Oxidative stress and antioxidants markers in individuals with thyroid hormones dysfunction
DOI:
https://doi.org/10.15584/ejcem.2023.4.18Keywords:
antioxidants, dysfunction, malondialdehyde, oxidative stress, thyroid hormoneAbstract
Introduction and aim. Thyroid hormone abnormalities have been associated with oxidative changes in human beings. The aim of the study was to evaluate the oxidative stress marker and antioxidants status in individuals with thyroid hormone dysfunction in Ekiti State.
Material and methods. A total of eighty samples were recruited in this study comprising forty subjects with thyroid hormones dysfunction and forty apparently healthy controls. Malondialdehyde (MDA), reduced glutathione (GSH) and catalase were determined spectrophotometerically.
Results. MDA was non-significantly higher (p>0.05) in subjects (4.33±0.84 nmol/mL) compared with control (4.12±0.63 nmol/mL), catalase was non-significantly higher (p>0.05) in subjects (199.36±20.21 µm/mL) compared with control (181.55±16.61 µm/mL), while GSH was significantly lower (p<0.05) in subjects (79.31±10.12 µmol/mL) compared with control (127.21±7.29 µmol/mL).
Conclusion. It can be concluded that the increase in the reactive oxygen species accompanied with impairment of the antioxidant system occurs in patients with thyroid hormone dysfunction. Hypothyroidism and hyperthyroidism induces disequilibrium of the oxidative/anti-oxidative balance that can lead to subsequent development of inflammation and associated diseases.
Downloads
References
Kim B. Thyroid hormone as a determinant of energy expenditure and the basal metabolic rate. Thyroid.2018;18(8):141-144. doi: 10.1089/thy.2007.0266
James R, Kumar V. Study on the prevalence of thyroid diseases in Ernakulam city and Cherthala town of Kerala state, India. Int J Sci Res Pub. 2012;2(1):1-3.
Fernandez V, Videla LA. Thyroid hormone, active oxygen, and lipid peroxidation. In: Miquel J, Quintanilha AT, Weber H, eds. Handbook of Free Radicals and Antioxidants in Biomedicine I. Boca Raton: CRC Press Inc: 2019; 105-115.
De Leo S, Lee SY, Braverman LE. Hyperthyroidism. Lancet. 2016; 388(10047):906-918. doi: 10.1016/S0140-6736(16)00278-6
Mancini A, Di-Segni C, Raimondo S, Olivieri G, Silvestrini A., Meucci E. Thyroid hormones, oxidative stress, and inflammation. Mediator Inflamm. 2016;6(1):255-259. doi: 10.1155/2016/6757154
Pizzino G, Irrera N, Cucinotta M, et al. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev. 2017;17:8416763. doi: 10.1155/2017/8416763
Basant J, Sangeeta S, Aman S, Seema G, Vanishree BJ. A Study of Lipid Peroxidation and Total Antioxidant Capacity in Hyperthyroid & Hypothyroid Female Subjects. Galore Int J Healt Sci Res. 2018;3(4):1-8. doi: 10.52403/gijhsr
Dursun B, Dursun E, Capraz I, Ozben T, Apaydin A, Suleymanlar G. Are uremia, diabetes, and atherosclerosis linked with impaired antioxidant mechanisms? J Investig Med. 2018;5(6):545-552. doi: 10.2310/JIM.0b013e3181641ce3
Hashmi MA, Ahsan B, Shah SI, Khan MI. Antioxidant capacity and lipid peroxidation product in pulmonary tuberculosis. Am J Med Sci. 2012;5(3):313-319.
Karademir CB, Ozden S, Alpertunga B. Effects of trichlorfon on malondialdehyde and antioxidant system in human erythrocytes. Toxicol In Vitro. 2017; 21(7):1538-1544. doi: 10.1016/j.tiv.2007.06.002
Nandi A, Yan LJ, Jana CK, Das N. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxid Med Cell Longev. 2019;19:9613090. doi: 10.1155/2019/9613090
Lu SC, Kwon IP, Pei CO, Chen CZ. Glutathione synthesis. Biochim Biophys Acta. 2013;30(5):3143-3153. doi: 10.1016/j.bbagen.2012.09.008
Gaucher C, Boudier A, Bonetti J, Clarot I, Leroy P, Parent M. Glutathione: Antioxidant Properties Dedicated to Nanotechnologies. Antioxidant. 2018;7(5):62-64. doi: 10.3390/antiox7050062
Jomova K, Raptova R, Alomar SY, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol. 2023;97(10):2499-2574. doi:10.1007/s00204-023-03562-9
Vona R, Pallotta L, Cappelletti M, Severi C, Matarrese P. The Impact of Oxidative Stress in Human Pathology: Focus on Gastrointestinal Disorders. Antioxidant. 2021;10(2):201. doi: 10.3390/antiox10020201
Stanley JA, Neelamohan R, Suthagar E, et al. Lipid peroxidation and antioxidants status in human malignant and non-malignant thyroid tumours. Hum Exp Toxicol. 2016;35(6):585-597. doi: 10.1177/0960327115597982
Eddib I, Barhoumi L, Mahmoudi A. Oxidative stress in thyroid dysfunction. Endocrinol Metab Int J. 2022;10(2):66-69.
Hosseini-Zijoud SM, Ebadi SA, Goodarzi MT, et al. Lipid Peroxidation and Antioxidant Status in Patients with Medullary Thyroid Carcinoma: A Case-Control Study. J Clin Diagn Res.2016;10(2):4-7. doi: 10.7860/JCDR/2016/17854.7202
Kochman J, Jakubczyk K, Bargiel P, Janda-Milczarek K. The Influence of Oxidative Stress on Thyroid Diseases. Antioxidants (Basel). 2021;10(9):1442. doi: 10.3390/antiox10091442
Famil SS, Hedayati M, Kazerouni F, Rahimipour A, Shanaki M. Salivary Lipid Peroxidation and Antioxidant Status in the Patients with Papillary Thyroid Carcinoma: A Case-Control Study. Int J Cancer Manag. 2018;11(3):e9941. doi: 10.5812/ijcm.9941
Terzioglu D, Teksoz S, Arikan AE, Uslu E, Yılmaz E, Eren B. Relationship of hemoxygenase-1 and prolidase enzyme activity with oxidative stress in papillary thyroid cancer. Hippokratia. 2016;20(1):55-59.
Akinci M, Kosova F, Cetin B, et al. Oxidant/antioxidant balance in patients with thyroid cancer. Acta Cir Bras. 2008;23(6):551-554. doi:10.1590/s0102-86502008000600013
Macvanin MT, Gluvic Z, Zafirovic S, Gao X, Essack M, Isenovic ER. The protective role of nutritional antioxidants against oxidative stress in thyroid disorders. Front Endocrinol. 2023;13:145. doi: 10.3389/fendo.2022.1092837
Santi A, Duarte MM, Moresco RN, Menezes C, Bagatini MD, Schetinger MR. Association between thyroid hormones, lipids and oxidative stress biomarkers in overt hypothyroidism. Clin Chem Lab Med. 2010;48:1635-1639. doi: 10.1515/CCLM.2010.309
Sankha S, Kumar YM, Madhuri AA, Kumar MT. Antioxidant status and oxidative stress in hypothyroidism. J Datta Meghe Inst Med Sci Univ. 2021;16:508-514. doi: 10.4103/jdmimsu.jdmimsu_13_21
Kander MC, Cui Y, Liu Z. Gender difference in oxidative stress: a new look at the mechanisms for cardiovascular diseases. J Cell Mol Med. 2017;21(5):1024-1032. doi: 10.1111/jcmm.13038
Cruz-Topete D, Dominic P, Stokes KY. Uncovering sex-specific mechanisms of action of testosterone and redox balance. Redox Biol. 2020;31:101490. doi: 10.1016/j.redox.2020.101490
Martínez de Toda I, González-Sánchez M, Díaz-Del Cerro E, Valera G, Carracedo J, Guerra-Pérez N. Sex differences in markers of oxidation and inflammation. Implications for ageing. Mech Ageing Dev. 2023;21(1):111797. doi: 10.1016/j.mad.2023.111797
Allegra A, Caserta S, Genovese S, Pioggia G, Gangemi S. Gender Differences in Oxidative Stress in Relation to Cancer Susceptibility and Survival. Antioxidants (Basel). 2023;12(6):1255. doi: 10.3390/antiox12061255
Ramli NSF, Mat Junit S, Leong NK, Razali N, Jayapalan JJ, Abdul AA. Analyses of antioxidant status and nucleotide alterations in genes encoding antioxidant enzymes in patients with benign and malignant thyroid disorders. PeerJ. 2017;5(1): e3365. doi: 10.7717/peerj.3365
Joshi B, Singh S, Saini A. A study of lipid peroxidation and total antioxidant capacity in hyperthyroid & hypothyroid female subjects. Galore Inter J Health Sci Res. 2018;3(4):1-8.
Kwon DH, Cha HJ, Lee H, et al. Protective Effect of Glutathione against Oxidative Stress-induced Cytotoxicity in RAW 264.7 Macrophages through Activating the Nuclear Factor Erythroid 2-Related Factor-2/Heme Oxygenase-1 Pathway. Antioxidants (Basel). 2019;8(4):82. doi: 10.3390/antiox8040082
Sharifi-Rad M, Anil Kumar NV, Zucca P, e al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol. 2020;11:694. doi: 10.3389/fphys.2020.00694
Villanueva I, Alva-Sánchez C, Pacheco-Rosado J. The role of thyroid hormones as inductors of oxidative stress and neurodegeneration. Oxid Med Cell Longev. 2013;2013:218145. doi: 10.1155/2013/218145
Szanto I, Pusztaszeri M, Mavromati M. H2O2 Metabolism in Normal Thyroid Cells and in Thyroid Tumorigenesis: Focus on NADPH Oxidases. Antioxidants (Basel). 2019;8(5):126. doi: 10.3390/antiox8050126
El-Laithy AN, Abe R, Youness E, Ibrahim A, El-Nemr M, El-Shamy KA. Antioxidant defense system as a protector against oxidative stress induced by thyroid dysfunction. Cell Mol Life Sci. 2016;8(6):113-118.
Sultana DR, Shahin AD, Md Jawadul H. Measurement of oxidative stress and total antioxidant capacity in hyperthyroid patients following treatment with carbimazole and antioxidant. Heliyon. 2021;8(1):e08651. doi: 10.1016/j.heliyon.2021.e08651
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 European Journal of Clinical and Experimental Medicine

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our open access policy is in accordance with the Budapest Open Access Initiative (BOAI) definition: this means that articles have free availability on the public Internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from having access to the Internet itself.
All articles are published with free open access under the CC-BY Creative Commons attribution license (the current version is CC-BY, version 4.0). If you submit your paper for publication by the Eur J Clin Exp Med, you agree to have the CC-BY license applied to your work. Under this Open Access license, you, as the author, agree that anyone may download and read the paper for free. In addition, the article may be reused and quoted provided that the original published version is cited. This facilitates freedom in re-use and also ensures that Eur J Clin Exp Med content can be mined without barriers for the research needs.




