Oxidative stress and antioxidants markers in individuals with thyroid hormones dysfunction

Authors

  • Emmanuel Akokhamen Omon Department of Medical Laboratory Science, College of Medicine and Health Sciences, Afe Babalola University Ado-Ekiti, Ekiti State, Nigeria https://orcid.org/0000-0001-9949-3682
  • Olawale David Ajayi University Health Center, Bamidele Olumilua University of Education, Science and Technology Ikere, Ekiti State, Nigeria

DOI:

https://doi.org/10.15584/ejcem.2023.4.18

Keywords:

antioxidants, dysfunction, malondialdehyde, oxidative stress, thyroid hormone

Abstract

Introduction and aim. Thyroid hormone abnormalities have been associated with oxidative changes in human beings. The aim of the study was to evaluate the oxidative stress marker and antioxidants status in individuals with thyroid hormone dysfunction in Ekiti State.

Material and methods. A total of eighty samples were recruited in this study comprising forty subjects with thyroid hormones dysfunction and forty apparently healthy controls. Malondialdehyde (MDA), reduced glutathione (GSH) and catalase were determined spectrophotometerically.

Results. MDA was non-significantly higher (p>0.05) in subjects (4.33±0.84 nmol/mL) compared with control (4.12±0.63 nmol/mL), catalase was non-significantly higher (p>0.05) in subjects (199.36±20.21 µm/mL) compared with control (181.55±16.61 µm/mL), while GSH was significantly lower (p<0.05) in subjects (79.31±10.12 µmol/mL) compared with control (127.21±7.29 µmol/mL).

Conclusion. It can be concluded that the increase in the reactive oxygen species accompanied with impairment of the antioxidant system occurs in patients with thyroid hormone dysfunction. Hypothyroidism and hyperthyroidism induces disequilibrium of the oxidative/anti-oxidative balance that can lead to subsequent development of inflammation and associated diseases.

Downloads

Download data is not yet available.

References

Kim B. Thyroid hormone as a determinant of energy expenditure and the basal metabolic rate. Thyroid.2018;18(8):141-144. doi: 10.1089/thy.2007.0266

James R, Kumar V. Study on the prevalence of thyroid diseases in Ernakulam city and Cherthala town of Kerala state, India. Int J Sci Res Pub. 2012;2(1):1-3.

Fernandez V, Videla LA. Thyroid hormone, active oxygen, and lipid peroxidation. In: Miquel J, Quintanilha AT, Weber H, eds. Handbook of Free Radicals and Antioxidants in Biomedicine I. Boca Raton: CRC Press Inc: 2019; 105-115.

De Leo S, Lee SY, Braverman LE. Hyperthyroidism. Lancet. 2016; 388(10047):906-918. doi: 10.1016/S0140-6736(16)00278-6

Mancini A, Di-Segni C, Raimondo S, Olivieri G, Silvestrini A., Meucci E. Thyroid hormones, oxidative stress, and inflammation. Mediator Inflamm. 2016;6(1):255-259. doi: 10.1155/2016/6757154

Pizzino G, Irrera N, Cucinotta M, et al. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev. 2017;17:8416763. doi: 10.1155/2017/8416763

Basant J, Sangeeta S, Aman S, Seema G, Vanishree BJ. A Study of Lipid Peroxidation and Total Antioxidant Capacity in Hyperthyroid & Hypothyroid Female Subjects. Galore Int J Healt Sci Res. 2018;3(4):1-8. doi: 10.52403/gijhsr

Dursun B, Dursun E, Capraz I, Ozben T, Apaydin A, Suleymanlar G. Are uremia, diabetes, and atherosclerosis linked with impaired antioxidant mechanisms? J Investig Med. 2018;5(6):545-552. doi: 10.2310/JIM.0b013e3181641ce3

Hashmi MA, Ahsan B, Shah SI, Khan MI. Antioxidant capacity and lipid peroxidation product in pulmonary tuberculosis. Am J Med Sci. 2012;5(3):313-319.

Karademir CB, Ozden S, Alpertunga B. Effects of trichlorfon on malondialdehyde and antioxidant system in human erythrocytes. Toxicol In Vitro. 2017; 21(7):1538-1544. doi: 10.1016/j.tiv.2007.06.002

Nandi A, Yan LJ, Jana CK, Das N. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxid Med Cell Longev. 2019;19:9613090. doi: 10.1155/2019/9613090

Lu SC, Kwon IP, Pei CO, Chen CZ. Glutathione synthesis. Biochim Biophys Acta. 2013;30(5):3143-3153. doi: 10.1016/j.bbagen.2012.09.008

Gaucher C, Boudier A, Bonetti J, Clarot I, Leroy P, Parent M. Glutathione: Antioxidant Properties Dedicated to Nanotechnologies. Antioxidant. 2018;7(5):62-64. doi: 10.3390/antiox7050062

Jomova K, Raptova R, Alomar SY, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol. 2023;97(10):2499-2574. doi:10.1007/s00204-023-03562-9

Vona R, Pallotta L, Cappelletti M, Severi C, Matarrese P. The Impact of Oxidative Stress in Human Pathology: Focus on Gastrointestinal Disorders. Antioxidant. 2021;10(2):201. doi: 10.3390/antiox10020201

Stanley JA, Neelamohan R, Suthagar E, et al. Lipid peroxidation and antioxidants status in human malignant and non-malignant thyroid tumours. Hum Exp Toxicol. 2016;35(6):585-597. doi: 10.1177/0960327115597982

Eddib I, Barhoumi L, Mahmoudi A. Oxidative stress in thyroid dysfunction. Endocrinol Metab Int J. 2022;10(2):66-69.

Hosseini-Zijoud SM, Ebadi SA, Goodarzi MT, et al. Lipid Peroxidation and Antioxidant Status in Patients with Medullary Thyroid Carcinoma: A Case-Control Study. J Clin Diagn Res.2016;10(2):4-7. doi: 10.7860/JCDR/2016/17854.7202

Kochman J, Jakubczyk K, Bargiel P, Janda-Milczarek K. The Influence of Oxidative Stress on Thyroid Diseases. Antioxidants (Basel). 2021;10(9):1442. doi: 10.3390/antiox10091442

Famil SS, Hedayati M, Kazerouni F, Rahimipour A, Shanaki M. Salivary Lipid Peroxidation and Antioxidant Status in the Patients with Papillary Thyroid Carcinoma: A Case-Control Study. Int J Cancer Manag. 2018;11(3):e9941. doi: 10.5812/ijcm.9941

Terzioglu D, Teksoz S, Arikan AE, Uslu E, Yılmaz E, Eren B. Relationship of hemoxygenase-1 and prolidase enzyme activity with oxidative stress in papillary thyroid cancer. Hippokratia. 2016;20(1):55-59.

Akinci M, Kosova F, Cetin B, et al. Oxidant/antioxidant balance in patients with thyroid cancer. Acta Cir Bras. 2008;23(6):551-554. doi:10.1590/s0102-86502008000600013

Macvanin MT, Gluvic Z, Zafirovic S, Gao X, Essack M, Isenovic ER. The protective role of nutritional antioxidants against oxidative stress in thyroid disorders. Front Endocrinol. 2023;13:145. doi: 10.3389/fendo.2022.1092837

Santi A, Duarte MM, Moresco RN, Menezes C, Bagatini MD, Schetinger MR. Association between thyroid hormones, lipids and oxidative stress biomarkers in overt hypothyroidism. Clin Chem Lab Med. 2010;48:1635-1639. doi: 10.1515/CCLM.2010.309

Sankha S, Kumar YM, Madhuri AA, Kumar MT. Antioxidant status and oxidative stress in hypothyroidism. J Datta Meghe Inst Med Sci Univ. 2021;16:508-514. doi: 10.4103/jdmimsu.jdmimsu_13_21

Kander MC, Cui Y, Liu Z. Gender difference in oxidative stress: a new look at the mechanisms for cardiovascular diseases. J Cell Mol Med. 2017;21(5):1024-1032. doi: 10.1111/jcmm.13038

Cruz-Topete D, Dominic P, Stokes KY. Uncovering sex-specific mechanisms of action of testosterone and redox balance. Redox Biol. 2020;31:101490. doi: 10.1016/j.redox.2020.101490

Martínez de Toda I, González-Sánchez M, Díaz-Del Cerro E, Valera G, Carracedo J, Guerra-Pérez N. Sex differences in markers of oxidation and inflammation. Implications for ageing. Mech Ageing Dev. 2023;21(1):111797. doi: 10.1016/j.mad.2023.111797

Allegra A, Caserta S, Genovese S, Pioggia G, Gangemi S. Gender Differences in Oxidative Stress in Relation to Cancer Susceptibility and Survival. Antioxidants (Basel). 2023;12(6):1255. doi: 10.3390/antiox12061255

Ramli NSF, Mat Junit S, Leong NK, Razali N, Jayapalan JJ, Abdul AA. Analyses of antioxidant status and nucleotide alterations in genes encoding antioxidant enzymes in patients with benign and malignant thyroid disorders. PeerJ. 2017;5(1): e3365. doi: 10.7717/peerj.3365

Joshi B, Singh S, Saini A. A study of lipid peroxidation and total antioxidant capacity in hyperthyroid & hypothyroid female subjects. Galore Inter J Health Sci Res. 2018;3(4):1-8.

Kwon DH, Cha HJ, Lee H, et al. Protective Effect of Glutathione against Oxidative Stress-induced Cytotoxicity in RAW 264.7 Macrophages through Activating the Nuclear Factor Erythroid 2-Related Factor-2/Heme Oxygenase-1 Pathway. Antioxidants (Basel). 2019;8(4):82. doi: 10.3390/antiox8040082

Sharifi-Rad M, Anil Kumar NV, Zucca P, e al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol. 2020;11:694. doi: 10.3389/fphys.2020.00694

Villanueva I, Alva-Sánchez C, Pacheco-Rosado J. The role of thyroid hormones as inductors of oxidative stress and neurodegeneration. Oxid Med Cell Longev. 2013;2013:218145. doi: 10.1155/2013/218145

Szanto I, Pusztaszeri M, Mavromati M. H2O2 Metabolism in Normal Thyroid Cells and in Thyroid Tumorigenesis: Focus on NADPH Oxidases. Antioxidants (Basel). 2019;8(5):126. doi: 10.3390/antiox8050126

El-Laithy AN, Abe R, Youness E, Ibrahim A, El-Nemr M, El-Shamy KA. Antioxidant defense system as a protector against oxidative stress induced by thyroid dysfunction. Cell Mol Life Sci. 2016;8(6):113-118.

Sultana DR, Shahin AD, Md Jawadul H. Measurement of oxidative stress and total antioxidant capacity in hyperthyroid patients following treatment with carbimazole and antioxidant. Heliyon. 2021;8(1):e08651. doi: 10.1016/j.heliyon.2021.e08651

Downloads

Published

2023-12-30

How to Cite

Omon, E. A., & Ajayi, O. D. (2023). Oxidative stress and antioxidants markers in individuals with thyroid hormones dysfunction. European Journal of Clinical and Experimental Medicine, 21(4), 768–775. https://doi.org/10.15584/ejcem.2023.4.18

Issue

Section

ORIGINAL PAPERS