
McCubbrey AL, Curtis JL. Efferocytosis and lung disease. Chest. 2013;143(6):1750-1757. doi: 10.1378/chest.12-2413
Janssen WJ, McPhillips KA, Dickinson MG, et al. Surfactant proteins A and D suppress alveolar macrophage phagocytosis via interaction with SIRP alpha. Am J Respir Crit Care Med. 2008;178(2):158-167. doi: 10.1164/rccm.200711-1661OC
Allard B, Panariti A, Martin JG. Alveolar Macrophages in the Resolution of Inflammation, Tissue Repair, and Tolerance to Infection. Mini Review. Front Immunol. 2018;9:1777. doi: 10.3389/fimmu.2018.01777
Sadeghi K, Berger A, Langgartner M, et al. Immaturity of Infection Control in Preterm and Term Newborns Is Associated with Impaired Toll-Like Receptor Signaling. J Infectious Diseases. 2007;195(2):296-302. doi: 10.1086/509892
de Jong E, Strunk T, Burgner D, Lavoie PM, Currie A. The phenotype and function of preterm infant monocytes: implications for susceptibility to infection. Journal of Leukocyte Biology. 2017;102(3):645-656. doi: 10.1189/jlb.4RU0317-111R
Mezu-Ndubuisi OJ, Maheshwari A. Role of macrophages in fetal development and perinatal disorders. Pediatric Research. 2021;90(3):513-523. doi: 10.1038/s41390-020-01209-4
Lin F, Xiong M, Hao W, et al. A Novel Blockade CD47 Antibody With Therapeutic Potential for Cancer. Original Research. Front Oncol. 2021;10:2824. doi: 10.3389/fonc.2020.615534
Park S-Y, Kim I-S. Engulfment signals and the phagocytic machinery for apoptotic cell clearance. Exp Mol Med. 2017;49(5):e331-e331. doi: 10.1038/emm.2017.52
Zhang W, Huang Q, Xiao W, et al. Advances in Anti-Tumor Treatments Targeting the CD47/SIRPα Axis. Front Immunol. 2020;11:18. doi: 10.3389/fimmu.2020.00018
Jia X, Yan B, Tian X, et al. CD47/SIRPα pathway mediates cancer immune escape and immunotherapy. Int J Biol Sci. 2021;17(13):3281-3287. doi: 10.7150/ijbs.60782
Cai B, Kasikara C, Doran AC, Ramakrishnan R, Birge RB, Tabas I. MerTK signaling in macrophages promotes the synthesis of inflammation resolution mediators by suppressing CaMKII activity. Sci Signal. 2018;11549. doi: 10.1126/scisignal.aar3721
Cai B, Thorp EB, Doran AC, et al. MerTK cleavage limits proresolving mediator biosynthesis and exacerbates tissue inflammation. Proc Natl Acad Sci U S A. 2016;113(23):6526-6531. doi: 10.1073/pnas.1524292113
Rymut N, Heinz J, Sadhu S, et al. Resolvin D1 promotes efferocytosis in aging by limiting senescent cell-induced MerTK cleavage. Faseb J. 2020;34(1):597-609. doi: 10.1096/fj.201902126R
Rzymski T, Petry A, Kračun D, et al. The unfolded protein response controls induction and activation of ADAM17/TACE by severe hypoxia and ER stress. Oncogene. 2012;31(31):3621-3634. doi: 10.1038/onc.2011.522
DeBerge M, Yeap XY, Dehn S, et al. MerTK Cleavage on Resident Cardiac Macrophages Compromises Repair After Myocardial Ischemia Reperfusion Injury. Circ Res. 2017;121(8):930-940. doi: 10.1161/circresaha.117.311327
Driscoll WS, Vaisar T, Tang J, Wilson CL, Raines EW. Macrophage ADAM17 deficiency augments CD36-dependent apoptotic cell uptake and the linked anti-inflammatory phenotype. Cir Res 2013;113(1):52-61. doi: 10.1161/CIRCRESAHA.112.300683
Fredman G, Hellmann J, Proto JD, et al. An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques. Nat Commun. 2016;7:12859. doi: 10.1038/ncomms12859
Kang JW, Lee SM. Resolvin D1 protects the liver from ischemia/reperfusion injury by enhancing M2 macrophage polarization and efferocytosis. Biochim Biophys Acta. 2016;1861(9 Pt A):1025-1035. doi: 10.1016/j.bbalip.2016.06.002
Decker C, Sadhu S, Fredman G. Pro-Resolving Ligands Orchestrate Phagocytosis. Front Immunol. 2021;12:660865-660865. doi: 10.3389/fimmu.2021.660865
Rymut N, Heinz J, Sadhu S, et al. Resolvin D1 promotes efferocytosis in aging by limiting senescent cell-induced MerTK cleavage. FASEB J. 2020;34(1):597-609. doi: 10.1096/fj.201902126R
Reville K, Crean JK, Vivers S, Dransfield I, Godson C. Lipoxin A4 redistributes myosin IIA and Cdc42 in macrophages: implications for phagocytosis of apoptotic leukocytes. J Immunol. 2006;176(3):1878-1888. doi: 10.4049/jimmunol.176.3.1878
Schlegel RA, Williamson P. Phosphatidylserine, a death knell. Cell Death Differ. 2001;8(6):551-563. doi: 10.1038/sj.cdd.4400817
Fernandez-Boyanapalli RF, Frasch SC, McPhillips K, et al. Impaired apoptotic cell clearance in CGD due to altered macrophage programming is reversed by phosphatidylserine-dependent production of IL-4. Blood. 2009;113(9):2047-2055. doi: 10.1182/blood-2008-05-160564
Utsugi T, Schroit AJ, Connor J, Bucana CD, Fidler IJ. Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res. Jun 1 1991;51(11):3062-6.
Beck AW, Luster TA, Miller AF, et al. Combination of a monoclonal anti-phosphatidylserine antibody with gemcitabine strongly inhibits the growth and metastasis of orthotopic pancreatic tumors in mice. Int J Cancer. May 15 2006;118(10):2639-43. doi: 10.1002/ijc.21684
De M, Ghosh S, Sen T, et al. A Novel Therapeutic Strategy for Cancer Using Phosphatidylserine Targeting Stearylamine-Bearing Cationic Liposomes. Mol Ther Nucleic Acids. 2018;10:9-27. doi: 10.1016/j.omtn.2017.10.019
Peer D, Margalit R. Tumor-targeted hyaluronan nanoliposomes increase the antitumor activity of liposomal Doxorubicin in syngeneic and human xenograft mouse tumor models. Neoplasia. 2004;6(4):343-353. doi: 10.1593/neo.03460
Soares MM, King SW, Thorpe PE. Targeting inside-out phosphatidylserine as a therapeutic strategy for viral diseases. Nat Med. 2008;14(12):1357-1362. doi: 10.1038/nm.1885
Mota AC, Dominguez M, Weigert A, Snodgrass RG, Namgaladze D, Brüne B. Lysosome-Dependent LXR and PPARδ Activation Upon Efferocytosis in Human Macrophages. Original Research. Front Immunol. 2021;12:63778. doi: 10.3389/fimmu.2021.637778
Heming M, Gran S, Jauch S-L, et al. Peroxisome Proliferator-Activated Receptor-γ Modulates the Response of Macrophages to Lipopolysaccharide and Glucocorticoids. Original Research. Front Immunol. 2018;9:893. doi: 10.3389/fimmu.2018.00893
Croasdell A, Duffney PF, Kim N, Lacy SH, Sime PJ, Phipps RP. PPARγ and the Innate Immune System Mediate the Resolution of Inflammation. PPAR Res. 2015;2015:549691-549691. doi: 10.1155/2015/549691
A-González N, Castrillo A. Liver X receptors as regulators of macrophage inflammatory and metabolic pathways. Biochim Bioph Acta. 2011;1812(8):982-994. doi: 10.1016/j.bbadis.2010.12.015
Bratton D, Boyanapalli R, Falcone L, Zerbe C, Marciano B, Holland S. Impaired Efferocytosis and Production of Mitochondrial Reactive Oxygen Species (mitoROS) By Monocytes in Human Chronic Granulomatous Disease (CGD) Is Reversed By Treatment with the Ppargamma Agonist Pioglitazone (Pio). J Allergy Clin Immunol. 2016;137:AB176. doi: 10.1016/j.jaci.2015.12.711
Penas F, Mirkin GA, Vera M, et al. Treatment in vitro with PPARα and PPARγ ligands drives M1-to-M2 polarization of macrophages from T. cruzi-infected mice. Biochim Bioph Acta. 2015;1852(5):893-904. doi: 10.1016/j.bbadis.2014.12.019
Garcia-Aguilar T, Espinosa-Cueto P, Magallanes-Puebla A, Mancilla R. The Mannose Receptor Is Involved in the Phagocytosis of Mycobacteria-Induced Apoptotic Cells. J Immunol Res. 2016;2016:3845247. doi: 10.1155/2016/3845247
Majai G, Sarang Z, Csomós K, Zahuczky G, Fésüs L. PPARgamma-dependent regulation of human macrophages in phagocytosis of apoptotic cells. Eur J Immunol. 2007;37(5):1343-54. doi: 10.1002/eji.200636398
Schulman IG. Liver X receptors link lipid metabolism and inflammation. FEBS Lett. 2017;591(19):2978-2991. doi: 10.1002/1873-3468.12702
Ehrchen JM, Roth J, Barczyk-Kahlert K. More Than Suppression: Glucocorticoid Action on Monocytes and Macrophages. Review. Front Immunol. 2019;10:2028. doi: 10.3389/fimmu.2019.02028
Lauber K, Keppeler H, Munoz LE, et al. Milk fat globule-EGF factor 8 mediates the enhancement of apoptotic cell clearance by glucocorticoids. Cell Death Differ. 2013;20(9):1230-1240. doi: 10.1038/cdd.2013.82
Desgeorges T, Caratti G, Mounier R, Tuckermann J, Chazaud B. Glucocorticoids Shape Macrophage Phenotype for Tissue Repair. Mini Review. Front Immunol. 2019;10:1591. doi: 10.3389/fimmu.2019.01591
Higham A, Scott T, Li J, et al. Effects of corticosteroids on COPD lung macrophage phenotype and function. Clin Sci. 2020;134(7):751-763. doi: 10.1042/cs20191202
Garabuczi É, Sarang Z, Szondy Z. Glucocorticoids enhance prolonged clearance of apoptotic cells by upregulating liver X receptor, peroxisome proliferator-activated receptor-δ and UCP2. Biochim Biophys Acta. 2015;1853(3):573-582. doi: 10.1016/j.bbamcr.2014.12.014
Scannell M, Flanagan MB, deStefani A, et al. Annexin-1 and Peptide Derivatives Are Released by Apoptotic Cells and Stimulate Phagocytosis of Apoptotic Neutrophils by Macrophages. J Immunol. 2007;178(7):4595. doi: 10.4049/jimmunol.178.7.4595
Maderna P, Yona S, Perretti M, Godson C. Modulation of Phagocytosis of Apoptotic Neutrophils by Supernatant from Dexamethasone-Treated Macrophages and Annexin-Derived Peptide Ac(2-26). J Immunol. 2005;174(6):3727. doi: 10.4049/jimmunol.174.6.3727
Tzelepis F, Verway M, Daoud J, et al. Annexin1 regulates DC efferocytosis and cross-presentation during Mycobacterium tuberculosis infection. J Clin Invest. 2014;125doi: 10.1172/JCI77014
Dimmitt RA, Moss RL. Clinical Management of Necrotizing Enterocolitis. NeoReviews. 2001;2(5):e110-e117. doi: 10.1542/neo.2-5-e110
Henry MCW, Moss RL. Neonatal necrotizing enterocolits. Seminars in Pediatric Surgery. 2008;17(2):98-109. doi: 10.1053/j.sempedsurg.2008.02.005
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 European Journal of Clinical and Experimental Medicine

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our open access policy is in accordance with the Budapest Open Access Initiative (BOAI) definition: this means that articles have free availability on the public Internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from having access to the Internet itself.
All articles are published with free open access under the CC-BY Creative Commons attribution license (the current version is CC-BY, version 4.0). If you submit your paper for publication by the Eur J Clin Exp Med, you agree to have the CC-BY license applied to your work. Under this Open Access license, you, as the author, agree that anyone may download and read the paper for free. In addition, the article may be reused and quoted provided that the original published version is cited. This facilitates freedom in re-use and also ensures that Eur J Clin Exp Med content can be mined without barriers for the research needs.




