Effectiveness of novel iron regulators in the treatment of diabetic nephropathy

Authors

DOI:

https://doi.org/10.15584/ejcem.2023.3.28

Keywords:

acute kidney injury, chronic kidney disease, end-stage renal disease, iron chelators, renal iron handling

Abstract

Introduction and aim. The novel advancements of upcoming iron regulators used to treat diabetic nephropathy have implicated a common manifestation of combination chelation therapy used to eliminate end-stage renal disease associated with inflammation and iron imbalance that is altered by renal iron absorption. However, iron accumulation in the clustered kidneys that filter blood may cause problems that affect diabetic blood sugar regulation.

Material and methods. A well-designed method was employed to discover relevant research publications on iron chelators and their potential to treat diabetic nephropathy. “Iron chelators”, “diabetic nephropathy”, “end-stage renal disease”, and “chelation therapy” were searched in Google Scholar, Web of Science, PubMed, and EMBASE.

Analysis of literature. Although the specific etiology and development have not been fully explored, emerging evidence on iron pathophysiology helps comprehend the pathogenesis of acute kidney damage and chronic kidney disease, which crucially provides novel iron chelation therapy techniques. Ferroptosis and hepcidin marker proteins increase oxidative/nitrifying stress and kidney injury. Iron chelator medicines including deferoxamine, deferasirox, and deferiprone were tested as prophylactic strategies.

Conclusion. This article covers both preclinical and clinical aspects of iron chelators to avoid diabetic nephropathy, including novel iron therapies that must be reviewed when selecting dosing regimens.

Downloads

Download data is not yet available.

References

van Raaij S, van Swelm R, Bouman K, et al. Tubular iron deposition and iron handling proteins in human healthy kidney and chronic kidney disease. Sci Rep. 2018;8(1):9353. doi: 10.1038/s41598-018-27107-8

Magee C, Grieve DJ, Watson CJ, Brazil DP. Diabetic Nephropathy: a Tangled Web to Unweave. Cardiovasc Drugs Ther. 2017;31(5-6):579-592. doi: 10.1007/s10557-017-6755-9

Oltean S, Coward R, Collino M, Baelde H. Diabetic Nephropathy: Novel Molecular Mechanisms and Therapeutic Avenues. Biomed Res Int. 2017;2017:1-1. doi: 10.1155/2017/3146524

Murphy F, Bennett L, Jenkins K. Managing anaemia of chronic kidney disease. British Journal of Nursing. 2010;19(20):1281-1286. doi: 10.12968/bjon.2010.19.20.79681

Besarab A, Coyne DW. Iron supplementation to treat anemia in patients with chronic kidney disease. Nat Rev Nephrol. 2010;6(12):699-710. doi: 10.1038/nrneph.2010.139

Chaudhary K, Chilakala A, Ananth S, et al. Renal iron accelerates the progression of diabetic nephropathy in the HFE gene knockout mouse model of iron overload. American Journal of Physiology-Renal Physiology. 2019;317(2):512-517. doi: 10.1152/ajprenal.00184.2019

Ganz T, Nemeth E. Iron Balance and the Role of Hepcidin in Chronic Kidney Disease. Semin Nephrol. 2016;36(2):87-93. doi: 10.1016/j.semnephrol.2016.02.001

Ganz T. Systemic Iron Homeostasis. Physiol Rev. 2013;93(4):1721-1741. doi: 10.1152/physrev.00008.2013

Abbaspour N HRKR. Review on iron and its importance for human health. J Res Med Sci. 2014;19(2):164-174.

Donovan A, Lima CA, Pinkus JL, et al. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 2005;1(3):191-200. doi: 10.1016/j.cmet.2005.01.003

Coyne DW. Hepcidin: clinical utility as a diagnostic tool and therapeutic target. Kidney Int. 2011;80(3):240-244. doi: 10.1038/ki.2011.141

Walker VJ, Agarwal A. Targeting Iron Homeostasis in Acute Kidney Injury. Semin Nephrol. 2016;36(1):62-70. doi: 10.1016/j.semnephrol.2016.01.003

Schrier RW, Wang W, Poole B, Mitra A. Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. J Clin Investig. 2004;114(1):5-14. doi: 10.1172/JCI22353

Jacobs A. Serum ferritin and iron stores. Fed Proc. 1977;36(7):2024-2027.

Sharma S, Leaf DE. Iron Chelation as a Potential Therapeutic Strategy for AKI Prevention. J Am Soc Nephrol. 2019;30(11):2060-2071. doi: 10.1681/ASN.2019060595

Pavkov ME, Knowler WC, Bennett PH, Looker HC, Krakoff J, Nelson RG. Increasing incidence of proteinuria and declining incidence of end-stage renal disease in diabetic Pima Indians. Kidney Int. 2006;70(10):1840-1846. doi: 10.1038/sj.ki.5001882

Hoste EAJ, Bagshaw SM, Bellomo R, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41(8):1411-1423. doi: 10.1007/s00134-015-3934-7

Selim M. Deferoxamine Mesylate. Stroke. 2009;40(3),1:90-91. doi: 10.1161/STROKEAHA.108.533125

Kianian F, Seifi B, Kadkhodaee M, Sadeghipour HR, Ranjbaran M. Nephroprotection through Modifying the Apoptotic TNF-α/ERK1/2/Bax Signaling Pathway and Oxidative Stress by Long-term Sodium Hydrosulfide Administration in Ovalbumin-induced Chronic Asthma. Immunol Invest. 2022;51(3):602-618. doi: 10.1080/08820139.2020.1858860

Molina-Jijón E, Zarco-Márquez G, Medina-Campos ON, et al. Deferoxamine pretreatment prevents Cr(VI)-induced nephrotoxicity and oxidant stress: Role of Cr(VI) chelation. Toxicology. 2012;291(1-3):93-101. doi: 10.1016/j.tox.2011.11.003

Gafter-Gvili A, Schechter A, Rozen-Zvi B. Iron Deficiency Anemia in Chronic Kidney Disease. Acta Haematol. 2019;142(1):44-50. doi: 10.1159/000496492

National Collaborating Centre for Chronic Conditions (UK). Anaemia Management in Chronic Kidney Disease: National Clinical Guideline for Management in Adults and Children. London: Royal College of Physicians (UK); 2006. PMID: 20945579. Published online June 2015.

Agarwal AK. Iron metabolism and management: focus on chronic kidney disease. Kidney Int Suppl. 2021;11(1):46-58. doi: 10.1016/j.kisu.2020.12.003

Sheetz M, Barrington P, Callies S, et al. Targeting the hepcidin–ferroportin pathway in anaemia of chronic kidney disease. Br J Clin Pharmacol. 2019;85(5):935-948. doi: 10.1111/bcp.13877

Brosius FC, He JC. JAK inhibition and progressive kidney disease. Curr Opin Nephrol Hypertens. 2015;24(1):88-95. doi: 10.1097/MNH.0000000000000079

Babitt JL, Lin HY. Molecular Mechanisms of Hepcidin Regulation: Implications for the Anemia of CKD. Am J Kidney Dis. 2010;55(4):726-741. doi: 10.1053/j.ajkd.2009.12.030

Hu J, Fan X, Meng X, Wang Y, Liang Q, Luo G. Evidence for the Involvement of JAK/STAT/SOCS Pathway in the Mechanism of Tangshen Formula-Treated Diabetic Nephropathy. Planta Med. 2014;80(08/09):614-621. doi: 10.1055/s-0034-1368454

Berthier CC, Zhang H, Schin M, et al. Enhanced Expression of Janus Kinase–Signal Transducer and Activator of Transcription Pathway Members in Human Diabetic Nephropathy. Diabetes. 2009;58(2):469-477. doi: 10.2337/db08-1328

Zhu M, Wang H, Chen J, Zhu H. Sinomenine improve diabetic nephropathy by inhibiting fibrosis and regulating the JAK2/STAT3/SOCS1 pathway in streptozotocin-induced diabetic rats. Life Sci. 2021;265:118855. doi: 10.1016/j.lfs.2020.118855

Berthier CC, Zhang H, Schin M, et al. Enhanced Expression of Janus Kinase–Signal Transducer and Activator of Transcription Pathway Members in Human Diabetic Nephropathy. Diabetes. 2009;58(2):469-477. doi: 10.2337/db08-1328

Nemeth E, Ganz T. Hepcidin-Ferroportin Interaction Controls Systemic Iron Homeostasis. Int J Mol Sci. 2021;22(12):6493. doi: 10.3390/ijms22126493

Sun M, Bu W, Li Y, et al. Danzhi Jiangtang Capsule ameliorates kidney injury via inhibition of the JAK-STAT signaling pathway and increased antioxidant capacity in STZ-induced diabetic nephropathy rats. Biosci Trends. 2018;12(6):595-604. doi:10.5582/bst.2018.01255

Saboor M, Zehra A, Hamali H, Mobarki A. Revisiting Iron Metabolism, Iron Homeostasis and Iron Deficiency Anemia. Clin Lab. 2021;67:10.7754/Clin.Lab.2020.200742. doi: 10.7754/Clin.Lab.2020.200742

Yu SMW, Bonventre J V. Acute Kidney Injury and Progression of Diabetic Kidney Disease. Adv Chronic Kidney Dis. 2018;25(2):166-180. doi: 10.1053/j.ackd.2017.12.005

Allison SJ. Mechanism of AKI sensitivity in diabetic nephropathy. Nat Rev Nephrol. 2014;10(9):484-484. doi: 10.1038/nrneph.2014.125

Lei Q, Xu F, Liang S, et al. Clinical Acute Kidney Injury and Histologic Acute Tubular-Interstitial Injury and Their Prognosis in Diabetic Nephropathy. Nephron. 2022;146(4):351-359. doi: 10.1159/000520944

Mishra J. Amelioration of Ischemic Acute Renal Injury by Neutrophil Gelatinase-Associated Lipocalin. J Am Soc Nephrol. 2004;15(12):3073-3082. doi: 10.1097/01.ASN.0000145013.44578.45

Mo M, Gao Y, Deng L, Liang Y, Xia N, Pan L. Association Between Iron Metabolism and Acute Kidney Injury in Critically Ill Patients With Diabetes. Front Endocrinol (Lausanne). 2022;13. doi: 10.3389/fendo.2022.892811

Rouault TA. Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease. Dis Model Mech. 2012;5(2):155-164. doi: 10.1242/dmm.009019

Ismail THB, Ali BH, Bashir AA. Influence of iron, deferoxamine and ascorbic acid on gentamicin-induced nephrotoxicity in rats. Gen Pharmacol. 1994;25(6):1249-1252. doi: 10.1016/0306-3623(94)90145-7

Cui HJ, He H yu, Yang AL, et al. Efficacy of Deferoxamine in Animal Models of Intracerebral Hemorrhage: A Systematic Review and Stratified Meta-Analysis. PLoS One. 2015;10(5):e0127256. doi: 10.1371/journal.pone.0127256

Choi CW, Lee J, Lee HJ, Park HS, Chun YS, Kim B Il. Deferoxamine Improves Alveolar and Pulmonary Vascular Development by Upregulating Hypoxia-inducible Factor-1α in a Rat Model of Bronchopulmonary Dysplasia. J Korean Med Sci. 2015;30(9):1295. doi: 10.3346/jkms.2015.30.9.1295

Ghaith MM, El-Boshy M, Almasmoum H, et al. Deferasirox and vitamin D3 co-therapy mitigates iron-induced renal injury by enhanced modulation of cellular anti-inflammatory, anti-oxidative stress, and iron regulatory pathways in rat. J Trace Elem Med Biol. 2022;74:127085. doi: 10.1016/j.jtemb.2022.127085

Zou C, Liu X, Liu R, et al. Effect of the oral iron chelator deferiprone in diabetic nephropathy rats. J Diabetes. 2017;9(4):332-340. doi: 10.1111/1753-0407.12420

Zou C, Xie R, Bao Y, et al. Iron chelator alleviates tubulointerstitial fibrosis in diabetic nephropathy rats by inhibiting the expression of tenascin C and other correlation factors. Endocrine. 2013;44(3):666-674. doi: 10.1007/s12020-013-9907-0

Wada J, Makino H. Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci. 2013;124(3):139-152. doi: 10.1042/CS20120198

Meza Letelier CE, San Martín Ojeda CA, Ruiz Provoste JJ, Frugone Zaror CJ. Pathophysiology of diabetic nephropathy: a literature review. Medwave. 2017;17(01):e6839-e6839. doi: 10.5867/medwave.2017.01.6839

Doshi SM, Friedman AN. Diagnosis and Management of Type 2 Diabetic Kidney Disease. Clin J Am Soc Nephrol. 2017;12(8):1366-1373. doi: 10.2215/CJN.11111016

Batchelor EK, Kapitsinou P, Pergola PE, Kovesdy CP, Jalal DI. Iron Deficiency in Chronic Kidney Disease: Updates on Pathophysiology, Diagnosis, and Treatment. J Am Soc Nephrol. 2020;31(3):456-468. doi: 10.1681/ASN.2019020213

Cases A, Egocheaga MI, Tranche S, et al. Anemia en la enfermedad renal crónica: protocolo de estudio, manejo y derivación a Nefrología. Aten Primaria. 2018;50(1):60-64. doi: 10.1016/j.aprim.2017.09.007

Li L, Zheng X, Deng J, Zhou J, Ou J, Hong T. Ferric citrate for the treatment of hyperphosphatemia and anemia in patients with chronic kidney disease: a meta-analysis of randomized clinical trials. Ren Fail. 2022;44(1):1113-1123. doi: 10.1080/0886022X.2022.2094273

Gasche C, Ahmad T, Tulassay Z, et al. Ferric Maltol Is Effective in Correcting Iron Deficiency Anemia in Patients with Inflammatory Bowel Disease. Inflamm Bowel Dis. 2015;21(3):579-588. doi: 10.1097/MIB.0000000000000314

Umanath K, Jalal DI, Greco BA, et al. Ferric Citrate Reduces Intravenous Iron and Erythropoiesis-Stimulating Agent Use in ESRD. J Am Soc Nephrol. 2015;26(10):2578-2587. doi: 10.1681/ASN.2014080842

Elli L, Ferretti F, Branchi F, et al. Sucrosomial Iron Supplementation in Anemic Patients with Celiac Disease Not Tolerating Oral Ferrous Sulfate: A Prospective Study. Nutrients. 2018;10(3):330. doi: 10.3390/nu10030330

Ribeiro M, Fonseca L, Anjos JS, et al. Oral iron supplementation in patients with chronic kidney disease: Can it be harmful to the gut microbiota? Nutr Clin Pract. 2022;37(1):81-93. doi: 10.1002/ncp.10662

Singh AK, Cizman B, Carroll K, et al. Efficacy and Safety of Daprodustat for Treatment of Anemia of Chronic Kidney Disease in Incident Dialysis Patients. JAMA Intern Med. 2022;182(6):592. doi: 10.1001/jamainternmed.2022.0605

Dhillon S. Desidustat: First Approval. Drugs. 2022;82(11):1207-1212. doi: 10.1007/s40265-022-01744-w

Fujikawa R, Nagao Y, Fujioka M, Akizawa T. Treatment of anemia associated with chronic kidney disease with the HIF prolyl hydroxylase inhibitor enarodustat: A review of the evidence. Therapeutic Apheresis and Dialysis. 2022;26(4):679-693. doi: 10.1111/1744-9987.13820

Akizawa T, Macdougall IC, Berns JS, et al. Iron Regulation by Molidustat, a Daily Oral Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitor, in Patients with Chronic Kidney Disease. Nephron. 2019;143(4):243-254. doi: 10.1159/000502012

Li ZL, Tu Y, Liu BC. Treatment of Renal Anemia with Roxadustat: Advantages and Achievement. Kidney Diseases. 2020;6(2):65-73. doi: 10.1159/000504850

Eckardt KU, Agarwal R, Farag YM, et al. Global Phase 3 programme of vadadustat for treatment of anaemia of chronic kidney disease: rationale, study design and baseline characteristics of dialysis-dependent patients in the INNO2VATE trials. Nephrol Dial Transplant. 2021;36(11):2039-2048. doi: 10.1093/ndt/gfaa204

Renders L, Budde K, Rosenberger C, et al. First-in-human Phase I studies of PRS-080#22, a hepcidin antagonist, in healthy volunteers and patients with chronic kidney disease undergoing hemodialysis. PLoS One. 2019;14(3):e0212023. doi: 10.1371/journal.pone.0212023

Cardoso MP, Pereira LAL. Native vitamin D in pre-dialysis chronic kidney disease. Nefrología. 2019;39(1):18-28. doi: 10.1016/j.nefro.2018.07.004

Akarsu S, Taskin E, Yilmaz E, Yilmaz H, Kilic M, Aygun AD. Treatment of Iron Deficiency Anemia with Intravenous Iron Preparations. Acta Haematol. 2006;116(1):51-57. doi: 10.1159/000092348

Shepshelovich D, Rozen-Zvi B, Avni T, Gafter U, Gafter-Gvili A. Intravenous Versus Oral Iron Supplementation for the Treatment of Anemia in CKD: An Updated Systematic Review and Meta-analysis. Am J Kidney Dis. 2016;68(5):677-690. doi: 10.1053/j.ajkd.2016.04.018

Ohira Y, Chen CS, Hegenauer J, Saltman P. Adaptations of Lactate Metabolism in Iron-Deficient Rats. Exp Biol Med. 1983;173(2):213-216. doi: 10.3181/00379727-173-41633

Gutiérrez L, Morales MP, Lázaro FJ. Magnetic and structural study of the state of iron in the oral haematinic ferrimannitol ovoalbumin. J Inorg Biochem. 2006;100(3):413-417. doi: 10.1016/j.jinorgbio.2006.01.006

Bailie GR, Larkina M, Goodkin DA, et al. Data from the Dialysis Outcomes and Practice Patterns Study validate an association between high intravenous iron doses and mortality. Kidney Int. 2015;87(1):162-168. doi: 10.1038/ki.2014.275

Fishbane S, Block GA, Loram L, et al. Effects of Ferric Citrate in Patients with Nondialysis-Dependent CKD and Iron Deficiency Anemia. J Am Soc Nephrol. 2017;28(6):1851-1858. doi: 10.1681/ASN.2016101053

Downloads

Published

2023-09-30

How to Cite

Banerjee, D., Kaur, G., Chatterjee, B., Joshi, H., Ramniwas, S., & Tuli, H. S. (2023). Effectiveness of novel iron regulators in the treatment of diabetic nephropathy. European Journal of Clinical and Experimental Medicine, 21(3), 639–647. https://doi.org/10.15584/ejcem.2023.3.28

Issue

Section

REVIEW PAPERS