Selegiline modulates inflammatory indicators in RAW 264.7 macrophages and LPS-aggravated CFA-induced rheumatoid arthritis in rats
DOI:
https://doi.org/10.15584/ejcem.2024.1.12Keywords:
CFA, cytokines, RAW 264.7, reactive oxygen species, rheumatoid arthritis, selegilineAbstract
Introduction and aim. Rheumatoid arthritis (RA) causes pain, inflammation, and deformities in numerous joints. Monoamine oxidase B (MOA-B) inhibitor selegiline exhibits anti-inflammatory characteristics and has the propensity to scavenge free radicals. Therefore, the aim of this research comprises of assessing the effect of selegiline on proinflammatory cytokines in RAW 264.7 macrophages as well as its capacity to improve various arthritic parameters in rats with lipopolysaccharide (LPS) accelerated complete Freund’s adjuvant (CFA) induced RA.
Material and methods. In RAW 264.7 cells (lipopolysaccharide accelerated), nitric oxide (NO), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), inducible nitric oxide synthase (iNOS), and prostaglandin E2 (PGE2 ) were determined after treat ment with selegiline. Different arthritic parameters were analyzed after administration of selegiline in LPS accelerated CFA-induced arthritis in rats.
Results. LPS escalates NO, TNF-α, IL-6, iNOS, and PGE2 quantities in the RAW 264.7 cells, which was minimized by selegiline at 100 µg/mL and 150 µg/mL respectively. In rats, CFA induction causes a decrease in body weight, elevation of paw volume, splenic index, and arthritic index, which are further accelerated by LPS. 20 mg/kg of selegiline managed all these arthritic parameters effectively, including TNF-α, IL-6, and a few other biochemical parameters.
Conclusion. Selegiline may be beneficial in RA extenuating joint and cartilage damage, and modulating inflammatory responses.
Downloads
References
Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003;423(6937):356-361. doi: 10.1038/nature01661
Zhang Q, Zhang JH, He YQ, et al. Iridoid glycosides from Morinda officinalis How. exErt anti-inflammatory and anti-arthritic effects through inactivating MAPK and NF-κB signaling pathways. BMC Complement Med Ther. 2020;20(1):172. doi: 10.1186/s12906-020-02895-7
Weyand CM, Goronzy JJ. The immunology of rheumatoid arthritis. Nat Immunol. 2021;22(1):10-18. doi: 10.1038/s41590-020-00816-x
Bala A, Mondal C, Haldar PK, Khandelwal B. Oxidative stress in inflammatory cells of patient with rheumatoid arthritis: clinical efficacy of dietary antioxidants. Inflammopharmacology. 2017;25(6):595-607. doi: 10.1007/s10787-017-0397-1
Yang X, Chang Y, Wei W. Emerging role of targeting macrophages in rheumatoid arthritis: focus on polarization, metabolism and apoptosis. Cell Prolif. 2020;53(7):e12854. doi: 10.1111/cpr.12854
Kurowska-Stolarska M, Alivernini S. Synovial tissue macrophages in joint homeostasis, rheumatoid arthritis and disease remission. Nat Rev Rheumatol. 2022;18(7):384-397. doi: 10.1038/s41584-022-00790-8
Wei J, Tang Y, Qin S, et al. Laggera alata Attenuates Inflammatory Response by Regulating Macrophage Polarization in Rheumatoid Arthritis Mice [published online ahead of print, 2023 Jul 26]. Mol Biotechnol. 2023;10.1007/s12033-023-00808-w. doi: 10.1007/s12033-023-00808-w
Ardura JA, Rackov G, Izquierdo E, Alonso V, Gortazar AR, Escribese MM. Targeting macrophages: friends or foes in disease? Front Pharmacol. 2019;10:1255. doi: 10.3389/fphar.2019.01255.
Németh T, Nagy G, Pap T. Synovial fibroblasts as potential drug targets in rheumatoid arthritis, where do we stand and where shall we go? Ann Rheum Dis. 2022;81(8):1055-1064. doi: 10.1136/annrheumdis-2021-222021
Wu J, Li Q, Jin L, et al. Kirenol Inhibits the Function and Inflammation of Fibroblast-like Synoviocytes in Rheumatoid Arthritis in vitro and in vivo. Front Immunol. 2019;10:1304. doi: 10.3389/fimmu.2019.01304
Edilova MI, Akram A, Abdul-Sater AA. Innate immunity drives pathogenesis of rheumatoid arthritis. Biomed J. 2021;44(2):172-182. doi:10.1016/j.bj.2020.06.010
Milkovic L, Cipak Gasparovic A, Cindric M, Mouthuy PA, Zarkovic N. Short Overview of ROS as Cell Function Regulators and Their Implications in Therapy Concepts. Cells. 2019;8(8):793. doi: 10.3390/cells8080793
Khan S, Mohan K, Muzammil S, Alam MA, Khayyam KU. Current Prospects in Rheumatoid Arthritis: Pathophysiology, Genetics, and Treatments [published online ahead of print, 2023 Apr 6]. Recent Adv Antiinfect Drug Discov. 2023;10.2174/2772434418666230406083149. doi: 10.2174/2772434418666230406083149
Bullock J, Rizvi SAA, Saleh AM, et al. Rheumatoid arthritis: A brief overview of the treatment. Med Princ Pract. 2018;27(6):501-507. doi: 10.1159/000493390
Radu AF, Bungau SG. Management of rheumatoid arthritis: an overview. Cells. 2021;10(11):2857. doi: 10.3390/cells10112857
Shams S, Martinez JM, Dawson JRD, et al. The therapeutic landscape of rheumatoid arthritis: current state and future directions. Front Pharmacol. 2021;12:680043. doi: 10.3389/fphar.2021.680043
Guo H, Li L, Liu B, et al. Inappropriate treatment response to DMARDs: A pathway to difficult-to-treat rheumatoid arthritis. Int Immunopharmacol. 2023;122:110655. doi: 10.1016/j.intimp.2023.110655
Jost WH. A critical appraisal of MAO-B inhibitors in the treatment of Parkinson’s disease. J Neural Transm (Vienna). 2022;129(5-6):723-736. doi: 10.1007/s00702-022-02465-w
Wang K, Liu ZH, Li XY, et al. Efficacy and safety of selegiline for the treatment of Parkinson’s disease: A systematic review and meta-analysis. Front Aging Neurosci. 2023;15:1134472. doi: 10.3389/fnagi.2023.1134472
Akhondzadeh S, Tavakolian R, Davari-Ashtiani R, Arabgol F, Amini H. Selegiline in the treatment of attention deficit hyperactivity disorder in children: a double blind and randomized trial. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(5):841-845. doi: 10.1016/S0278-5846(03)00117-9
Tábi T, Vécsei L, Youdim MB, Riederer P, Szökő É. Selegiline: a molecule with innovative potential. J Neural Transm (Vienna). 2020;127(5):831-842. doi: 10.1007/s00702-019-02082-0
Ahmari M, Sharafi A, Mahmoudi J, Jafari-Anarkoli I, Gharbavi M, Hosseini MJ. Selegiline (L-Deprenyl) Mitigated Oxidative Stress, Cognitive Abnormalities, and Histopathological Change in Rats: Alternative Therapy in Transient Global Ischemia. J Mol Neurosci. 2020;70(10):1639-1648. doi: 10.1007/s12031-020-01544-5
Sahlan M, Mahira KF, Pratami DK, et al. The cytotoxic and anti-inflammatory potential of Tetragonula sapiens propolis from Sulawesi on raw 264.7 cell lines. J King Saud Univ Sci. 2021;33(2):101314. doi: 10.1016/j.jksus.2020.101314
Sun YW, Bao Y, Yu H, et al. Anti-rheumatoid arthritis effects of flavonoids from Daphne genkwa. Int Immunopharmacol. 2020;83:106384. doi: 10.1016/j.intimp.2020.106384
Buranaamnuay K. The MTT assay application to measure the viability of spermatozoa: A variety of the assay protocols. Open Vet J. 2021;11(2):251-269. doi: 10.5455/OVJ.2021.v11.i2.9
Paramita Pal P, Sajeli Begum A, Ameer Basha S, Araya H, Fujimoto Y. New natural pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and iNOS inhibitors identified from Penicillium polonicum through in vitro and in vivo studies. Int Immunopharmacol. 2023;117:109940. doi: 10.1016/j.intimp.2023.109940
Yang L, Liu R, Fang Y, He J. Anti-inflammatory effect of phenylpropanoids from Dendropanax dentiger in TNF-α-induced MH7A cells via inhibition of NF-κB, Akt and JNK signaling pathways. Int Immunopharmacol. 2021;94:107463. doi: 10.1016/j.intimp.2021.107463
Jin SE, Kim OS, Yoo SR, et al. Anti-inflammatory effect and action mechanisms of traditional herbal formula Gamisoyo-san in RAW 264.7 macrophages. BMC Complement Altern Med. 2016;16(1):219. doi: 10.1186/s12906-016-1197-7
Brand DD, Latham KA, Rosloniec EF. Collagen-induced arthritis. Nat Protoc. 2007;2(5):1269-1275. doi: 10.1038/nprot.2007.173
De S, Manna A, Kundu S, et al. Allylpyrocatechol attenuates collagen-induced arthritis via attenuation of oxidative stress secondary to modulation of the MAPK, JAK/STAT, and Nrf2/HO-1 pathways. J Pharmacol Exp Ther. 2017;360(2):249-259. doi: 10.1124/jpet.116.238444.
De S, Kundu S, Chatterjee M. Generation of a robust model for inducing autoimmune arthritis in Sprague Dawley rats. J Pharmacol Toxicol Methods. 2020;102:106659. doi: 10.1016/j.vascn.2019.106659
Chen Z, Bozec A, Ramming A, Schett G. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat Rev Rheumatol. 2019;15(1):9-17. doi: 10.1038/s41584-018-0109-2
Lind M, Hayes A, Caprnda M, et al. Inducible nitric oxide synthase: good or bad? Biomed Pharmacother. 2017;93:370-375. doi: 10.1016/j.biopha.2017.06.036
Farrell AJ, Blake DR, Palmer RM, Moncada S. Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann Rheum Dis. 1992;51(11):1219-1222. doi: 10.1136/ard.51.11.1219
He P, Hu Y, Huang C, et al. N-Butanol Extract of Gastrodia elata Suppresses Inflammatory Responses in Lipopolysaccharide-Stimulated Macrophages and Complete Freund’s Adjuvant- (CFA) Induced Arthritis Rats via Inhibition of MAPK Signaling Pathway. Evid Based Complement Alternat Med. 2020;2020:1658618. doi: 10.1155/2020/1658618
Si M, Ma Z, Zhang J, et al. Qingluoyin granules protect against adjuvant-induced arthritis in rats via downregulating the CXCL12/CXCR4-NF-κB signalling pathway. Pharm Biol. 2021;59(1):1441-1451. doi: 10.1080/13880209.2021.1991386
Wang Z, Huang J, Xie D, He D, Lu A, Liang C. Toward overcoming treatment failure in rheumatoid arthritis. Front Immunol. 2021;12:755844. doi: 10.3389/fimmu.2021.755844
Huang J, Fu X, Chen X, Li Z, Huang Y, Liang C. Promising therapeutic targets for treatment of rheumatoid arthritis. Front Immunol. 2021;12:686155. doi: 10.3389/fimmu.2021.686155
Chetia P, Khandelwal B, Haldar PK, Bala A. Dietary antioxidants significantly reduced phorbol myristate acetate induced oxidative stress of peripheral blood mononuclear cells of patients with rheumatoid arthritis. Curr Rheumatol Rev. 2021;17(1):81-87. doi: 10.2174/1573397116999200729154954
Ahmed AB, Chetia P. MAO – B Inhibitor “Selegiline” Attenuates Oxidative Stress and Arthritic Parameters in an Invitro Repurposive Study. J Biomed Eng. 2023;40(2):171-181. doi: 10.105515/JBE.40.2.17
Fang Y, Yang L, He J. Plantanone C attenuates LPS-stimulated inflammation by inhibiting NF-κB/iNOS/COX-2/MAPKs/Akt pathways in RAW 264.7 macrophages. Biomed Pharmacother. 2021;143:112104. doi: 10.1016/j.biopha.2021.112104
Taciak B, Białasek M, Braniewska A, et al. Evaluation of phenotypic and functional stability of RAW 264.7 cell line through serial passages. PloS One. 2018;13(6):e0198943. doi: 10.1371/journal.pone.0198943
Fontes JA, Barin JG, Talor MV, et al. Complete Freund’s adjuvant induces experimental autoimmune myocarditis by enhancing IL-6 production during initiation of the immune response. Immun Inflamm Dis. 2017;5(2):163-176. doi: 10.1002/iid3.155
Chen G, Song Y, Ma F, Ma Y. Anti-arthritic activity of D-carvone against complete Freund’s adjuvant-induced arthritis in rats through modulation of inflammatory cytokines. Korean J Physiol Pharmacol. 2020;24(6):453-462. doi: 10.4196/kjpp.2020.24.6.453
Abo-Haded HM, Elkablawy MA, Al-Johani Z, Al-Ahmadi O, El-Agamy DS. Hepatoprotective effect of sitagliptin against methotrexate induced liver toxicity. PLoS One. 2017;12(3):e0174295. doi: 10.1371/journal.pone.0174295
Tucureanu MM, Rebleanu D, Constantinescu CA, et al. Lipopolysaccharide-induced inflammation in monocytes/macrophages is blocked by liposomal delivery of Gi-protein inhibitor. Int J Nanomedicine. 2018;13:63-76. doi: 10.2147/IJN.S150918
Guo Y, Ye Q, Yang S, et al. Therapeutic effects of polysaccharides from Anoectochilus roxburghii on type II collagen-induced arthritis in rats. Int J Biol Macromol. 2019;122:882-892. doi: 10.1016/j.ijbiomac.2018.11.015
Silpavathi L, Das MK, Das D. Anti-arthritic potentials of aqueous and methanolic leaf extracts of Ardisia solanacea on complete Freund’s adjuvant induced rheumatoid arthritis in rats. Adv in Tradit Med. 2023;23(1):111-119. doi: 10.1007/s13596-021-00591-6
Barrea L, Di Somma C, Muscogiuri G, et al. Nutrition, inflammation and liver-spleen axis. Crit Rev Food Sci Nutr. 2018;58(18):3141-3158. doi: 10.1080/10408398.2017.1353479
Müller T, Foley P. Clinical pharmacokinetics and pharmacodynamics of safinamide. Clinical pharmacokinetics. 2017;56(3):251-261. doi: 10.1007/s40262-016-0449-5
Ostadkarampour M, Putnins EE. Monoamine Oxidase Inhibitors: A Review of Their Anti-Inflammatory Therapeutic Potential and Mechanisms of Action. Frontiers in Pharmacology. 2021; 12:676239. doi: 10.3389/fphar.2021.676239
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 European Journal of Clinical and Experimental Medicine

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our open access policy is in accordance with the Budapest Open Access Initiative (BOAI) definition: this means that articles have free availability on the public Internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from having access to the Internet itself.
All articles are published with free open access under the CC-BY Creative Commons attribution license (the current version is CC-BY, version 4.0). If you submit your paper for publication by the Eur J Clin Exp Med, you agree to have the CC-BY license applied to your work. Under this Open Access license, you, as the author, agree that anyone may download and read the paper for free. In addition, the article may be reused and quoted provided that the original published version is cited. This facilitates freedom in re-use and also ensures that Eur J Clin Exp Med content can be mined without barriers for the research needs.




