PET and SPECT imaging as a solid guide to detect and discriminate atypical phenotypes of neurodegenerative disorders
DOI:
https://doi.org/10.15584/ejcem.2024.1.20Keywords:
atypical phenotypes, neurodegenerative diseases, positron emission tomography, single photon emission computed tomographyAbstract
Introduction and aim. Atypical or mixed presentations of neurodegenerative disorders may postpone or confound the final diagnosis. Molecular imaging with positron emission tomography (PET) and single photon emission computed tomography (SPECT) radioligands provide target-specific information and may anticipate the diagnosis by “in vivo” detection of the neuro pathological substrate, as Aβ deposition, nigrostriatal dopaminergic depletion or tau inclusions. This concise review will dis cuss the potential of PET and SPECT imaging as a solid guide to better characterize atypical phenotypes of neurodegeneration in the clinical routine, with the potential to drive personalized interventions, improve cohort uniformity for clinical trials, and serve as biomarkers for targeted molecular therapies.
Material and methods. Literature search was performed focusing on the role of PET and SPECT imaging in assessing atypical phenotypes of neurodegeneration, using the electronic source of database PubMed/MEDLINE and the web-based search engines Google, Google Scholar.
Analysis of the literature. New disease-modifying drugs may increase their effect with early initiation, which is especially im portant in working persons and younger subjects presenting atypical symptoms. In older individuals, the coexistence of neu rodegeneration, age-related changes, cerebrovascular lesions, or depression makes challenging a definitive diagnosis. Quantitative tools able to measure tracer distribution increase the accuracy of molecular neuroimaging creating topographic maps that compare subject’s data with healthy controls databases.
Conclusion. Atypical phenotypes may be associated with quantitative key-pattern allowing a more precise and early diagnosis of the neurodegenerative disorder. Finally, quantitative assessment of the pathological substrates allows us to track the disease process and measure treatment response.
Downloads
References
Dementia. https://www.who.int/news-room/fact-sheets/detail/dementia. Accessed December 18, 2023.
Jellinger KA. Recent update on the heterogeneity of the Alzheimer's disease spectrum. J Neural Transm (Vienna). 2022;129(1):1-24. doi: 10.1007/s00702-021-02449-2
Respondek G, Stamelou M, Höglinger GU. Classification of atypical parkinsonism per pathology versus phenotype. Int Rev Neurobiol. 2019;149:37-47. doi: 10.1016/bs.irn.2019.10.003
Graff-Radford J, Yong KXX, Apostolova LG, et al. New insights into atypical Alzheimer's disease in the era of biomarkers. Lancet Neurol. 2021;20(3):222-234. doi: 10.1016/S1474-4422(20)30440-3
Irwin DJ, Lee VMY, Trojanowski JQ. Parkinson’s disease dementia: convergence of α-synuclein, tau and amyloid-β pathologies. Nat Rev Neurosci. 2013;14(9):626-636. doi: 10.1038/nrn3549
van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in early Alzheimer’s Disease. N Engl J Med. 2022;388(1):9-21. doi: 10.1056/nejmoa2212948
Budd Haeberlein S, Aisen PS, Barkhof F, et al. Two Randomized Phase 3 Studies of Aducanumab in Early Alzheimer’s Disease. J Prev Alzheimers Dis. 2022;9(2). doi: 10.14283/jpad.2022.30
Mintun MA, Lo AC, Duggan Evans C, et al. Donanemab in Early Alzheimer’s Disease. N Engl J Med. 2021;384(18). doi: 10.1056/nejmoa2100708
Noritaka Wakasugi, Takashi Hanakawa. It Is Time to Study Overlapping Molecular and Circuit Pathophysiologies in Alzheimer’s and Lewy Body Disease Spectra. Front Syst Neurosci. 2021;15. doi: 10.3389/fnsys.2021.777706
Dugger BN, Dickson DW. Pathology of Neurodegenerative Diseases. Cold Spring Harb Perspect Biol. 2017;9(7):a028035. doi: 10.1101/cshperspect.a028035
Pillai JA, Bena J, Rothenberg K, Boron B, Leverenz JB. Association of Variation in Behavioral Symptoms With Initial Cognitive Phenotype in Adults With Dementia Confirmed by Neuropathology. JAMA Network Open. 2022;5(3):e220729. doi: 10.1001/jamanetworkopen.2022.0729
Pini L, Wennberg AM, Salvalaggio A, Vallesi A, Pievani M, Corbetta M. Breakdown of specific functional brain networks in clinical variants of Alzheimer’s disease. Ageing Res Rev. 2021;72:101482. doi: 10.1016/j.arr.2021.101482
Selvackadunco S, Langford K, Shah Z, et al. Comparison of clinical and neuropathological diagnoses of neurodegenerative diseases in two centres from the Brains for Dementia Research (BDR) cohort. J Neural Transm. 2019;126(3):327-337. doi: 10.1007/s00702-018-01967-w
Mosconi L. Glucose metabolism in normal aging and Alzheimer’s disease: methodological and physiological considerations for PET studies. Clin Transl Imag. 2013;1(4):217-233. doi: 10.1007/s40336-013-0026-y
Jack CR, Bennett DA, Blennow K, et al. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87(5):539-547. doi: 10.1212/wnl.0000000000002923
Tiepolt S, Patt M, Aghakhanyan G, et al. Current radiotracers to image neurodegenerative diseases. EJNMMI Radiopharmacy and Chemistry. 2019;4. doi: 10.1186/s41181-019-0070-7
Wang YT, Edison P. Tau Imaging in Neurodegenerative Diseases Using Positron Emission Tomography. Curr Neurol Neurosci Rep. 2019;19(7):45. doi: 10.1007/s11910-019-0962-7
Tagai K, Ono M, Kubota M, et al. High-Contrast In Vivo Imaging of Tau Pathologies in Alzheimer’s and Non-Alzheimer’s Disease Tauopathies. Neuron. 2021;109(1):42-58.e8. doi: 10.1016/j.neuron.2020.09.042
Leng F, Hinz R, Gentleman S, et al. Neuroinflammation is independently associated with brain network dysfunction in Alzheimer’s disease. Mol Psych 2023;28(3):1303-1311. doi: 10.1038/s41380-022-01878-z
Nicastro N, Nencha U, Burkhard PR, Garibotto V. Dopaminergic imaging in degenerative parkinsonisms, an established clinical diagnostic tool. J Neurochem. 2022;164(3):346-363. doi: 10.1111/jnc.15561
Ni R, Nitsch RM. Recent Developments in Positron Emission Tomography Tracers for Proteinopathies Imaging in Dementia. Front Aging Neurosci. 2022;13. doi: 10.3389/fnagi.2021.751897
Spallazzi M, Barocco F, Michelini G, et al. CSF biomarkers and amyloid PET: concordance and diagnostic accuracy in a MCI cohort. Acta Neurologica Belgica. 2019;119(3):445-452. doi: 10.1007/s13760-019-01112-8
Silverman DHS, Small GW, Chang CY, et al. Positron Emission Tomography in Evaluation of Dementia: Regional Brain Metabolism and Long-term Outcome. JAMA. 2001;286(17):2120-2127. doi: 10.1001/jama.286.17.2120
Foster NL, Heidebrink JL, Clark CM, et al. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain. 2007;130(10):2616-2635. doi: 10.1093/brain/awm177
Jagust W, Reed B, Mungas D, Ellis W, DeCarli C. What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia? Neurology. 2007;69(9):871-877. doi: 10.1212/01.wnl.0000269790.05105.16
Mosconi L, Mistur R, Switalski R, et al. FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease. Eur J Nucl Med Mol Imag. 2009;36(5):811-822. doi: 10.1007/s00259-008-1039-z
Hoffman JM, Welsh-Bohmer KA, Hanson M, et al. FDG PET imaging in patients with pathologically verified dementia. J Nucl Med. 2000;41(11):1920-1928.
Minoshima S, Foster NL, Sima AAF, Frey KA, Albin RL, Kuhl DE. Alzheimer’s disease versus dementia with Lewy bodies: Cerebral metabolic distinction with autopsy confirmation. Ann Neurol. 2001;50(3):358-365. doi: 10.1002/ana.1133
Higuchi M, Tashiro M, Arai H, et al. Glucose hypometabolism and neuropathological correlates in brains of dementia with Lewy bodies. Exp Neurol. 2000;162(2):247-256. doi: 10.1006/exnr.2000.7342
Clark CM, Pontecorvo MJ, Beach TG, et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study. Lancet Neurol. 2012;11(8):669-678. doi: 10.1016/S1474-4422(12)70142-4
Beach TG, Maarouf CL, Intorcia A, et al. Antemortem-Postmortem Correlation of Florbetapir (18F) PET Amyloid Imaging with Quantitative Biochemical Measures of Aβ42 but not Aβ40. J Alzheimers Dis. 2018;61(4):1509-1516. doi: 10.3233/JAD-170762
Sabri O, Sabbagh MN, Seibyl J, et al. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer's disease: phase 3 study. Alzheimers Dement. 2015;11(8):964-974. doi: 10.1016/j.jalz.2015.02.004
Curtis C, Gamez JE, Singh U, et al. Phase 3 trial of flutemetamol labeled with radioactive fluorine 18 imaging and neuritic plaque density. JAMA Neurol. 2015;72(3):287-294. doi: 10.1001/jamaneurol.2014.4144
Ikonomovic MD, Buckley CJ, Heurling K, et al. Post-mortem histopathology underlying β-amyloid PET imaging following flutemetamol F 18 injection. Acta Neuropathol Commun. 2016;4(1):130. doi: 10.1186/s40478-016-0399-z
Salloway S, Gamez JE, Singh U, et al. Performance of [18F]flutemetamol amyloid imaging against the neuritic plaque component of CERAD and the current (2012) NIA-AA recommendations for the neuropathologic diagnosis of Alzheimer's disease. Alzheimers Dement (Amst). 2017;9:25-34. doi: 10.1016/j.dadm.2017.06.001
La Joie R, Ayakta N, Seeley WW, et al. Multisite study of the relationships between antemortem [11C]PIB-PET Centiloid values and postmortem measures of Alzheimer's disease neuropathology. Alzheimers Dement. 2019;15(2):205-216. doi: 10.1016/j.jalz.2018.09.001
Lesman‐Segev OH, La Joie R, Iaccarino L, et al. Diagnostic Accuracy of Amyloid versus 18F‐Fluorodeoxyglucose Positron Emission Tomography in Autopsy‐Confirmed Dementia. Ann Neurol. 2020;89(2):389-401. doi: 10.1002/ana.25968
Tan RH, Kril JJ, Yang Y, et al. Assessment of amyloid β in pathologically confirmed frontotemporal dementia syndromes. Alzheimers Dement. 2017;9(1):10-20. doi: 10.1016/j.dadm.2017.05.005
Walker Z, Jaros E, Walker RW, et al. Dementia with Lewy bodies: a comparison of clinical diagnosis, FP-CIT single photon emission computed tomography imaging and autopsy. J Neurol Neurosurg Psychiatry. 2007;78(11):1176-1181. doi: 10.1136/jnnp.2006.110122
Thomas AJ, Attems J, Colloby SJ, et al. Autopsy validation of 123I-FP-CIT dopaminergic neuroimaging for the diagnosis of DLB. Neurology. 2017;88(3):276-283. doi: 10.1212/WNL.0000000000003512
Colloby SJ, McParland S, O'Brien JT, Attems J. Neuropathological correlates of dopaminergic imaging in Alzheimer's disease and Lewy body dementias. Brain. 2012;135(9):2798-2808. doi: 10.1093/brain/aws211
Lim SM, Katsifis A, Villemagne VL, et al. The 18F-FDG PET cingulate island sign and comparison to 123I-beta-CIT SPECT for diagnosis of dementia with Lewy bodies. J Nucl Med. 2009;50(10):1638-1645. doi: 10.2967/jnumed.109.065870
Shirvan J, Clement N, Ye R, et al. Neuropathologic correlates of amyloid and dopamine transporter imaging in Lewy body disease. Neurology. 2019;93(5):e476-e484. doi: 10.1212/wnl.0000000000007855
Pirker S, Perju-Dumbrava L, Kovacs GG, Traub-Weidinger T, Pirker W. Progressive Dopamine Transporter Binding Loss in Autopsy-Confirmed Corticobasal Degeneration. J Parkinsons Dis. 2015;5(4):907-912. doi: 10.3233/jpd-150625
Brigo F, Turri G, Tinazzi M. 123I-FP-CIT SPECT in the differential diagnosis between dementia with Lewy bodies and other dementias. J Neurol Sci. 2015;359(1-2):161-171. doi: 10.1016/j.jns.2015.11.004
Kraemmer J, Kovacs GG, Perju-Dumbrava L, Pirker S, Traub-Weidinger T, Pirker W. Correlation of striatal dopamine transporter imaging with post mortem substantia nigra cell counts. Mov Disord. 2014;29(14):1767-1773. doi: 10.1002/mds.25975
Perju-Dumbrava LD, Kovacs GG, Pirker S, et al. Dopamine transporter imaging in autopsy-confirmed Parkinson's disease and multiple system atrophy. Mov Disord. 2012;27(1):65-71. doi: 10.1002/mds.24000
Matsubara T, Kameyama M, Tanaka N, et al. Autopsy Validation of the Diagnostic Accuracy of 123I-Metaiodobenzylguanidine Myocardial Scintigraphy for Lewy Body Disease. Neurology. 2022;98(16):e1648-e1659. doi: 10.1212/WNL.0000000000200110
Takahashi M, Ikemura M, Oka T, et al. Quantitative correlation between cardiac MIBG uptake and remaining axons in the cardiac sympathetic nerve in Lewy body disease. J Neurol Neurosurg Psychiatry. 2015;86(9):939-944. doi: 10.1136/jnnp-2015-310686
Orimo S, Yogo M, Nakamura T, Suzuki M, Watanabe H. (123)I-meta-iodobenzylguanidine (MIBG) cardiac scintigraphy in α-synucleinopathies. Ageing Res Rev. 2016;30:122-133. doi: 10.1016/j.arr.2016.01.001
Fleisher AS, Pontecorvo MJ, Devous MD Sr, et al. Positron Emission Tomography Imaging With [18F]flortaucipir and Postmortem Assessment of Alzheimer Disease Neuropathologic Changes [published correction appears in JAMA Neurol. 2023 Aug 1;80(8):873]. JAMA Neurol. 2020;77(7):829-839. doi: 10.1001/jamaneurol.2020.0528
Martersteck A, Ayala I, Ohm DT, et al. Focal amyloid and asymmetric tau in an imaging-to-autopsy case of clinical primary progressive aphasia with Alzheimer disease neuropathology. Acta Neuropathol Commun. 2022;10(1):111. doi: 10.1186/s40478-022-01412-w
Marquié M, Normandin MD, Vanderburg CR, et al. Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol. 2015;78(5):787-800. doi: 10.1002/ana.24517
Sander K, Lashley T, Gami P, et al. Characterization of tau positron emission tomography tracer [18F]AV-1451 binding to postmortem tissue in Alzheimer's disease, primary tauopathies, and other dementias. Alzheimers Dement. 2016;12(11):1116-1124. doi: 10.1016/j.jalz.2016.01.003
Ghirelli A, Tosakulwong N, Weigand SD, et al. Sensitivity-Specificity of Tau and Amyloid β Positron Emission Tomography in Frontotemporal Lobar Degeneration. Ann Neurol. 2020;88(5):1009-1022. doi: 10.1002/ana.25893
Lowe VJ, Lundt ES, Albertson SM, et al. Tau-positron emission tomography correlates with neuropathology findings. Alzheimers Dement. 2020;16(3):561-571. doi: 10.1016/j.jalz.2019.09.079
Soleimani-Meigooni DN, Iaccarino L, La Joie R, et al. 18F-flortaucipir PET to autopsy comparisons in Alzheimer's disease and other neurodegenerative diseases. Brain. 2020;143(11):3477-3494. doi: 10.1093/brain/awaa276
Pontecorvo MJ, Keene CD, Beach TG, et al. Comparison of regional flortaucipir PET with quantitative tau immunohistochemistry in three subjects with Alzheimer's disease pathology: a clinicopathological study. EJNMMI Res. 2020;10(1):65. doi: 10.1186/s13550-020-00653-x
Smith R, Wibom M, Pawlik D, Englund E, Hansson O. Correlation of In Vivo [18F]Flortaucipir With Postmortem Alzheimer Disease Tau Pathology. JAMA Neurol. 2019;76(3):310-317. doi: 10.1001/jamaneurol.2018.3692
Barthel H, Gertz HJ, Dresel S, et al. Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer's disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol. 2011;10(5):424-435. doi: 10.1016/S1474-4422(11)70077-1
Buckley CJ, Sherwin PF, Smith AP, Wolber J, Weick SM, Brooks DJ. Validation of an electronic image reader training programme for interpretation of [18F]flutemetamol β-amyloid PET brain images. Nucl Med Commun. 2017;38(3):234-241. doi: 10.1097/MNM.0000000000000633
Pontecorvo MJ, Siderowf A, Dubois B, et al. Effectiveness of Florbetapir PET Imaging in Changing Patient Management. Dement Geriatr Cogn Disord. 2017;44(3-4):129-143. doi: 10.1159/000478007
Landau SM, Fero A, Baker SL, et al. Measurement of longitudinal β-amyloid change with 18F-florbetapir PET and standardized uptake value ratios. J Nucl Med. 2015;56(4):567-574. doi: 10.2967/jnumed.114.148981
Chen K, Roontiva A, Thiyyagura P, et al. Improved power for characterizing longitudinal amyloid-β PET changes and evaluating amyloid-modifying treatments with a cerebral white matter reference region. J Nucl Med. 2015;56(4):560-566. doi: 10.2967/jnumed.114.149732
Klunk WE, Koeppe RA, Price JC, et al. The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimers Dement. 2015;11(1):1-15.e154. doi: 10.1016/j.jalz.2014.07.003
Thurfjell L, Lilja J, Lundqvist R, et al. Automated quantification of 18F-flutemetamol PET activity for categorizing scans as negative or positive for brain amyloid: concordance with visual image reads. J Nucl Med. 2014;55(10):1623-1628. doi: 10.2967/jnumed.114.142109
Pegueroles J, Montal V, Bejanin A, et al. AMYQ: An index to standardize quantitative amyloid load across PET tracers. Alzheimers Dement. 2021;17(9):1499-1508. doi: 10.1002/alz.12317
Mérida I, Jung J, Bouvard S, et al. CERMEP-IDB-MRXFDG: a database of 37 normal adult human brain [18F]FDG PET, T1 and FLAIR MRI, and CT images available for research. EJNMMI Res. 2021;11(1):91. doi: 10.1186/s13550-021-00830-6
Pemberton HG, Collij LE, Heeman F, et al. Quantification of amyloid PET for future clinical use: a state-of-the-art review. Eur J Nucl Med Mol Imaging. 2022;49(10):3508-3528. doi: 10.1007/s00259-022-05784-y
Young PNE, Estarellas M, Coomans E, et al. Imaging biomarkers in neurodegeneration: current and future practices. Alzheimers Res Ther. 2020;12(1):49. doi: 10.1186/s13195-020-00612-7
Lauretani F, Ruffini L, Ticinesi A, Nouvenne A, Maggio M, Meschi T. Accuracy of Quantitative Positron Emission Tomography Assessment for Differentiating Cerebral Age-related from Pathological Amyloid Deposition: A Preliminary Report from a Case-series Study. World J Nucl Med. 2018;17(2):106-111. doi: 10.4103/wjnm.WJNM_14_17
Basagni B, Martelli S, Ruffini L, Mazzucchi A, Cecchi F. Progressive Unspecified Motor Speech Disorder: A Longitudinal Single Case Study of an Older Subject. Geriatrics. 2022;7(3):52. doi: 10.3390/geriatrics7030052
Caffarra P, Gardini S, Cappa S, et al. Degenerative jargon aphasia: unusual progression of logopenic/phonological progressive aphasia? Behav Neurol. 2013;26(1-2):89-93. doi: 10.3233/BEN-2012-110218
Morbelli S, Brugnolo A, Bossert I, et al. Visual versus semi-quantitative analysis of 18F-FDG-PET in amnestic MCI: an European Alzheimer's Disease Consortium (EADC) project. J Alzheimers Dis. 2015;44(3):815-826. doi: 10.3233/JAD-142229
Ishii K, Kono AK, Sasaki H, et al. Fully automatic diagnostic system for early- and late-onset mild Alzheimer's disease using FDG PET and 3D-SSP. Eur J Nucl Med Mol Imaging. 2006;33(5):575-583. doi: 10.1007/s00259-005-0015-0
Matsuda H, Yamao T. Software development for quantitative analysis of brain amyloid PET. Brain Behav. 2022;12(3):e2499. doi: 10.1002/brb3.2499
Neill M, Fisher JM, Brand C, et al. Practical Application of DaTQUANT with Optimal Threshold for Diagnostic Accuracy of Dopamine Transporter SPECT. Tomography. 2021;7(4):980-989. doi: 10.3390/tomography7040081
Kim JP, Kim J, Kim Y, et al. Staging and quantification of florbetaben PET images using machine learning: impact of predicted regional cortical tracer uptake and amyloid stage on clinical outcomes. Eur J Nucl Med Mol Imaging. 2020;47(8):1971-1983.
Zaidi H, El Naqa I. Quantitative Molecular Positron Emission Tomography Imaging Using Advanced Deep Learning Techniques. Annu Rev Biomed Eng. 2021;23:249-276. doi: 10.1146/annurev-bioeng-082420-020343
Minoshima S, Mosci K, Cross D, Thientunyakit T. Brain [F-18]FDG PET for Clinical Dementia Workup: Differential Diagnosis of Alzheimer's Disease and Other Types of Dementing Disorders. Semin Nucl Med. 2021;51(3):230-240. doi: 10.1053/j.semnuclmed.2021.01.002
Nordberg A. PET imaging of amyloid in Alzheimer's disease. Lancet Neurol. 2004;3(9):519-527. doi: 10.1016/S1474-4422(04)00853-1
Soleimani-Meigooni DN, Iaccarino L, La Joie R, et al. 18F-flortaucipir PET to autopsy comparisons in Alzheimer's disease and other neurodegenerative diseases. Brain. 2020;143(11):3477-3494. doi: 10.1093/brain/awaa276
Woodward MC, Rowe CC, Jones G, Villemagne VL, Varos TA. Differentiating the frontal presentation of Alzheimer's disease with FDG-PET. J Alzheimers Dis. 2015;44(1):233-242. doi: 10.3233/JAD-141110
Singleton E, Hansson O, Pijnenburg YAL, et al. Heterogeneous distribution of tau pathology in the behavioural variant of Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2021;92(8):872-880. doi: 10.1136/jnnp-2020-325497
Madhavan A, Whitwell JL, Weigand SD, et al. FDG PET and MRI in logopenic primary progressive aphasia versus dementia of the Alzheimer's type. PLoS One. 2013;8(4):e62471. doi: 10.1371/journal.pone.0062471
Jung Y, Whitwell JL, Duffy JR, et al. Regional β-amyloid burden does not correlate with cognitive or language deficits in Alzheimer's disease presenting as aphasia. Eur J Neurol. 2016;23(2):313-319. doi: 10.1111/ene.12761
Martersteck A, Sridhar J, Coventry C, Weintraub S, Mesulam MM, Rogalski E. Relationships among tau burden, atrophy, age, and naming in the aphasic variant of Alzheimer's disease. Alzheimers Dement. 2021;17(11):1788-1797. doi: 10.1002/alz.12445
Ossenkoppele R, Schonhaut DR, Baker SL, et al. Tau, amyloid, and hypometabolism in a patient with posterior cortical atrophy. Ann Neurol. 2015;77(2):338-342. doi: 10.1002/ana.24321
Jeong Y, Cho SS, Park JM, et al. 18F-FDG PET findings in frontotemporal dementia: an SPM analysis of 29 patients. J Nucl Med. 2005;46(2):233-239.
Ward J, Ly M, Raji CA. Brain PET Imaging: Frontotemporal Dementia. PET Clin. 2023;18(1):123-133. doi: 10.1016/j.cpet.2022.09.010
Matias-Guiu JA, Díaz-Álvarez J, Ayala JL, et al. Clustering Analysis of FDG-PET Imaging in Primary Progressive Aphasia. Front Aging Neurosci. 2018;10:230. doi: 10.3389/fnagi.2018.00230
Santos-Santos MA, Rabinovici GD, Iaccarino L, et al. Rates of Amyloid Imaging Positivity in Patients With Primary Progressive Aphasia. JAMA Neurol. 2018;75(3):342-352. doi: 10.1001/jamaneurol.2017.4309
Josephs KA, Martin PR, Botha H, et al. [18F]AV-1451 tau-PET and primary progressive aphasia. Ann Neurol. 2018;83(3):599-611. doi: 10.1002/ana.25183
Diehl J, Grimmer T, Drzezga A, Riemenschneider M, Förstl H, Kurz A. Cerebral metabolic patterns at early stages of frontotemporal dementia and semantic dementia. A PET study. Neurobiol Aging. 2004;25(8):1051-1056. doi: 10.1016/j.neurobiolaging.2003.10.007
Xu Z, Arbizu J, Pavese N. PET Molecular Imaging in Atypical Parkinsonism. Int Rev Neurobiol. 2018;142:3-36. doi: 10.1016/bs.irn.2018.09.001
Pardini M, Huey ED, Spina S, et al. FDG-PET patterns associated with underlying pathology in corticobasal syndrome. Neurology. 2019;92(10):e1121-e1135. doi: 10.1212/WNL.0000000000007038
Koga S, Josephs KA, Aiba I, Yoshida M, Dickson DW. Neuropathology and emerging biomarkers in corticobasal syndrome. J Neurol Neurosurg Psychiatry. doi: 10.1136/jnnp-2021-328586
Whitwell JL, Ahlskog JE, Tosakulwong N, et al. Pittsburgh Compound B and AV-1451 positron emission tomography assessment of molecular pathologies of Alzheimer's disease in progressive supranuclear palsy. Parkinsonism Relat Disord. 2018;48:3-9. doi: 10.1016/j.parkreldis.2017.12.016
Kantarci K, Lowe VJ, Chen Q, et al. β-Amyloid PET and neuropathology in dementia with Lewy bodies. Neurology. 2020;94(3):e282-e291. doi: 10.1212/WNL.0000000000008818
Wolters EE, van de Beek M, Ossenkoppele R, et al. Tau PET and relative cerebral blood flow in dementia with Lewy bodies: A PET study. Neuroimage Clin. 2020;28:102504. doi: 10.1016/j.nicl.2020.102504
McKeith I, O'Brien J, Walker Z, et al. Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol. 2007;6(4):305-313. doi: 10.1016/S1474-4422(07)70057-1
McCleery J, Morgan S, Bradley KM, Noel-Storr AH, Ansorge O, Hyde C. Dopamine transporter imaging for the diagnosis of dementia with Lewy bodies. Cochrane Database Syst Rev. 2015;1(1):CD010633. doi: 10.1002/14651858.CD010633.pub2
Wallert ED, van de Giessen E, Knol RJJ, Beudel M, de Bie RMA, Booij J. Imaging Dopaminergic Neurotransmission in Neurodegenerative Disorders. J Nucl Med. 2022;63(Suppl 1):27S-32S. doi: 10.2967/jnumed.121.263197
Kaasinen V, Kankare T, Joutsa J, Vahlberg T. Presynaptic Striatal Dopaminergic Function in Atypical Parkinsonism: A Metaanalysis of Imaging Studies. J Nucl Med. 2019;60(12):1757-1763. doi: 10.2967/jnumed.119.227140
Antonini A, Benti R, De Notaris R, et al. 123I-Ioflupane/SPECT binding to striatal dopamine transporter (DAT) uptake in patients with Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy. Neurol Sci. 2003;24(3):149-150. doi: 10.1007/s10072-003-0103-5
Nicastro N, Garibotto V, Burkhard PR. 123I-FP-CIT SPECT Accurately Distinguishes Parkinsonian From Cerebellar Variant of Multiple System Atrophy. Clin Nucl Med. 2018;43(2):e33-e36. doi: 10.1097/RLU.0000000000001899
Badoud S, Van De Ville D, Nicastro N, Garibotto V, Burkhard PR, Haller S. Discriminating among degenerative parkinsonisms using advanced (123)I-ioflupane SPECT analyses. Neuroimage Clin. 2016;12:234-240. doi: 10.1016/j.nicl.2016.07.004
Kim HW, Kim JS, Oh M, et al. Different loss of dopamine transporter according to subtype of multiple system atrophy. Eur J Nucl Med Mol Imaging. 2016;43(3):517-525. doi: 10.1007/s00259-015-3191-6
Filippi L, Manni C, Pierantozzi M, et al. 123I-FP-CIT in progressive supranuclear palsy and in Parkinson's disease: a SPECT semiquantitative study. Nucl Med Commun. 2006;27(4):381-386. doi: 10.1097/01.mnm.0000202858.45522.df
Nicastro N, Wegrzyk J, Preti MG, et al. Classification of degenerative parkinsonism subtypes by support-vector-machine analysis and striatal 123I-FP-CIT indices. J Neurol. 2019;266(7):1771-1781. doi: 10.1007/s00415-019-09330-z
Cilia R, Rossi C, Frosini D, et al. Dopamine Transporter SPECT Imaging in Corticobasal Syndrome. PLoS One. 2011;6(5):e18301. doi: 10.1371/journal.pone.0018301
Orimo S, Suzuki M, Inaba A, Mizusawa H. 123I-MIBG myocardial scintigraphy for differentiating Parkinson's disease from other neurodegenerative parkinsonism: a systematic review and meta-analysis. Parkinsonism Relat Disord. 2012;18(5):494-500. doi: 10.1016/j.parkreldis.2012.01.009
Yoshita M, Arai H, Arai H, et al. Diagnostic accuracy of 123I-meta-iodobenzylguanidine myocardial scintigraphy in dementia with Lewy bodies: a multicenter study. PLoS One. 2015;10(3):e0120540. doi: 10.1371/journal.pone.0120540
Matsubara T, Kameyama M, Tanaka N, et al. Autopsy Validation of the Diagnostic Accuracy of 123I-Metaiodobenzylguanidine Myocardial Scintigraphy for Lewy Body Disease. Neurology. 2022;98(16):e1648-e1659. doi: 10.1212/WNL.0000000000200110
Takahashi M, Ikemura M, Oka T, et al. Quantitative correlation between cardiac MIBG uptake and remaining axons in the cardiac sympathetic nerve in Lewy body disease. J Neurol Neurosurg Psychiatry. 2015;86(9):939-944. doi: 10.1136/jnnp-2015-310686
Komatsu J, Samuraki M, Nakajima K, et al. 123I-MIBG myocardial scintigraphy for the diagnosis of DLB: a multicentre 3-year follow-up study. J Neurol Neurosurg Psychiatry. 2018;89(11):1167-1173. doi: 10.1136/jnnp-2017-317398
King AE, Mintz J, Royall DR. Meta-analysis of 123I-MIBG cardiac scintigraphy for the diagnosis of Lewy body-related disorders. Mov Disord. 2011;26(7):1218-1224. doi: 10.1002/mds.23659
Druschky A, Hilz MJ, Platsch G, et al. Differentiation of Parkinson's disease and multiple system atrophy in early disease stages by means of I-123-MIBG-SPECT. J Neurol Sci. 2000;175(1):3-12. doi: 10.1016/s0022-510x(00)00279-3
Okoyama R, Okuda R, Seo K, et al. The relationship between MIBG myocardial scintigraphy and clinical factors in multiple system atrophy [abstract]. Mov Disord. 2020;35 (suppl 1):293.
Shimizu S, Hanyu H, Kanetaka H, Iwamoto T, Koizumi K, Abe K. Differentiation of dementia with Lewy bodies from Alzheimer's disease using brain SPECT. Dement Geriatr Cogn Disord. 2005;20(1):25-30. doi: 10.1159/000085070
Uyama N, Otsuka H, Shinya T, et al. The utility of the combination of a SPECT study with [123I]-FP-CIT of dopamine transporters and [123I]-MIBG myocardial scintigraphy in differentiating Parkinson disease from other degenerative parkinsonian syndromes. Nucl Med Commun. 2017;38(6):487-492. doi: 10.1097/MNM.0000000000000674
Landau SM, Mintun MA, Joshi AD, et al. Amyloid deposition, hypometabolism, and longitudinal cognitive decline. Ann Neurol. 2012;72(4):578-586. doi: 10.1002/ana.23650
Insel PS, Mormino EC, Aisen PS, Thompson WK, Donohue MC. Neuroanatomical spread of amyloid β and tau in Alzheimer's disease: implications for primary prevention. Brain Commun. 2020;2(1):fcaa007. doi: 10.1093/braincomms/fcaa007
Villarejo-Galende A, Llamas-Velasco S, Gómez-Grande A, et al. Amyloid pet in primary progressive aphasia: case series and systematic review of the literature. J Neurol. 2017;264(1):121-130. doi: 10.1007/s00415-016-8324-8
Rusz J, Tykalová T, Novotný M, Zogala D, Růžička E, Dušek P. Automated speech analysis in early untreated Parkinson's disease: Relation to gender and dopaminergic transporter imaging. Eur J Neurol. 2022;29(1):81-90. doi: 10.1111/ene.15099
Polychronis S, Niccolini F, Pagano G, Yousaf T, Politis M. Speech difficulties in early de novo patients with Parkinson's disease. Parkinsonism Relat Disord. 2019;64:256-261. doi: 10.1016/j.parkreldis.2019.04.026
De Pablo-Fernandez E, Tur C, Revesz T, Lees AJ, Holton JL, Warner TT. Association of Autonomic Dysfunction With Disease Progression and Survival in Parkinson Disease. JAMA Neurol. 2017;74(8):970-976. doi: 10.1001/jamaneurol.2017.1125
McKeith IG, Boeve BF, Dickson DW, et al. Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology. 2017;89(1):88-100. doi: 10.1212/WNL.0000000000004058
Roberts G, Kane JPM, Lloyd JJ, et al. A comparison of visual and semiquantitative analysis methods for planar cardiac 123I-MIBG scintigraphy in dementia with Lewy bodies. Nucl Med Commun. 2019;40(7):734-743. doi: 10.1097/MNM.0000000000001024
Roberts G, Durcan R, Donaghy PC, et al. Accuracy of Cardiac Innervation Scintigraphy for Mild Cognitive Impairment With Lewy Bodies. Neurology. 2021;96(23):e2801-e2811. doi: 10.1212/WNL.0000000000012060
Sakakibara R, Tateno F, Kishi M, Tsuyusaki Y, Terada H, Inaoka T. MIBG myocardial scintigraphy in pre-motor Parkinson's disease: a review. Parkinsonism Relat Disord. 2014;20(3):267-273. doi: 10.1016/j.parkreldis.2013.11.001
Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging. 2003;24(2):197-211. doi: 10.1016/s0197-4580(02)00065-9
Niccolini F, Politis M. A systematic review of lessons learned from PET molecular imaging research in atypical parkinsonism. Eur J Nucl Med Mol Imaging. 2016;43(12):2244-2254. doi: 10.1007/s00259-016-3464-8
Beyer L, Meyer-Wilmes J, Schönecker S, et al. Clinical Routine FDG-PET Imaging of Suspected Progressive Supranuclear Palsy and Corticobasal Degeneration: A Gatekeeper for Subsequent Tau-PET Imaging?. Front Neurol. 2018;9:483. doi: 10.3389/fneur.2018.00483
Pagani M, Chiò A, Valentini MC, et al. Functional pattern of brain FDG-PET in amyotrophic lateral sclerosis. Neurology. 2014;83(12):1067-1074. doi: 10.1212/WNL.0000000000000792
Van Laere K, Vanhee A, Verschueren J, et al. Value of 18fluorodeoxyglucose-positron-emission tomography in amyotrophic lateral sclerosis: a prospective study. JAMA Neurol. 2014;71(5):553-561. doi: 10.1001/jamaneurol.2014.62
Van Weehaeghe D, Ceccarini J, Delva A, Robberecht W, Van Damme P, Van Laere K. Prospective Validation of 18F-FDG Brain PET Discriminant Analysis Methods in the Diagnosis of Amyotrophic Lateral Sclerosis. J Nucl Med. 2016;57(8):1238-1243. doi: 10.2967/jnumed.115.166272
D'hulst L, Van Weehaeghe D, Chiò A, et al. Multicenter validation of [18F]-FDG PET and support-vector machine discriminant analysis in automatically classifying patients with amyotrophic lateral sclerosis versus controls. Amyotroph Lateral Scler Frontotemporal Degener. 2018;19(7-8):570-577. doi: 10.1080/21678421.2018.1476548
Liu Y, Pelak VS, van Stavern G, Moss HE. Higher Cortical Dysfunction Presenting as Visual Symptoms in Neurodegenerative Diseases. Front Neurol. 2020;11:679. doi: 10.3389/fneur.2020.00679
Risacher SL, WuDunn D, Tallman EF, et al. Visual contrast sensitivity is associated with the presence of cerebral amyloid and tau deposition. Brain Commun. 2020;2(1):fcaa019. doi: 10.1093/braincomms/fcaa019
Ossenkoppele R, Schonhaut DR, Baker SL, et al. Tau, amyloid, and hypometabolism in a patient with posterior cortical atrophy. Ann Neurol. 2015;77(2):338-342. doi: 10.1002/ana.24321
Townley RA, Botha H, Graff-Radford J, et al. Posterior cortical atrophy phenotypic heterogeneity revealed by decoding 18F-FDG-PET. Brain Commun. 2021;3(4):fcab182. doi: 10.1093/braincomms/fcab182
Rosenberg PB, Mielke MM, Appleby BS, Oh ES, Geda YE, Lyketsos CG. The association of neuropsychiatric symptoms in MCI with incident dementia and Alzheimer disease. Am J Geriatr Psychiatry. 2013;21(7):685-695. doi: 10.1016/j.jagp.2013.01.006
Peters ME, Schwartz S, Han D, et al. Neuropsychiatric symptoms as predictors of progression to severe Alzheimer's dementia and death: the Cache County Dementia Progression Study. Am J Psychiatry. 2015;172(5):460-465. doi: 10.1176/appi.ajp.2014.14040480
Urso D, Gnoni V, Filardi M, Logroscino G. Delusion and Delirium in Neurodegenerative Disorders: An Overlooked Relationship? Front Psychiatry. 2022;12:808724. doi: 10.3389/fpsyt.2021.808724
Moulinet I, Touron E, Mézenge F, et al. Depressive Symptoms Have Distinct Relationships With Neuroimaging Biomarkers Across the Alzheimer's Clinical Continuum. Front Aging Neurosci. 2022;14:899158. doi: 10.3389/fnagi.2022.899158
Touron E, Moulinet I, Kuhn E, et al. Depressive symptoms in cognitively unimpaired older adults are associated with lower structural and functional integrity in a frontolimbic network. Mol Psychiatry. 2022;27(12):5086-5095. doi: 10.1038/s41380-022-01772-8
Loreto F, Gunning S, Golemme M, et al. Evaluating cognitive profiles of patients undergoing clinical amyloid-PET imaging. Brain Commun. 2021;3(2):fcab035. doi: 10.1093/braincomms/fcab035
Krell-Roesch J, Syrjanen JA, Rakusa M, et al. Association of Cortical and Subcortical β-Amyloid With Standardized Measures of Depressive and Anxiety Symptoms in Adults Without Dementia. J Neuropsychiatry Clin Neurosci. 2021;33(1):64-71. doi: 10.1176/appi.neuropsych.20050103
Geda YE, Roberts RO, Knopman DS, et al. Prevalence of neuropsychiatric symptoms in mild cognitive impairment and normal cognitive aging: population-based study. Arch Gen Psychiatry. 2008;65(10):1193-1198. doi: 10.1001/archpsyc.65.10.1193
Donovan NJ, Hsu DC, Dagley AS, et al. Depressive Symptoms and Biomarkers of Alzheimer's Disease in Cognitively Normal Older Adults. J Alzheimers Dis. 2015;46(1):63-73. doi: 10.3233/JAD-142940
Krell-Roesch J, Syrjanen JA, Vassilaki M, et al. Brain Regional Glucose Metabolism, Neuropsychiatric Symptoms, and the Risk of Incident Mild Cognitive Impairment: The Mayo Clinic Study of Aging. Am J Geriatr Psychiatry. 2021;29(2):179-191. doi: 10.1016/j.jagp.2020.06.006
Ng KP, Chiew H, Rosa-Neto P, Kandiah N, Ismail Z, Gauthier S. Associations of AT(N) biomarkers with neuropsychiatric symptoms in preclinical Alzheimer's disease and cognitively unimpaired individuals. Transl Neurodegener. 2021;10(1):11. doi: 10.1186/s40035-021-00236-3
Donovan NJ, Locascio JJ, Marshall GA, et al. Longitudinal Association of Amyloid Beta and Anxious-Depressive Symptoms in Cognitively Normal Older Adults. Am J Psychiatry. 2018;175(6):530-537. doi: 10.1176/appi.ajp.2017.17040442
Mormino EC, Papp KV, Rentz DM, et al. Early and late change on the preclinical Alzheimer's cognitive composite in clinically normal older individuals with elevated amyloid β. Alzheimers Dement. 2017;13(9):1004-1012. doi: 10.1016/j.jalz.2017.01.018
Gatchel JR, Rabin JS, Buckley RF, et al. Longitudinal Association of Depression Symptoms With Cognition and Cortical Amyloid Among Community-Dwelling Older Adults. JAMA Netw Open. 2019;2(8):e198964. doi: 10.1001/jamanetworkopen.2019.8964
Ossenkoppele R, Singleton EH, Groot C, et al. Research Criteria for the Behavioral Variant of Alzheimer Disease: A Systematic Review and Meta-analysis. JAMA Neurol. 2022;79(1):48-60. doi: 10.1001/jamaneurol.2021.4417
Singleton EH, Pijnenburg YAL, Sudre CH, et al. Investigating the clinico-anatomical dissociation in the behavioral variant of Alzheimer disease. Alzheimers Res Ther. 2020;12(1):148. doi: 10.1186/s13195-020-00717-z
Rabinovici GD, Rosen HJ, Alkalay A, et al. Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology. 2011;77(23):2034-2042. doi: 10.1212/WNL.0b013e31823b9c5e
Burrell JR, Kiernan MC, Vucic S, Hodges JR. Motor neuron dysfunction in frontotemporal dementia. Brain. 2011;134(9):2582-2594. doi: 10.1093/brain/awr195
Zanovello M, Sorarù G, Campi C, et al. Brain Stem Glucose Hypermetabolism in Amyotrophic Lateral Sclerosis/Frontotemporal Dementia and Shortened Survival: An 18F-FDG PET/MRI Study. J Nucl Med. 2022;63(5):777-784. doi: 10.2967/jnumed.121.262232
Sirkis DW, Bonham LW, Johnson TP, La Joie R, Yokoyama JS. Dissecting the clinical heterogeneity of early-onset Alzheimer's disease. Mol Psychiatry. 2022;27(6):2674-2688. doi: 10.1038/s41380-022-01531-9
Lussier FZ, Pascoal TA, Chamoun M, et al. Mild behavioral impairment is associated with β-amyloid but not tau or neurodegeneration in cognitively intact elderly individuals. Alzheimers Dement. 2020;16(1):192-199. doi: 10.1002/alz.12007
Hanseeuw BJ, Betensky RA, Mormino EC, et al. PET staging of amyloidosis using striatum. Alzheimers Dement. 2018;14(10):1281-1292. doi: 10.1016/j.jalz.2018.04.011
Tissot C, Therriault J, Pascoal TA, et al. Association between regional tau pathology and neuropsychiatric symptoms in aging and dementia due to Alzheimer's disease. Alzheimers Dement (N Y). 2021;7(1):e12154. doi: 10.1002/trc2.12154
Waite LM, Grayson DA, Piguet O, Creasey H, Bennett HP, Broe GA. Gait slowing as a predictor of incident dementia: 6-year longitudinal data from the Sydney Older Persons Study. J Neurol Sci. 2005;229-230:89-93. doi: 10.1016/j.jns.2004.11.009
Montero-Odasso M, Bergman H, Phillips NA, Wong CH, Sourial N, Chertkow H. Dual-tasking and gait in people with mild cognitive impairment. The effect of working memory. BMC Geriatr. 2009;9:41. doi: 10.1186/1471-2318-9-41
Wojtala J, Heber IA, Neuser P, et al. Cognitive decline in Parkinson's disease: the impact of the motor phenotype on cognition. J Neurol Neurosurg Psychiatry. 2019;90(2):171-179. doi: 10.1136/jnnp-2018-319008
Schönecker S, Martinez-Murcia FJ, Rauchmann BS, et al. Frequency and Longitudinal Course of Motor Signs In Genetic Frontotemporal Dementia. Neurology. doi: 10.1212/WNL.0000000000200828
Haider A, Elghazawy NH, Dawoud A, et al. Translational molecular imaging and drug development in Parkinson's disease. Mol Neurodegener. 2023;18(1):11. doi: 10.1186/s13024-023-00600-z
Albrecht F, Ballarini T, Neumann J, Schroeter ML. FDG-PET hypometabolism is more sensitive than MRI atrophy in Parkinson's disease: A whole-brain multimodal imaging meta-analysis. Neuroimage Clin. 2019;21:101594. doi: 10.1016/j.nicl.2018.11.004
Cornblath EJ, Robinson JL, Irwin DJ, et al. Defining and predicting transdiagnostic categories of neurodegenerative disease. Nat Biomed Eng. 2020;4(8):787-800. doi: 10.1038/s41551-020-0593-y
Nalls MA, Blauwendraat C, Vallerga CL, et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 2019;18(12):1091-1102. doi: 10.1016/S1474-4422(19)30320-5
Guerreiro R, Escott-Price V, Darwent L, et al. Genome-wide analysis of genetic correlation in dementia with Lewy bodies, Parkinson's and Alzheimer's diseases. Neurobiol Aging. 2016;38:214.e7-214.e10. doi: 10.1016/j.neurobiolaging.2015.10.028
Arneson D, Zhang Y, Yang X, Narayanan M. Shared mechanisms among neurodegenerative diseases: from genetic factors to gene networks. J Genet. 2018;97(3):795-806.
Wightman DP, Savage JE, Tissink E, Romero C, Jansen IE, Posthuma D. The genetic overlap between Alzheimer's disease, amyotrophic lateral sclerosis, Lewy body dementia, and Parkinson's disease. Neurobiol Aging. 2023;127:99-112. doi: 10.1016/j.neurobiolaging.2023.03.004
Shi Y, Zhang W, Yang Y, et al. Structure-based classification of tauopathies. Nature. 2021;598(7880):359-363. doi: 10.1038/s41586-021-03911-7
Fitzpatrick AWP, Falcon B, He S, et al. Cryo-EM structures of tau filaments from Alzheimer's disease. Nature. 2017;547(7662):185-190. doi: 10.1038/nature23002
Falcon B, Zhang W, Murzin AG, et al. Structures of filaments from Pick's disease reveal a novel tau protein fold. Nature. 2018;561(7721):137-140. doi: 10.1038/s41586-018-0454-y
Zhang W, Tarutani A, Newell KL, et al. Novel tau filament fold in corticobasal degeneration. Nature. 2020;580(7802):283-287. doi: 10.1038/s41586-020-2043-0
Spillantini MG, Goedert M. Tau pathology and neurodegeneration. Lancet Neurol. 2013;12(6):609-622. doi: 10.1016/S1474-4422(13)70090-5
Rösler TW, Tayaranian Marvian A, Brendel M, et al. Four-repeat tauopathies. Prog Neurobiol. 2019;180:101644. doi: 10.1016/j.pneurobio.2019.101644
Murray ME, Kouri N, Lin WL, Jack CR Jr, Dickson DW, Vemuri P. Clinicopathologic assessment and imaging of tauopathies in neurodegenerative dementias. Alzheimers Res Ther. 2014;6(1):1. doi: 10.1186/alzrt231
Marquié M, Normandin MD, Vanderburg CR, et al. Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol. 2015;78(5):787-800. doi: 10.1002/ana.24517
Leuzy A, Chiotis K, Lemoine L, et al. Tau PET imaging in neurodegenerative tauopathies-still a challenge. Mol Psychiatry. 2019;24(8):1112-1134. doi: 10.1038/s41380-018-0342-8
Bischof GN, Dodich A, Boccardi M, et al. Clinical validity of second-generation tau PET tracers as biomarkers for Alzheimer's disease in the context of a structured 5-phase development framework. Eur J Nucl Med Mol Imaging. 2021;48(7):2110-2120. doi: 10.1007/s00259-020-05156-4
Malarte ML, Gillberg PG, Kumar A, Bogdanovic N, Lemoine L, Nordberg A. Discriminative binding of tau PET tracers PI2620, MK6240 and RO948 in Alzheimer's disease, corticobasal degeneration and progressive supranuclear palsy brains. Mol Psychiatry. 2023 Mar 8. doi: 10.1038/s41380-023-02021-2. Epub ahead of print. Erratum for: Mol Psychiatry. 2022 Nov 29;: PMID: 36890300.
Li J, Kumar A, Långström B, Nordberg A, Ågren H. Insight into the Binding of First- and Second-Generation PET Tracers to 4R and 3R/4R Tau Protofibrils. ACS Chem Neurosci. 2023;14(18):3528-3539. doi: 10.1021/acschemneuro.3c00437
Olsson B, Lautner R, Andreasson U, et al. CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis. Lancet Neurol. 2016;15(7):673-684. doi: 10.1016/S1474-4422(16)00070-3
Hardy-Sosa A, León-Arcia K, Llibre-Guerra JJ, et al. Diagnostic Accuracy of Blood-Based Biomarker Panels: A Systematic Review. Front Aging Neurosci. 2022;14:683689. doi: 10.3389/fnagi.2022.683689
Bhagavati S. Commentary: Diagnostic Accuracy of Blood-Based Biomarker Panels: A Systematic Review. Front Aging Neurosci. 2022;14:895398. doi: 10.3389/fnagi.2022.895398
Benussi A, Cantoni V, Rivolta J, et al. Classification accuracy of blood-based and neurophysiological markers in the differential diagnosis of Alzheimer's disease and frontotemporal lobar degeneration. Alzheimers Res Ther. 2022;14(1):155. doi: 10.1186/s13195-022-01094-5
Márquez F, Yassa MA. Neuroimaging Biomarkers for Alzheimer's Disease. Mol Neurodegener. 2019;14(1):21. doi: 10.1186/s13024-019-0325-5
Daerr S, Brendel M, Zach C, et al. Evaluation of early-phase [18F]-florbetaben PET acquisition in clinical routine cases. Neuroimage Clin. 2016;14:77-86. doi: 10.1016/j.nicl.2016.10.005
Johnson KA, Minoshima S, Bohnen NI, et al. Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer's Association. Alzheimers Dement. 2013;9(1):e-16. doi: 10.1016/j.jalz.2013.01.002
Schneider JA, Arvanitakis Z, Yu L, Boyle PA, Leurgans SE, Bennett DA. Cognitive impairment, decline and fluctuations in older community-dwelling subjects with Lewy bodies. Brain. 2012;135(Pt 10):3005-3014. doi: 10.1093/brain/aws234
Rodriguez-Oroz MC, Gago B, Clavero P, Delgado-Alvarado M, Garcia-Garcia D, Jimenez-Urbieta H. The relationship between atrophy and hypometabolism: is it regionally dependent in dementias? Curr Neurol Neurosci Rep. 2015;15(7):44. doi: 10.1007/s11910-015-0562-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 European Journal of Clinical and Experimental Medicine

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our open access policy is in accordance with the Budapest Open Access Initiative (BOAI) definition: this means that articles have free availability on the public Internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from having access to the Internet itself.
All articles are published with free open access under the CC-BY Creative Commons attribution license (the current version is CC-BY, version 4.0). If you submit your paper for publication by the Eur J Clin Exp Med, you agree to have the CC-BY license applied to your work. Under this Open Access license, you, as the author, agree that anyone may download and read the paper for free. In addition, the article may be reused and quoted provided that the original published version is cited. This facilitates freedom in re-use and also ensures that Eur J Clin Exp Med content can be mined without barriers for the research needs.




