Ascorbic acid in cancer management – time for a second look

Authors

DOI:

https://doi.org/10.15584/ejcem.2023.4.7

Keywords:

ascorbic acid, cancer, clinical trials

Abstract

Introduction and aim. Over the past decades, the hypotheses that ascorbic acid (AA) can play a role as an anti-neoplastic therapy have generated many conflicting reports. Despite the controversies, mounting evidence has shown that AA has the potential to play a role as an anti-neoplastic agent. Recent studies have unraveled its pharmacokinetics and various mechanism of action on cancer cells. This has spawned different preclinical studies with reports of good activities against various cancers.

Material and methods. A review of the literature regarding ascorbic acid in the management of cancer was performed using the PubMed database. The research was limited to abstracts and available full-text articles.

Analysis of the literature. Clinical trials have also demonstrated its safety and tolerability across different dosages. AA has been noted as a multitargeting agent that acts as a pro-oxidative cytotoxic agent, anti-cancer epigenetic regulator and immune modulator. AA has also been shown act synergistically with standard chemotherapy regimens in different cancers. Despite its potentials, phase III clinical trials are seriously lacking. The recent phase III VITALITY study shows that AA may play a role as an adjunct targeted therapy for ras-mutated cancers. Therefore, there is need to for more standardized clinical trials to help identify cancer subtypes and AA combination regimens that can show the most benefits. In this review, the pleiotropic mechanism of action of AA was explored as well as various preclinical and clinical studies in cancer therapy. In addition, recommendations were also made for effective strategies towards an AA and standard cancer regimens in treatment as well as future directions. Ascorbic acid has been shown to induce cell death in various cancer types through different mechanisms of action. Several clinical trials and case reports have shown its efficacy in combination chemotherapy, and the pharmacological route of action can be either intravenous or oral. However, it can impair the actions of some drugs when given in combination. Also, dosage should be determined for maximal pharmacologic action.

Conclusion. Ascorbic acid has the potential to provide safe and cost-effective antineoplastic treatment option especially in combination therapy. Its potential needs to be further investigated through clinical trials.

Downloads

Download data is not yet available.

References

Iqbal K, Khan A, Ali Khan Khattak MM. Biological significance of ascorbic acid (Vitamin C) in human health. A review. Pakistan Journal of Nutrition. 2004;3(1):5-13. doi: 10.3923/pjn.2004.5.13

Roa FJ, Peña E, Gatica M, et al. Therapeutic Use of Vitamin C in Cancer: Physiological Considerations. Front Pharmacol. 2020;11:211. doi: 10.3389/fphar.2020.00211

Chen P, Stone J, Sullivan G, Drisko JA, Chen Q. Anti-cancer effect of pharmacologic ascorbate and its interaction with supplementary parenteral glutathione in preclinical cancer models. Free Radic Biol Med. 2011;51(3):681-687. doi: 10.1016/ j.freeradbiomed.2011.05.031

McCormick WJ. Cancer: the preconditioning factor in pathogenesis; a new etiologic approach. Arch Pediatr. 1954;71(10):313-322.

Cameron E, Campbell A. The orthomolecular treatment of cancer. II. Clinical trial of high-dose ascorbic acid supplements in advanced human cancer. Chem Biol Interact. 1974;9(4):285-315. doi: 10.1016/0009-2797(74)90019-2

Cameron E, Campbell A, Jack T. The orthomolecular treatment of cancer. III. Reticulum cell sarcoma: double complete regression induced by high-dose ascorbic acid therapy. Chem Biol Interact. 1975;11(5):387-93. doi: 10.1016/0009-2797(75)90007-1

Cameron E, Pauling L. Supplemental ascorbate in the supportive treatment of cancer: Prolongation of survival times in terminal human cancer. Proc Natl Acad Sci USA. 1976;73(10):3685-3689. doi: 10.1073/pnas.73.10.3685

Cameron E, Pauling L. Supplemental ascorbate in the supportive treatment of cancer: reevaluation of prolongation of survival times in terminal human cancer. Proc Natl Acad Sci USA. 1978;75(9):4538-4542. doi: 10.1073/pnas.75.9.4538

Creagan ET, Moertel CG, O’Fallon JR, et al. Failure of high-dose vitamin C (ascorbic acid) therapy to benefit patients with advanced cancer. A controlled trial. N Engl J Med. 1979;301:687-690. doi: 10.1056/NEJM197909273011303

Moertel CG, Fleming TR, Creagan ET, Rubin J, O’Connell MJ, Ames MM. High-dose vitamin C versus placebo in the treatment of patients with advanced cancer who have had no prior chemotherapy. A randomized double-blind comparison. N Engl J Med. 1985;312:137-141. doi: 10.1056/NEJM198501173120301

Chen Q, Espey MG, Krishna MC, et al. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci USA. 2005;102(38):13604-13609. doi: 10.1073/pnas.0506390102

Cha J, Roomi MW, Ivanov V, Kalinovsky T, Niedzwiecki A, Rath M. Ascorbate supplementation inhibits growth and metastasis of B16FO melanoma and 4T1 breast cancer cells in vitamin C-deficient mice. Int J Oncol. 2013;42(1):55-64. doi: 10.3892/ijo.2012.1712

Cha J, Roomi MW, Ivanov V, Kalinovsky T, Niedzwiecki A, Rath M. Ascorbate depletion increases growth and metastasis of melanoma cells in vitamin C deficient mice. Exp Oncol. 2011;33(4):226-230.

Padayatty SJ, Sun H Wang Y, et al. Vitamin C pharmacokinetics: Implications for oral and intravenous use. Ann Intern Med. 2004;140:533-537. doi: 10.7326/0003-4819-140-7-200404060-00010

Levine M, Padayatty SJ, Espey MG. Vitamin C: a concentration-function approach yields pharmacology and therapeutic discoveries. Adv Nutr. 2011;2(2):78-88. doi: 10.3945/an.110.000109

Lindblad M, Tveden-Nyborg P, Lykkesfeldt J. Regulation of vitamin C homeostasis during deficiency. Nutrients. 2013;5(8):2860-2879. doi: 10.3390/nu5082860

Wilson JX. Regulation of vitamin C transport. Annu Rev Nutr. 2005;25:105-125. doi: 10.1146/annurev.nutr.25.050304.092647

Przybyło M, Langner M. On the physiological and cellular homeostasis of ascorbate. Cell Mol Biol Lett. 2020;25:32. doi: 10.1186/s11658-020-00223-y

Tsiaoussis GI, Christaki E and Apidianakis Y. I Can C Clearly Now: How EPEC Inhibits Gut Vitamin C Transport by Dysregulating SVCT. Dig Dis Sci. 2021;66:2140-2142. https://doi.org/10.1007/s10620-020-06594-8

Tsukaguchi H, Tokui T, Mackenzie B, et al. A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature. 1999;399(6731):70-75. doi: 10.1038/19986

Corpe CP, Tu H, Eck P et al. Vitamin C transporter Slc23a1 links renal reabsorption, vitamin C tissue accumulation, and perinatal survival in mice. J Clin Invest. 2010;120(4):1069-1083. doi: 10.1172/JCI39191

Sotiriou S, Gispert S, Cheng J, et al. Ascorbic-acid transporter Slc23a1 is essential for vitamin C transport into the brain and for perinatal survival. Nat Med. 2002;8(5):514-517. doi: 10.1038/0502-514

Erichsen HC, Engel SA, Eck PK, et al. Genetic variation in the sodium-dependent vitamin C transporters, SLC23A1, and SLC23A2 and risk for preterm delivery. Am J Epidemiol. 2006;163(3):245-254. doi: 10.1093/aje/kwj035

Fang YZ, Yang S, Wu G. Free radicals, antioxidants, and nutrition. Nutrition. 2002;18(10):872-879. doi: 10.1016/s0899-9007(02)00916-4

Monacelli F, Acquarone E, Giannotti C, Borghi R, Nencioni A. Vitamin C. Aging and Alzheimer's Disease. Nutrients. 2017;9(7):670. doi: 10.3390/nu9070670

Kiokias S, Proestos C, Oreopoulou V. Effect of Natural Food Antioxidants against LDL and DNA Oxidative Changes. Antioxidants. 2018;7(10):133. doi: 10.3390/antiox7100133

Samsam Shariat SZ, Mostafavi SA, Khakpour F. Antioxidant effects of vitamins C and e on the low-density lipoprotein oxidation mediated by myeloperoxidase. Iran Biomed J. 2013;17(1):22-28. doi: 10.6091/ibj.1092.2012

Kook SY, Lee KM, Kim Y, et al. High-dose of vitamin C supplementation reduces amyloid plaque burden and ameliorates pathological changes in the brain of 5XFAD mice. Cell Death Dis. 2014;5(2):e1083. doi: 10.1038/cddis.2014.26

Waly MI, Al-Attabi Z, Guizani N. Low Nourishment of Vitamin C Induces Glutathione Depletion and Oxidative Stress in Healthy Young Adults. Prev Nutr Food Sci. 2015;20(3):198-203. doi: 10.3746/pnf.2015.20.3.198

Mikirova N, Casciari J, Rogers A, et al. Effect of high-dose intravenous vitamin C on inflammation in cancer patients. J Transl Med. 2012;10:189. doi: 10.1186/ 1479-5876-10-189

Muhammad M, Jahangir A, Kassem A, et al. The Role and Efficacy of Vitamin C in Sepsis: A Systematic Review and Meta-Analysis. Adv Respir Med. 2022;90(4):281-299. doi: 10.3390/arm90040038

Farrag N, Elwakeel L, Abdelhafeez A, Schaalan M. High Dose Vitamin C Improves Inflammatory Markers and Clinical Outcome Of Patients With Acute Respiratory Distress Syndrome. Archives of Pharmaceutical Sciences Ain Shams University. 2021;5(2):304-316. doi: 10.21608/aps.2021.94382.1069

Sánchez-Moreno C, Dashe JF, Scott T, Thaler D, Folstein MF, Martin A. Decreased levels of plasma vitamin C and increased concentrations of inflammatory and oxidative stress markers after stroke. Stroke. 2004;35(1):163-168. doi: 10.1161/01.STR.0000105391.62306.2E

Lee Chong T, Ahearn EL, Cimmino L. Reprogramming the Epigenome With Vitamin C. Front Cell Dev Biol. 2019;7:128. doi: 10.3389/fcell.2019.00128

Huff TC and Wang G. Rewriting the Script: The Story of Vitamin C and the Epigenome. In: Handbook of Nutrition, Diet, and Epigenetics. Patel VB, Preedy VR, ed. Springer;2019;1671-1690. doi: 10.1007/978-3-319-55530-0_46

Cimmino L, Neel BG, Aifantis I. Vitamin C in Stem Cell Reprogramming and Cancer. Trends in Cell Biology. 2018;28(9):698-708. doi: 10.1016/ j.tcb.2018.04.001.

Brabson JP, Leesang T, Mohammad S, Cimmino L. Epigenetic Regulation of Genomic Stability by Vitamin C. Front Genet. 2021;12:675780. doi: 10.3389/fgene.2021.675780

Venturelli S, Sinnberg TW, Berger A, et al. Epigenetic impacts of ascorbate on human metastatic melanoma cells. Front Oncol. 2014;4:227. doi: 10.3389/fonc.2014.00227

Osipyants AI, Poloznikov AA, Smirnova NA, et al. L-ascorbic acid: A true substrate for HIF prolyl hydroxylase? Biochimie. 2018;147:46-54. doi: 10.1016/j.biochi.2017.12.011

Mandl J, Szarka A, Bánhegyi G. Vitamin C: update on physiology and pharmacology. Br J Pharmacol. 2009;157(7):1097-110. doi: 10.1111/j.1476-5381.2009.00282.x

Kuo CL, Ponneri Babuharisankar A, Lin, YC, et al. Mitochondrial oxidative stress in the tumor microenvironment and cancer immunoescape: foe or friend? J Biomed Sci 2022;29:74. doi: 10.1186/s12929-022-00859-2

Aggarwal V, Tuli HS, Varol A, et al. Role of Reactive Oxygen Species in Cancer Progression: Molecular Mechanisms and Recent Advancements. Biomolecules. 2019;9(11):735. doi: 10.3390/biom9110735

Möhler H, Pfirrmann RW, Frei K. Redox-directed cancer therapeutics: Taurolidine and Piperlongumine as broadly effective antineoplastic agents (review). Int J Oncol. 2014;45(4):1329-1336. doi: 10.3892/ijo.2014.2566

Wondrak GT. Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxid Redox Signal. 2009;11(12):3013-3069. doi: 10.1089/ars.2009.2541

Harris IS, Treloar AE, Inoue S, et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell. 2015;27(2):211-222. doi: 10.1016/j.ccell.2014.11.019

Lignitto L, LeBoeuf SE, Homer H, et al. Nrf2 Activation Promotes Lung Cancer Metastasis by Inhibiting the Degradation of Bach1. Cell. 2019;178(2):316-329.e18. doi: 10.1016/j.cell.2019.06.003

Sayin VI, Ibrahim MX, Larsson E, Nilsson JA, Lindahl P, Bergo MO. Antioxidants accelerate lung cancer progression in mice. Sci Transl Med. 2014;6(221):221ra15. doi: 10.1126/scitranslmed.3007653

Klein EA, Thompson IM Jr, Tangen CM, et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA. 2011;306(14):1549-1556. doi: 10.1001/jama.2011.1437

Yasueda A, Urushima H, Ito T. Efficacy and Interaction of Antioxidant Supplements as Adjuvant Therapy in Cancer Treatment: A Systematic Review. Integr Cancer Ther. 2016;15(1):17-39. doi: 10.1177/1534735415610427

Watson J. Oxidants, antioxidants and the current incurability of metastatic cancers. Open Biol. 2013;3(1):120144. doi: 10.1098/rsob.120144

Kaźmierczak-Barańska J, Boguszewska K, Adamus-Grabicka A, Karwowski BT. Two Faces of Vitamin C-Antioxidative and Pro-Oxidative Agent. Nutrients. 2020;12(5):1501. doi: 10.3390/nu12051501

Chakraborthy A, Ramani P, Sherlin HJ, Premkumar P, Natesan A. Antioxidant and pro-oxidant activity of Vitamin C in oral environment. Indian J Dent Res. 2014;25(4):499-504. doi: 10.4103/0970-9290.142547

Corpe CP, Eck P, Wang J, Al-Hasani H, Levine M. Intestinal dehydroascorbic acid (DHA) transport mediated by the facilitative sugar transporters, GLUT2 and GLUT8. J Biol Chem. 2013;288(13):9092-9101. doi: 10.1074/jbc.M112.436790

Pena E, Roa FJ, Inostroza E, et al. Increased expression of mitochondrial sodium-coupled ascorbic acid transporter-2 (mitSVCT2) as a central feature in breast cancer. Free Radic Biol. Med. 2019;135:283-292. doi: 10.1016/j.freeradbiomed.2019.03.015

van der Reest J, Gottlieb E. Anti-cancer effects of vitamin C revisited. Cell Res. 2016;26(3):269-270. doi: 10.1038/cr.2016.7

Yun J, Mullarky E, Lu C, et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science. 2015;350(6266):1391-1396. doi: 10.1126/science.aaa5004

Toohey JI. Dehydroascorbic acid as an anti-cancer agent. Cancer Lett. 2008;263(2):164-169. doi: 10.1016/j.canlet.2008.02.002

Lakhal-Littleton S, Robbins PA. The interplay between iron and oxygen homeostasis with a particular focus on the heart. J Appl Physiol (1985). 2017;123(4):967-973. doi: 10.1152/japplphysiol.00237.2017

Merrill JF, Thomson DM, Hardman SE, Hepworth SD, Willie S, Hancock CR. Iron deficiency causes a shift in AMP-activated protein kinase (AMPK) subunit composition in rat skeletal muscle. Nutr Metab. 2012;9(1):104. doi: 10.1186/1743-7075-9-104

Carter A, Racey S, Veuger S. The Role of Iron in DNA and Genomic Instability in Cancer, a Target for Iron Chelators That Can Induce ROS. Applied Sciences. 2022;12(19):10161. doi: 10.3390/app121910161

Kakhlon O, Cabantchik ZI. The labile iron pool: characterization, measurement, and participation in cellular processes(1). Free Radic Biol Med. 2002;33(8):1037-1046. doi: 10.1016/s0891-5849(02)01006-7.

Kehrer JP. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology. 2000;149(1):43-50. doi: 10.1016/s0300-483x(00)00231-6

Hou X, Shen W, Huang X, Ai Z, Zhang L. Ascorbic acid enhanced activation of oxygen by ferrous iron: A case of aerobic degradation of rhodamine B. J Hazard Mater. 2016;308:67-74. doi: 10.1016/j.jhazmat.2016.01.031

Xu G, Wang H, Li X, Huang R, Luo L. Recent progress on targeting ferroptosis for cancer therapy. Biochem Pharmacol. 2021;190:114584. doi: 10.1016/ j.bcp.2021.114584

Tang Z, Huang Z, Huang Y, et al. Ferroptosis: The Silver Lining of Cancer Therapy. Front Cell Dev Biol. 2021;9:765859. doi: 10.3389/fcell.2021.765859

Lane DJ, Richardson DR. The active role of vitamin C in mammalian iron metabolism: much more than just enhanced iron absorption! Free Radic Biol Med. 2014;75:69-83. doi: 10.1016/j.freeradbiomed.2014.07.007

Ahmed RMA, Husain NEOSA. Changes in Serum Iron, Total Iron Binding Capacity and Transferrin Saturation Percent in Sudanese Females Newly Diagnosed with Breast Cancer at Khartoum Oncology Hospital: A Case - Control Study. Sudan Journal of Medical Sciences. 2017;12(3):119-132. doi: 10.18502/sjms.v12i3.915.

Fadavi P, Nafisi N, Hariri R, et al. Serum Ferritin, Vitamin D and Pathological Factors in Breast Cancer Patients. Med J Islam Repub Iran. 2021;35:162. doi: 10.47176/mjiri.35.162

Xia J, Xu H, Zhang X, et al. Multiple Myeloma Tumor Cells are Selectively Killed by Pharmacologically-dosed Ascorbic Acid. EBioMedicine. 2017;18:41-49. doi: 10.1016/j.ebiom.2017.02.011

Zhong H, Agani F, Baccala AA, et al. Increased expression of hypoxia inducible factor-1alpha in rat and human prostate cancer. Cancer Res. 1998;58(23):5280-5284.

Stasinopoulos I, O'Brien DR, Bhujwalla ZM. Inflammation, but not hypoxia, mediated HIF-1alpha activation depends on COX-2. Cancer Biol Ther. 2009;8(1):31-35. doi: 10.4161/cbt.8.1.7079

Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721-732. doi: 10.1038/nrc1187

Soni S, Padwad YS. HIF-1 in cancer therapy: two decade long story of a transcription factor. Acta Oncol. 2017;56(4):503-515. doi: 10.1080/0284186X.2017.1301680

Jögi A, Ehinger A, Hartman L, Alkner S. Expression of HIF-1α is related to a poor prognosis and tamoxifen resistance in contralateral breast cancer. PLoS ONE. 2019;14(12):e0226150. doi: 10.1371/journal.pone.0226150

Jarman EJ, Ward C, Turnbull AK, et al. HER2 regulates HIF-2α and drives an increased hypoxic response in breast cancer. Breast Cancer Res. 2019;21(1):10. doi: 10.1186/s13058-019-1097-0

Burroughs SK, Kaluz S, Wang D, Wang K, Van Meir EG, Wang B. Hypoxia inducible factor pathway inhibitors as anticancer therapeutics. Future Med Chem. 2013;5(5):553-572. doi: 10.4155/fmc.13.17

Fallah J, Brave MH, Weinstock C, et al. FDA Approval Summary: Belzutifan for von Hippel-Lindau Disease-Associated Tumors. Clin Cancer Res. 2022;28(22):4843-4848. doi: 10.1158/1078-0432.CCR-22-1054

Miles SL, Fischer AP, Joshi SJ, Niles RM. Ascorbic acid and ascorbate-2-phosphate decrease HIF activity and malignant properties of human melanoma cells. BMC Cancer. 2015;15:867. doi: 10.1186/s12885-015-1878-5

Zhao L, Wang J, Zhang Y, Wang L, Yu M, Wang F. Vitamin C decreases VEGF expression levels via hypoxia‑inducible factor‑1α dependent and independent pathways in lens epithelial cells. Mol Med Rep. 2020;22(1):436-444. doi: 10.3892/mmr.2020.11103

Wohlrab C, Kuiper C, Vissers MC, Phillips E, Robinson BA, Dachs GU. Ascorbate modulates the hypoxic pathway by increasing intracellular activity of the HIF hydroxylases in renal cell carcinoma cells. Hypoxia (Auckl). 2019;7:17-31. doi: 10.2147/HP.S201643

Kuiper C, Dachs GU, Munn D, et al. Increased Tumor Ascorbate is Associated with Extended Disease-Free Survival and Decreased Hypoxia-Inducible Factor-1 Activation in Human Colorectal Cancer. Front Oncol. 2014;4:10. doi: 10.3389/fonc.2014.00010

Kuiper C, Molenaar IG, Dachs GU, Currie MJ, Sykes PH, Vissers MC. Low ascorbate levels are associated with increased hypoxia-inducible factor-1 activity and an aggressive tumor phenotype in endometrial cancer. Cancer Res. 2010;70(14):5749-5758. doi: 10.1158/0008-5472.CAN-10-0263

Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30(7):1073-1081. doi: 10.1093/carcin/bgp127

Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023. doi: 10.1038/sigtrans.2017.23

Wu Z, Li J, Zhang Y, Hu L, Peng X. Synchronous co‑expression of Id‑1 and nuclear NF‑κB p65 promotes cervical cancer progression and malignancy, and is associated with a poor prognosis and chemosensitivity. Oncol Rep. 2019;42(5):2075-2086. doi: 10.3892/or.2019.7301

Liu AR, Ramakrishnan P. Regulation of Nuclear Factor-kappaB Function by O-GlcNAcylation in Inflammation and Cancer. Front Cell Dev Biol. 2021;9:751761. doi: 10.3389/fcell.2021.751761

Ramadass V, Vaiyapuri T, Tergaonkar V. Small Molecule NF-κB Pathway Inhibitors in Clinic. Int J Mol Sci. 2020;21(14):5164. doi: 10.3390/ijms21145164

Ameya Paranjpe, Kalkunte S. Srivenugopal, Degradation of NF-κB, p53 and other regulatory redox-sensitive proteins by thiol-conjugating and -nitrosylating drugs in human tumor cells, Carcinogenesis. 2013;(34)5:990-1000. doi: 10.1093/carcin/bgt032

Korashy HM, El-Kadi AO. The role of redox-sensitive transcription factors NF-kappaB and AP-1 in the modulation of the Cyp1a1 gene by mercury, lead, and copper. Free Radic Biol Med. 2008;44(5):795-806. doi: 10.1016/j.freeradbiomed.2007.11.003

Nakajima S, Kitamura M. Bidirectional regulation of NF-κB by reactive oxygen species: a role of unfolded protein response. Free Radic Biol Med. 2013;65:162-174. doi: 10.1016/j.freeradbiomed.2013.06.020

Du YT, Long Y, Tang W, Liu XF, Dai F, Zhou B. Prooxidative inhibition against NF-κB-mediated inflammation by pharmacological vitamin C. Free Radic Biol Med. 2022;180:85-94. doi: 10.1016/j.freeradbiomed.2022.01.007

Cárcamo JM, Pedraza A, Bórquez-Ojeda O, Golde DW. Vitamin C suppresses TNF alpha-induced NF kappa B activation by inhibiting I kappa B alpha phosphorylation. Biochemistry. 2002;41(43):12995-3002. doi: 10.1021/bi0263210

Andrew G. Bowie, Luke A. J. O’Neill; Vitamin C Inhibits NF-κB Activation by TNF Via the Activation of p38 Mitogen-Activated Protein Kinase1. J Immunol. 2000;165(12):7180-7188.doi: 10.4049/jimmunol.165.12.7180

Cárcamo JM, Pedraza A, Bórquez-Ojeda O, Zhang B, Sanchez R, Golde DW. Vitamin C is a kinase inhibitor: dehydroascorbic acid inhibits IkappaBalpha kinase beta. Mol Cell Biol. 2004;24(15):6645-6652. doi: 10.1128/MCB.24.15.6645-6652.2004

Morante-Palacios O, Godoy-Tena G, Calafell-Segura J, et al. Vitamin C enhances NF-κB-driven epigenomic reprogramming and boosts the immunogenic properties of dendritic cells. Nucleic Acids Res. 2022;50(19):10981-10994. doi: 10.1093/nar/gkac941

Morante-Palacios O, Godoy-Tena G, Calafell-Segura J, et al. Vitamin C triggers NF-κB-driven epigenomic reprogramming and enhanced immunogenic responses of dendritic cells. bioRxiv 2022;05(26):493381; doi: 10.1101/2022.05.26.493381

Tas SW, de Jong EC, Hajji N, et al. Selective inhibition of NF-kappaB in dendritic cells by the NEMO-binding domain peptide blocks maturation and prevents T cell proliferation and polarization. Eur J Immunol. 2005;35(4):1164-1174. doi: 10.1002/eji.200425956

AACR Project GENIE Consortium. AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discov. 2017;7(8):818-831. doi: 10.1158/2159-8290.CD-17-0151

Ferrone CK, Blydt-Hansen M, Rauh MJ. Age-Associated TET2 Mutations: Common Drivers of Myeloid Dysfunction, Cancer and Cardiovascular Disease. Int J Mol Sci. 2020;21(2):626. doi: 10.3390/ijms21020626

Huang F, Sun J, Chen W, et al. TET2 deficiency promotes MDS-associated leukemogenesis. Blood Cancer J. 2022;12(10):141. doi: 10.1038/s41408-022-00739-w

Wang R, Gao X, Yu L. The prognostic impact of tet oncogene family member 2 mutations in patients with acute myeloid leukemia: a systematic-review and meta-analysis. BMC Cancer. 2019;19(1):389. doi: 10.1186/s12885-019-5602-8

Mingay M, Chaturvedi A, Bilenky M, et al. Vitamin C-induced epigenomic remodelling in IDH1 mutant acute myeloid leukaemia. Leukemia. 2018;32(1):11-20. doi: 10.1038/leu.2017.171

Derissen EJ, Beijnen JH, Schellens JH. Concise drug review: azacitidine and decitabine. Oncologist. 2013;18(5):619-24. doi: 10.1634/theoncologist.2012-0465

Liu M, Ohtani H, Zhou W, et al. Vitamin C increases viral mimicry induced by 5-aza-2'-deoxycytidine. Proc Natl Acad Sci USA. 2016;113(37):10238-11244. doi: 10.1073/pnas.1612262113

Bejar R, Lord A, Stevenson K, Bar-Natan M, et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood. 2014;124(17):2705-2712. doi: 10.1182/blood-2014-06-582809

Gerecke C, Schumacher F, Edlich A, et al. Vitamin C promotes decitabine or azacytidine induced DNA hydroxymethylation and subsequent reactivation of the epigenetically silenced tumour suppressor CDKN1A in colon cancer cells. Oncotarget. 2018;9(67):32822-32840. doi: 10.18632/oncotarget.25999

Gillberg L, Ørskov AD, Nasif A, et al. Oral vitamin C supplementation to patients with myeloid cancer on azacitidine treatment: Normalization of plasma vitamin C induces epigenetic changes. Clin Epigenetics. 2019;11(1):143. doi: 10.1186/s13148-019-0739-5

Joshi K, Zhang L, Breslin S J P, Kini AR, Zhang J. Role of TET dioxygenases in the regulation of both normal and pathological hematopoiesis. J Exp Clin Cancer Res. 2022;41(1):294. doi: 10.1186/s13046-022-02496-x

Agathocleous M, Meacham CE, Burgess RJ, et al. Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature. 2017;549(7673):476-481. doi: 10.1038/nature23876

Cimmino L, Dolgalev I, Wang Y, et al. Restoration of TET2 Function Blocks Aberrant Self-Renewal and Leukemia Progression. Cell. 2017;170(6):1079-1095.e20. doi: 10.1016/j.cell.2017.07.032

Miller PG, Ebert BL. Leukaemia: Vitamin C regulates stem cells and cancer. Nature. 2017;549(7673):462-464. doi: 10.1038/nature23548

Phadke I, Pouzolles M, Machado A, et al. Vitamin C deficiency reveals developmental differences between neonatal and adult hematopoiesis. Front Immunol. 2022;13:898827. doi: 10.3389/fimmu.2022.898827

Taira A, Palin K, Kuosmanen A, et al. Vitamin C boosts DNA demethylation in TET2 germline mutation carriers. Clin Epigenetics. 2023;15(1):7. doi: 10.1186/s13148-022-01404-6

Upadhyay S, Sharma N, Gupta KB, Dhiman M. Role of immune system in tumor progression and carcinogenesis. J Cell Biochem. 2018;119(7):5028-5042. doi: 10.1002/jcb.26663

Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018;32(19-20):1267-1284. doi: 10.1101/gad.314617.118

Cai X, Zhan H, Ye Y, et al. Current Progress and Future Perspectives of Immune Checkpoint in Cancer and Infectious Diseases. Front Genet. 2021;12:785153. doi: 10.3389/fgene.2021.785153

Mehdizadeh S, Bayatipoor H, Pashangzadeh S, Jafarpour R, Shojaei Z, Motallebnezhad M. Immune checkpoints and cancer development: Therapeutic implications and future directions. Pathol Res Pract. 2021;223:153485. doi: 10.1016/j.prp.2021.153485

Lipson EJ, Drake CG. Ipilimumab: an anti-CTLA-4 antibody for metastatic melanoma. Clin Cancer Res. 2011;17(22):6958-6962. doi: 10.1158/1078-0432.CCR-11-1595

Klemen ND, Wang M, Feingold PL, et al. Patterns of failure after immunotherapy with checkpoint inhibitors predict durable progression-free survival after local therapy for metastatic melanoma. J Immunother Cancer. 2019;7(1):196. doi: 10.1186/s40425-019-0672-3

Johns AC, Wei L, Grogan M, et al. Checkpoint inhibitor immunotherapy toxicity and overall survival among older adults with advanced cancer. J Geriatr Oncol. 2021;12(5):813-819. doi: 10.1016/j.jgo.2021.02.002

Schoenfeld JD, Alexander MS, Waldron TJ, et al. Pharmacological Ascorbate as a Means of Sensitizing Cancer Cells to Radio-Chemotherapy While Protecting Normal Tissue. Semin Radiat Oncol. 2019;29(1):25-32. doi: 10.1016/j.semradonc.2018.10.006

Burkard M, Niessner H, Leischner C, et al. High-Dose Ascorbate in Combination with Anti-PD1 Checkpoint Inhibition as Treatment Option for Malignant Melanoma. Cells. 2023;12(2):254. doi: 10.3390/cells12020254

Luchtel RA, Bhagat T, Pradhan K, et al. High-dose ascorbic acid synergizes with anti-PD1 in a lymphoma mouse model. Proc Natl Acad Sci USA. 2020;117(3):1666-1677. doi: 10.1073/pnas.1908158117

Magrì A, Germano G, Lorenzato A, et al. High-dose vitamin C enhances cancer immunotherapy. Sci Transl Med. 2020;12(532):eaay8707. doi: 10.1126/scitranslmed.aay8707

Peng D, He A, He S, et al. Ascorbic acid induced TET2 enzyme activation enhances cancer immunotherapy efficacy in renal cell carcinoma. Int J Biol Sci. 2022;18(3):995-1007. doi: 10.7150/ijbs.67329

Oberritter H, Glatthaar B, Moser U, Schmidt KH. Effect of functional stimulation on ascorbate content in phagocytes under physiological and pathological conditions. Int Arch Allergy Appl Immunol. 1986;81(1):46-50. doi: 10.1159/000234106

Bozonet SM, Carr AC, Pullar JM, Vissers MC. Enhanced human neutrophil vitamin C status, chemotaxis and oxidant generation following dietary supplementation with vitamin C-rich SunGold kiwifruit. Nutrients. 2015;7(4):2574-2588. doi: 10.3390/nu7042574

Washko PW, Wang Y, Levine M. Ascorbic acid recycling in human neutrophils. J Biol Chem. 1993;25,268(21):15531-15535.

Masucci MT, Minopoli M, Del Vecchio S, Carriero MV. The Emerging Role of Neutrophil Extracellular Traps (NETs) in Tumor Progression and Metastasis. Front Immunol. 2020;11:1749. doi: 10.3389/fimmu.2020.01749

Kaltenmeier C, Yazdani HO, Morder K, Geller DA, Simmons RL, Tohme S. Neutrophil Extracellular Traps Promote T Cell Exhaustion in the Tumor Microenvironment. Front Immunol. 2021;12:785222. doi: 10.3389/fimmu.2021.785222

Fuchs TA, Abed U, Goosmann C, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231-241. doi: 10.1083/jcb.200606027

Mohammed BM, Fisher BJ, Kraskauskas D, et al. Vitamin C: a novel regulator of neutrophil extracellular trap formation. Nutrients. 2013;5(8):3131-3151.

Sae-Khow K, Tachaboon S, Wright HL, et al. Defective Neutrophil Function in Patients with Sepsis Is Mostly Restored by ex vivo Ascorbate Incubation. J Inflamm Res. 2020;13:263-274. doi: 10.2147/JIR.S252433

Van Gorkom GNY, Klein Wolterink RGJ, Van Elssen CHMJ, Wieten L, Germeraad WTV, Bos GMJ. Influence of Vitamin C on Lymphocytes: An Overview. Antioxidants. 2018;7(3):41. doi: 10.3390/antiox7030041

Bergsten P, Yu R, Kehrl J, Levine M. Ascorbic acid transport and distribution in human B lymphocytes. Arch Biochem Biophys. 1995;317(1):208-214. doi: 10.1006/abbi.1995.1155

Manning J, Mitchell B, Appadurai DA et al. Vitamin C promotes maturation of T-cells. Antioxid Redox Signal. 2013;19(17):2054-2067. doi: 10.1089/ars.2012.4988

Wu CY, Zhang B, Kim H, Anderson SK, Miller JS, Cichocki F. Ascorbic Acid Promotes KIR Demethylation during Early NK Cell Differentiation. J Immunol. 2020;205(6):1513-1523. doi: 10.4049/jimmunol.2000212

Ichiyama K, Mitsuzumi H, Zhong M, et al. Promotion of IL-4- and IL-5-dependent differentiation of anti-mu-primed B cells by ascorbic acid 2-glucoside. Immunol Lett. 2009;122(2):219-226. doi: 10.1016/j.imlet.2009.01.007

Heuser G, Vojdani A. Enhancement of natural killer cell activity and T and B cell function by buffered vitamin C in patients exposed to toxic chemicals: the role of protein kinase-C. Immunopharmacol Immunotoxicol. 1997;19(3):291-312.

Kouakanou L, Wang H, Sun G, et al. Vitamin C treatment prevents CAR T cell exhaustion, maintains stem cell phenotype and enhances antitumor function. Journal for ImmunoTherapy of Cancer. 2022;10(2):A370. doi: 10.1136/jitc-2022-SITC2022.0351.

Kouakanou L, Peters C, Brown CE, Kabelitz D, Wang LD. Vitamin C, From Supplement to Treatment: A Re-Emerging Adjunct for Cancer Immunotherapy? Front Immunol. 2021;12:765906. doi: 10.3389/fimmu.2021.765906

Huijskens MJ, Walczak M, Sarkar S, et al. Ascorbic acid promotes proliferation of natural killer cell populations in culture systems applicable for natural killer cell therapy. Cytotherapy. 2015;17(5):613-620. doi: 10.1016/j.jcyt.2015.01.004

Saura-Esteller J, de Jong M, King LA, et al. Gamma Delta T-Cell Based Cancer Immunotherapy: Past-Present-Future. Front Immunol. 2022;13:915837. doi: 10.3389/fimmu.2022.915837

Healio. https://www.healio.com/news/hematology-oncology/20220422/fda-grants-fast-track-designation-to-gammadelta-tcell-therapy-for-advanced-lymphoma. Accessed January 23, 2023.

Nishimoto KP, Barca T, Azameera A, et al. Allogeneic CD20-targeted γδ T cells exhibit innate and adaptive antitumor activities in preclinical B-cell lymphoma models. Clin Transl Immunology. 2022;11(2):e1373. doi: 10.1002/cti2.1373

Neelapu SS, Stevens DA, Hamadani M, et al. A Phase 1 Study of ADI-001: Anti-CD20 CAR-Engineered Allogeneic Gamma Delta1 (γδ) T Cells in Adults with B-Cell Malignancies. Blood. 2022;140(1):4617-4619. doi: 10.1182/blood-2022-157400.

Kouakanou L, Xu Y, Peters C, et al. Vitamin C promotes the proliferation and effector functions of human γδ T cells. Cell Mol Immunol. 2020;17(5):462-473. doi: 10.1038/s41423-019-0247-8

Xu Y, Xiang Z, Alnaggar M, et al. Allogeneic Vγ9Vδ2 T-cell immunotherapy exhibits promising clinical safety and prolongs the survival of patients with late-stage lung or liver cancer. Cell Mol Immunol. 2021;18(2):427-439. doi: 10.1038/s41423-020-0515-7

Padayatty SJ, Sun AY, Chen Q, Espey MG, Drisko J, Levine M. Vitamin C: intravenous use by complementary and alternative medicine practitioners and adverse effects. PLoS One. 2010;5(7):e11414. doi: 10.1371/journal.pone.0011414

Zasowska-Nowak A, Nowak PJ, Ciałkowska-Rysz A. High-Dose Vitamin C in Advanced-Stage Cancer Patients. Nutrients. 2021;13(3):735. doi: 10.3390/nu13030735

Mohseni S, Tabatabaei-Malazy O, Ejtahed HS, et al. Effect of vitamins C and E on cancer survival; a systematic review. Daru. 2022;30(2):427-441. doi: 10.1007/s40199-022-00451-x

Nielsen TK, Højgaard M, Andersen JT, et al. Weekly ascorbic acid infusion in castration-resistant prostate cancer patients: a single-arm phase II trial. Transl Androl Urol. 2017;6(3):517-528. doi: 10.21037/tau.2017.04.42

Stephenson CM, Levin RD, Spector T, Lis CG. Phase I clinical trial to evaluate the safety, tolerability, and pharmacokinetics of high-dose intravenous ascorbic acid in patients with advanced cancer. Cancer Chemother Pharmacol. 2013;72(1):139-146. doi: 10.1007/s00280-013-2179-9

Hoffer LJ, Levine M, Assouline S, et al . Phase I clinical trial of i.v. ascorbic acid in advanced malignancy. Ann Oncol. 2008;19(11):1969-1974. doi: 10.1093/annonc/mdn377

Padayatty SJ, Riordan HD Hewitt SM, et al. Intravenously administered vitamin C as cancer therapy: three cases. CMAJ. 2006;174(7):937-942. doi: 10.1503/cmaj.050346

Seo MS, Kim JK, Shim JY. High-Dose Vitamin C Promotes Regression of Multiple Pulmonary Metastases Originating from Hepatocellular Carcinoma. Yonsei Med J. 2015;56(5):1449-1452. doi: 10.3349/ymj.2015.56.5.1449

Drisko JA, Serrano OK, Spruce LR, Chen Q, Levine M. Treatment of pancreatic cancer with intravenous vitamin C: a case report. Anticancer Drugs. 2018;29(4):373-379. doi: 10.1097/CAD.0000000000000603

Raymond YC, Glenda CS, Meng LK. Effects of High Doses of Vitamin C on Cancer Patients in Singapore: Nine Cases. Integr Cancer Ther. 2016;15(2):197-204. doi: 10.1177/1534735415622010

Das AB, Kakadia PM, Wojcik D, et al. Clinical remission following ascorbate treatment in a case of acute myeloid leukemia with mutations in TET2 and WT1. Blood Cancer J. 2019;9(10):82. doi: 10.1038/s41408-019-0242-4

ClinicalTrials.gov Identifier: NCT03682029. Epigenetics, Vitamin C, and Abnormal Blood Cell Formation - Vitamin C in Patients with Low-Risk Myeloid Malignancies (EVITA). Accessed February 2, 2023.

ClinicalTrials.gov Identifier: NCT03613727. Therapeutic Use of Intravenous Vitamin C in Allogeneic Stem Cell Transplant Recipients. Accessed February 2, 2023.

Wang F, He MM, Wang ZX, et al. Phase I study of high-dose ascorbic acid with mFOLFOX6 or FOLFIRI in patients with metastatic colorectal cancer or gastric cancer. BMC Cancer. 2019;19(1):460. doi: 10.1186/s12885-019-5696-z

Wang F, He MM, Xiao J, et al. A Randomized, Open-Label, Multicenter, Phase 3 Study of High-Dose Vitamin C Plus FOLFOX ± Bevacizumab versus FOLFOX ± Bevacizumab in Unresectable Untreated Metastatic Colorectal Cancer (VITALITY Study). Clin Cancer Res. 2022;28(19):4232-4239. doi: 10.1158/1078-0432.CCR-22-0655

Welsh JL, Wagner BA, van't Erve TJ, et al. Pharmacological ascorbate with gemcitabine for the control of metastatic and node-positive pancreatic cancer (PACMAN): results from a phase I clinical trial. Cancer Chemother Pharmacol. 2013;71(3):765-775. doi: 10.1007/s00280-013-2070-8

ClinicalTrials.gov Identifier: NCT02905578. A Phase 2 Trial of High-dose Ascorbate for Pancreatic Cancer (PACMAN 2.1). Accessed January 23, 2023.

Polireddy K, Dong R, Reed G, et al. High Dose Parenteral Ascorbate Inhibited Pancreatic Cancer Growth and Metastasis: Mechanisms and a Phase I/IIa study. Sci Rep. 2017;7(1):17188. doi: 10.1038/s41598-017-17568-8

Yun J, Mullarky E, Lu C, et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science. 2015;350(6266):1391-1396. doi: 10.1126/science.aaa5004

Wang S, Zheng Y, Yang F, et al. The molecular biology of pancreatic adenocarcinoma: translational challenges and clinical perspectives. Signal Transduct Target Ther. 2021;6(1):249. doi: 10.1038/s41392-021-00659-4

Uetaki M, Tabata S, Nakasuka F, Soga T, Tomita M. Metabolomic alterations in human cancer cells by vitamin C-induced oxidative stress. Sci Rep. 2015;5:13896. doi: 10.1038/srep13896

Kim JH, Hwang S, Lee JH, Im SS, Son J. Vitamin C Suppresses Pancreatic Carcinogenesis through the Inhibition of Both Glucose Metabolism and Wnt Signaling. Int J Mol Sci. 2022;23(20):12249. doi: 10.3390/ijms232012249

Banella C, Catalano G, Travaglini S, et al. Ascorbate Plus Buformin in AML: A Metabolic Targeted Treatment. Cancers (Basel). 2022;14(10):2565. doi: 10.3390/cancers14102565

ClinicalTrials.gov Identifier: NCT04033107. High Dose Vitamin C Combined With Metformin in the Treatment of Malignant Tumors. Accessed January 23, 2023.

Qian W, Wang L, Li P, et al. Efficiency and Tolerability of Induction and Consolidation Therapy with Arsenic Trioxide/Bortezomib/Ascorbic Acid/Dexamethasone (ABCD) Regimen Compared to Bortezomib/Dexamethasone (BD) Regimen in Newly Diagnosed Myeloma Patients. Cancer Manag Res. 2020;12:431-441. doi: 10.2147/CMAR.S212455

Berenson JR, Matous J, Swift RA, Mapes R, Morrison B, Yeh HS. A phase I/II study of arsenic trioxide/bortezomib/ascorbic acid combination therapy for the treatment of relapsed or refractory multiple myeloma. Clin Cancer Res. 2007;13(6):1762-1768. doi: 10.1158/1078-0432.CCR-06-1812

Berenson JR, Boccia R, Siegel D, et al. Efficacy and safety of melphalan, arsenic trioxide and ascorbic acid combination therapy in patients with relapsed or refractory multiple myeloma: a prospective, multicentre, phase II, single-arm study. Br J Haematol. 2006;135(2):174-83. doi: 10.1111/j.1365-2141.2006.06280.x

Gill H, Kumana CR, Yim R, et al. Oral arsenic trioxide incorporation into frontline treatment with all-trans retinoic acid and chemotherapy in newly diagnosed acute promyelocytic leukemia: A 5-year prospective study. Cancer. 2019;125(17):3001-3012. doi: 10.1002/cncr.32180

Gill HS, Yim R, Kumana CR, Tse E, Kwong YL. Oral arsenic trioxide, all-trans retinoic acid, and ascorbic acid maintenance after first complete remission in acute promyelocytic leukemia: Long-term results and unique prognostic indicators. Cancer. 2020; 126(14):3244-3254. doi: 10.1002/cncr.32937

Gill H, Raghupathy R, Ni M, et al. Epidemiology and outcomes of acute promyelocytic leukaemia in the era of all-trans retinoic acid (ATRA) chemotherapy and arsenic trioxide plus ATRA: a retrospective analysis. Lancet Oncology. 2022;23(1):11. doi: 10.1016/S1470-2045(22)00410-7

ClinicalTrials.gov Identifier: NCT04251754. The Acute Promyelocytic Leukaemia Asian Consortium (APL-AC) Project. Accessed January 23, 2023.

ClinicalTrials.gov Identifier: NCT03624270. Oral Arsenic Trioxide for Newly Diagnosed Acute Promyelocytic Leukaemia. Accessed January 23, 2023.

Zhao H, Zhu H, Huang J et al. The synergy of Vitamin C with decitabine activates TET2 in leukemic cells and significantly improves overall survival in elderly patients with acute myeloid leukemia. Leuk Res. 2018;66:1-7. doi: 10.1016/j.leukres.2017.12.009

Welch JS, Klco JM, Gao F, et al. Combination decitabine, arsenic trioxide, and ascorbic acid for the treatment of myelodysplastic syndrome and acute myeloid leukemia: a phase I study. Am J Hematol. 2011;86(9):796-800. doi: 10.1002/ajh.22092

Zhang X, Fu R, Yu J, Wu X. DNA demethylation: where genetics meets epigenetics. Curr Pharm Des. 2014;20(11):1625-1631. doi: 10.2174/ 13816128113199990546

ACTRN12621000223831: Precision Medicine for Chronic Myelomonocytic Leukaemia in Adults: A phase II Trial Studying the Efficacy of Lenzilumab and High Dose Ascorbate with Azacitidine Based on Molecular Profiling. https://anzctr.org.au/Trial/Registration/TrialReview.aspx?id=380941&isReview=true. Accessed February 10, 2023.

ClinicalTrials.gov Identifier: NCT03999723. Combining Active and Passive DNA Hypomethylation (EVI-3). Accessed January 23, 2023.

Böttger F, Vallés-Martí A, Cahn L, Jimenez CR. High-dose intravenous vitamin C, a promising multi-targeting agent in the treatment of cancer. J Exp Clin Cancer Res. 2021;40(1):343. doi: 10.1186/s13046-021-02134-y

Bedhiafi T, Inchakalody VP, Fernandes Q, et al. The potential role of vitamin C in empowering cancer immunotherapy. Biomed Pharmacother. 2022;146:112553. doi: 10.1016/j.biopha.2021.112553

Darwiche W, Gomila C, Ouled-Haddou H, et al. Ascorbic acid (vitamin C) synergistically enhances the therapeutic effect of targeted therapy in chronic lymphocytic leukemia. J Exp Clin Cancer Res. 2020;39(1):228. doi: 10.1186/s13046-020-01738-0

Dhahri A and Chhabra G. The Abating Effect of Vitamin-C on Imatinib in a CML Patient: A First Case Report. Austin J Med Oncol. 2020;7(3):1056.

Heaney ML, Gardner JR, Karasavvas N, et al. Vitamin C antagonizes the cytotoxic effects of antineoplastic drugs. Cancer Res. 2008;68(19):8031-8038. doi: 10.1158/0008-5472.CAN-08-1490

Perrone G, Hideshima T, Ikeda H, et al. Ascorbic acid inhibits antitumor activity of bortezomib in vivo. Leukemia. 2009;23:1679-1686.

Jia L, Liu FT. Why bortezomib cannot go with 'green'? Cancer Biol Med. 2013;10(4):206-213. doi: 10.7497/j.issn.2095-3941.2013.04.004

Bolaman AZ, Turgutkaya A, Küçükdiler HE, Selim C, Yavaşoğlu İ. Pharmacological dose ascorbic acid administration in relapsed refractory multiple myeloma patients. Leuk Res Rep. 2021;16:100281. doi: 10.1016/j.lrr.2021.100281

White R, Nonis M, Pearson JF, et al. Low Vitamin C Status in Patients with Cancer Is Associated with Patient and Tumor Characteristics. Nutrients. 2020;12(8):2338. doi: 10.3390/nu12082338

Klimant E, Wright H, Rubin D, Seely D, Markman M. Intravenous vitamin C in the supportive care of cancer patients: a review and rational approach. Curr Oncol. 2018;25(2):139-148. doi: 10.3747/co.25.3790

Hoffer LJ, Robitaille L, Zakarian R, et al. High-dose intravenous vitamin C combined with cytotoxic chemotherapy in patients with advanced cancer: a phase I-II clinical trial. PLoS One. 2015;10(4):e0120228. doi: 10.1371/journal.pone.0120228

Cabanillas F. Vitamin C and cancer: what can we conclude-1,609 patients and 33 years later? P R Health Sci J. 2010;29(3):215-217.

Saul AW. Vitamin C and cancer: what can we conclude--1,609 patients and 33 years later: comment on the article by Cabanillas. P R Health Sci J. 2010;29(4):409-410.

González MJ, Miranda-Massari JR, Duconge J. Vitamin C and cancer: what can we conclude--1,609 patients and 33 years later: comment on the article by Cabanillas. P R Health Sci J. 2010;29(4):410-411.

Downloads

Published

2023-12-30

How to Cite

Ogochukwu, I. (2023). Ascorbic acid in cancer management – time for a second look. European Journal of Clinical and Experimental Medicine, 21(4), 863–879. https://doi.org/10.15584/ejcem.2023.4.7

Issue

Section

REVIEW PAPERS