Prolonged screen-time as the cause of ocular disorders: what can we do with the problem? – a review

Authors

DOI:

https://doi.org/10.15584/ejcem.2024.1.26

Keywords:

computer vision syndrome, convergence insufficiency, eye strain, prolonged screen time, refractive errors, video display terminals

Abstract

Introduction and aim. Recently, an increased use of video display terminals has been observed in workplace environments, as a result of the evolution of communication technologies and new information-sharing strategies. It has led to an increased prevalence of computer-related ocular disorders, such as computer vision syndrome, dry eye disease, refractive errors and con vergence insufficiency. In this review we describe problems associated with these disorders and propose preventive methods.

Material and methods. With the use of specific keywords, the databases of the PubMed, Science Direct, and Google Scholar were searched for relevant original papers.

Analysis of the literature. The listed disorders might have similar symptoms, such as eye burning, itching, blurred vision, and tearing, and their severity correlates with the time of exposure to video display units. However, there are preventive measures, which can help in decreasing the negative effects of computers on our vision, such as adequate viewing distance, proper work space lighting, eyeglasses with anti-glare coating, taking 5-minutes breaks after every 30 minutes, or following the 20-20-20 rule.

Conclusion. Prolonged usage of the video display terminals is connected to many ocular disorders, and in today’s world, it is very important to remember actions that can be undertaken to minimize the risk.

Downloads

Download data is not yet available.

References

Sánchez-Brau M, Domenech-Amigot B, Brocal-Fernández F, Quesada-Rico JA, Seguí-Crespo M. Prevalence of Computer Vision Syndrome and Its Relationship with Ergonomic and Individual Factors in Presbyopic VDT Workers Using Progressive Addition Lenses. Int J Environ Res Public Health. 2020;17(3):1003. doi: 10.3390/ijerph17031003

Parent-Thirion A, Cabrita J, Vargas O, Vermeylen G, Wilczynska A, Wilkens M. Eurofound (2017), Sixth European Working Conditions Survey – Overview report (2017 update). Publications Office of the European Union, Luxembourg. 2017. Eurofound. https://www.eurofound.europa.eu. Acessed November 1, 2023.

Rosenfield M. Computer vision syndrome: a review of ocular causes and potential treatments. Ophthalmic Physiol Opt. 2011;31(5):502-515. doi: 10.1111/j.1475-1313.2011.00834.x

Graham M, Weale V, Lambert KA, Kinsman N, Stuckey R, Oakman J. Working at Home: The Impacts of COVID 19 on Health, Family-Work-Life Conflict, Gender, and Parental Responsibilities. J Occup Environ Med. 2021;63(11):938-943. doi: 10.1097/jom.0000000000002337

Bahkir FA, Grandee SS. Impact of the COVID-19 lockdown on digital device-related ocular health. Indian J Ophthalmol. 2020;68(11):2378-2383. doi: 10.4103/ijo.IJO_2306_20

Colley RC, Bushnik T, Langlois K. Exercise and screen time during the COVID-19 pandemic. Health Rep. 2020;31(6):3-11. doi: 10.25318/82-003-x202000600001-eng

Andersen LL, Garde AH. Sleep problems and computer use during work and leisure: Cross-sectional study among 7800 adults. Chronobiol Int. 2015;32(10):1367-1372. doi: 10.3109/07420528.2015.1095202

Scott CF, Bay-Cheng LY, Prince MA, Nochajski TH, Collins RL. Time spent online: Latent profile analyses of emerging adults' social media use. Comput Human Behav. 2017;75:311-319. doi: 10.1016/j.chb.2017.05.026

Meyer J, McDowell C, Lansing J, et al. Changes in Physical Activity and Sedentary Behavior in Response to COVID-19 and Their Associations with Mental Health in 3052 US Adults. Int J Environ Res Public Health. 2020;17(18):6469. doi: 10.3390/ijerph17186469

Napoli PE, Nioi M, Fossarello M. The "Quarantine Dry Eye": The Lockdown for Coronavirus Disease 2019 and Its Implications for Ocular Surface Health. Risk Manag Healthc Policy. 2021;14:1629-1636. doi: 10.2147/rmhp.S277067

Jaiswal S, Asper L, Long J, Lee A, Harrison K, Golebiowski B. Ocular and visual discomfort associated with smartphones, tablets and computers: what we do and do not know. Clin Exp Optom. 2019;102(5):463-477. doi: 10.1111/cxo.12851

Gupta R, Chauhan L, Varshney A. Impact of E-Schooling on Digital Eye Strain in Coronavirus Disease Era: A Survey of 654 Students. J Curr Ophthalmol. 2021;33(2):158-164. doi: 10.4103/joco.joco_89_20

Talens-Estarelles C, García-Marqués JV, Cervino A, García-Lázaro S. Use of digital displays and ocular surface alterations: A review. Ocul Surf. 2021;19:252-265. doi: 10.1016/j.jtos.2020.10.001

Mehra D, Galor A. Digital Screen Use and Dry Eye: A Review. Asia Pac J Ophthalmol (Phila). 2020;9(6):491-497. doi: 10.1097/apo.0000000000000328

Naidoo KS, Leasher J, Bourne RR, et al. Global Vision Impairment and Blindness Due to Uncorrected Refractive Error, 1990-2010. Optom Vis Sci. Mar 2016;93(3):227-234. doi: 10.1097/opx.0000000000000796

Gowrisankaran S, Sheedy JE. Computer vision syndrome: A review. Work. 2015;52(2):303-314. doi: 10.3233/wor-152162

Nunes AF, Monteiro PML, Ferreira FBP, Nunes AS. Convergence insufficiency and accommodative insufficiency in children. BMC Ophthalmol. 2019;19(1):58. doi: 10.1186/s12886-019-1061-x

Das A, Shah S, Adhikari TB, et al. Computer vision syndrome, musculoskeletal, and stress-related problems among visual display terminal users in Nepal. PLoS One. 2022;17(7):e0268356. doi: 10.1371/journal.pone.0268356

Randolph SA. Computer Vision Syndrome. Workplace Health Saf. 2017;65(7):328. doi: 10.1177/2165079917712727

Galindo-Romero C, Ruiz-Porras A, García-Ayuso D, Di Pierdomenico J, Sobrado-Calvo P, Valiente-Soriano FJ. Computer Vision Syndrome in the Spanish Population during the COVID-19 Lockdown. Optom Vis Sci. 2021;98(11):1255-1262. doi: 10.1097/opx.0000000000001794

Regmi A, Suresh J, Asokan R. Changes in work patterns during COVID-19 lockdown and its impact on the eyes and body. Clin Exp Optom. 2022:1-7. doi: 10.1080/08164622.2022.2029682

Derbew H, Nega A, Tefera W, et al. Assessment of Computer Vision Syndrome and Personal Risk Factors among Employees of Commercial Bank of Ethiopia in Addis Ababa, Ethiopia. J Environ Public Health. 2021;2021:6636907. doi: 10.1155/2021/6636907

Sheppard AL, Wolffsohn JS. Digital eye strain: prevalence, measurement and amelioration. BMJ Open Ophthalmol. 2018;3(1):e000146. doi: 10.1136/bmjophth-2018-000146

Turkistani AN, Al-Romaih A, Alrayes MM, Al Ojan A, Al-Issawi W. Computer vision syndrome among Saudi population: An evaluation of prevalence and risk factors. J Family Med Prim Care. 2021;10(6):2313-2318. doi: 10.4103/jfmpc.jfmpc_2466_20

Altalhi A, Khayyat W, Khojah O, Alsalmi M, Almarzouki H. Computer Vision Syndrome Among Health Sciences Students in Saudi Arabia: Prevalence and Risk Factors. Cureus. 2020;12(2):e7060. doi: 10.7759/cureus.7060

Zenbaba D, Sahiledengle B, Bonsa M, Tekalegn Y, Azanaw J, Kumar Chattu V. Prevalence of Computer Vision Syndrome and Associated Factors among Instructors in Ethiopian Universities: A Web-Based Cross-Sectional Study. Scientific World Journal. 2021;2021:3384332. doi: 10.1155/2021/3384332

Ranasinghe P, Wathurapatha WS, Perera YS, et al. Computer vision syndrome among computer office workers in a developing country: an evaluation of prevalence and risk factors. BMC Res Notes. 2016;9:150. doi: 10.1186/s13104-016-1962-1

Gowrisankaran S, Nahar NK, Hayes JR, Sheedy JE. Asthenopia and blink rate under visual and cognitive loads. Optom Vis Sci. 2012;89(1):97-104. doi: 10.1097/OPX.0b013e318236dd88

Daum KM, Clore KA, Simms SS, et al. Productivity associated with visual status of computer users. Optometry. 2004;75(1):33-47. doi: 10.1016/s1529-1839(04)70009-3

Wu H, Wang Y, Dong N, et al. Meibomian gland dysfunction determines the severity of the dry eye conditions in visual display terminal workers. PLoS One. 2014;9(8):e105575. doi: 10.1371/journal.pone.0105575

Jaschinski W, Heuer H, Kylian H. A procedure to determine the individually comfortable position of visual displays relative to the eyes. Ergonomics. 1999;42(4):535-549. doi: 10.1080/001401399185450

Tauste A, Ronda E, Molina MJ, Seguí M. Effect of contact lens use on Computer Vision Syndrome. Ophthalmic Physiol Opt. 2016;36(2):112-119. doi: 10.1111/opo.12275

Wang MTM, Chan E, Ea L, et al. Randomized Trial of Desktop Humidifier for Dry Eye Relief in Computer Users. Optom Vis Sci. 2017;94(11):1052-1057. doi: 10.1097/opx.0000000000001136

Toomingas A, Hagberg M, Heiden M, Richter H, Westergren KE, Tornqvist EW. Risk factors, incidence and persistence of symptoms from the eyes among professional computer users. Work. 2014;47(3):291-301. doi: 10.3233/wor-131778

Sharma A, Hindman HB. Aging: a predisposition to dry eyes. J Ophthalmol. 2014;2014:781683. doi: 10.1155/2014/781683

Mohan A, Sen P, Shah C, Jain E, Jain S. Prevalence and risk factor assessment of digital eye strain among children using online e-learning during the COVID-19 pandemic: Digital eye strain among kids (DESK study-1). Indian J Ophthalmol. 2021;69(1):140-144. doi: 10.4103/ijo.IJO_2535_20

Maïssa C, Guillon M. Tear film dynamics and lipid layer characteristics--effect of age and gender. Cont Lens Anterior Eye. 2010;33(4):176-182. doi: 10.1016/j.clae.2010.02.003

Sullivan BD, Evans JE, Dana MR, Sullivan DA. Influence of aging on the polar and neutral lipid profiles in human meibomian gland secretions. Arch Ophthalmol. 2006;124(9):1286-1292. doi: 10.1001/archopht.124.9.1286

Ribelles A, Galbis-Estrada C, Parras MA, Vivar-Llopis B, Marco-Ramírez C, Diaz-Llopis M. Ocular Surface and Tear Film Changes in Older Women Working with Computers. Biomed Res Int. 2015;2015:467039. doi: 10.1155/2015/467039

Portello JK, Rosenfield M, Bababekova Y, Estrada JM, Leon A. Computer-related visual symptoms in office workers. Ophthalmic Physiol Opt. 2012;32(5):375-382. doi: 10.1111/j.1475-1313.2012.00925.x

Parihar JK, Jain VK, Chaturvedi P, Kaushik J, Jain G, Parihar AK. Computer and visual display terminals (VDT) vision syndrome (CVDTS). Med J Armed Forces India. 2016;72(3):270-276. doi: 10.1016/j.mjafi.2016.03.016

Li R, Ying B, Qian Y, et al. Prevalence of Self-Reported Symptoms of Computer Vision Syndrome and Associated Risk Factors among School Students in China during the COVID-19 Pandemic. Ophthalmic Epidemiol. 2021:1-11. doi: 10.1080/09286586.2021.1963786

Akkaya S, Atakan T, Acikalin B, Aksoy S, Ozkurt Y. Effects of long-term computer use on eye dryness. North Clin Istanb. 2018;5(4):319-322. doi: 10.14744/nci.2017.54036

Boadi-Kusi SB, Abu SL, Acheampong GO, Adueming PO, Abu EK. Association between Poor Ergophthalmologic Practices and Computer Vision Syndrome among University Administrative Staff in Ghana. J Environ Public Health. 2020;2020:7516357. doi: 10.1155/2020/7516357

Lemma MG, Beyene KG, Tiruneh MA. Computer Vision Syndrome and Associated Factors Among Secretaries Working in Ministry Offices in Addis Ababa, Ethiopia. Clin Optom (Auckl). 2020;12:213-222. doi: 10.2147/opto.S284934

Guillon M, Patel T, Patel K, Gupta R, Maissa CA. Quantification of contact lens wettability after prolonged visual device use under low humidity conditions. Cont Lens Anterior Eye. 2019;42(4):386-391. doi: 10.1016/j.clae.2019.03.004

Hyon JY, Yang HK, Han SB. Dry Eye Symptoms May Have Association With Psychological Stress in Medical Students. Eye Contact Lens. 2019;45(5):310-314. doi: 10.1097/icl.0000000000000567

Logaraj M, Madhupriya V, Hegde S. Computer vision syndrome and associated factors among medical and engineering students in chennai. Ann Med Health Sci Res. 2014;4(2):179-185. doi: 10.4103/2141-9248.129028

Acosta MC, Gallar J, Belmonte C. The influence of eye solutions on blinking and ocular comfort at rest and during work at video display terminals. Exp Eye Res. 1999;68(6):663-669. doi: 10.1006/exer.1998.0656

Bhargava R, Kumar P, Phogat H, Kaur A, Kumar M. Oral omega-3 fatty acids treatment in computer vision syndrome related dry eye. Cont Lens Anterior Eye. 2015;38(3):206-210. doi: 10.1016/j.clae.2015.01.007

Shantakumari N, Eldeeb R, Sreedharan J, Gopal K. Computer use and vision-related problems among university students in ajman, United arab emirate. Ann Med Health Sci Res. 2014;4(2):258-263. doi: 10.4103/2141-9248.129058

ISO 9241-303:2011 Ergonomics of human-system interaction — Part 303: Requirements for electronic visual displays. 2011.

WHO. What is a refractive error? www.who.int. Accessed November 1, 2023.

Varma R, Vajaranant TS, Burkemper B, et al. Visual Impairment and Blindness in Adults in the United States: Demographic and Geographic Variations From 2015 to 2050. JAMA Ophthalmol. 2016;134(7):802-809. doi: 10.1001/jamaophthalmol.2016.1284

Harb EN, Wildsoet CF. Origins of Refractive Errors: Environmental and Genetic Factors. Annu Rev Vis Sci. 2019;5:47-72. doi: 10.1146/annurev-vision-091718-015027

Hashemi H, Fotouhi A, Yekta A, Pakzad R, Ostadimoghaddam H, Khabazkhoob M. Global and regional estimates of prevalence of refractive errors: Systematic review and meta-analysis. J Curr Ophthalmol. 2018;30(1):3-22. doi: 10.1016/j.joco.2017.08.009

Guan H, Yu NN, Wang H, et al. Impact of various types of near work and time spent outdoors at different times of day on visual acuity and refractive error among Chinese school-going children. PLoS One. 2019;14(4):e0215827. doi: 10.1371/journal.pone.0215827

Enthoven CA, Polling JR, Verzijden T, et al. Smartphone Use Associated with Refractive Error in Teenagers: The Myopia App Study. Ophthalmology. 2021;128(12):1681-1688. doi: 10.1016/j.ophtha.2021.06.016

Enthoven CA, Tideman JWL, Polling JR, Yang-Huang J, Raat H, Klaver CCW. The impact of computer use on myopia development in childhood: The Generation R study. Prev Med. 2020;132:105988. doi: 10.1016/j.ypmed.2020.105988

Alvarez-Peregrina C, Sánchez-Tena M, Martinez-Perez C, Villa-Collar C. The Relationship Between Screen and Outdoor Time With Rates of Myopia in Spanish Children. Front Public Health. 2020;8:560378. doi: 10.3389/fpubh.2020.560378

McCrann S, Loughman J, Butler JS, Paudel N, Flitcroft DI. Smartphone use as a possible risk factor for myopia. Clin Exp Optom. 2021;104(1):35-41. doi: 10.1111/cxo.13092

Wong CW, Tsai A, Jonas JB, et al. Digital Screen Time During the COVID-19 Pandemic: Risk for a Further Myopia Boom? Am J Ophthalmol. 2021;223:333-337. doi: 10.1016/j.ajo.2020.07.034

Wang W, Zhu L, Zheng S, et al. Survey on the Progression of Myopia in Children and Adolescents in Chongqing During COVID-19 Pandemic. Front Public Health. 2021;9:646770. doi: 10.3389/fpubh.2021.646770

Czepita M, Czepita D, Lubiński W. The Influence of Environmental Factors on the Prevalence of Myopia in Poland. J Ophthalmol. 2017;2017:5983406. doi: 10.1155/2017/5983406

Sewunet SA, Aredo KK, Gedefew M. Uncorrected refractive error and associated factors among primary school children in Debre Markos District, Northwest Ethiopia. BMC Ophthalmol. 2014;14:95. doi: 10.1186/1471-2415-14-95

Hansen MH, Laigaard PP, Olsen EM, et al. Low physical activity and higher use of screen devices are associated with myopia at the age of 16-17 years in the CCC2000 Eye Study. Acta Ophthalmol. 2020;98(3):315-321. doi: 10.1111/aos.14242

Jones-Jordan LA, Sinnott LT, Cotter SA, et al. Time outdoors, visual activity, and myopia progression in juvenile-onset myopes. Invest Ophthalmol Vis Sci. 2012;53(11):7169-7175. doi: 10.1167/iovs.11-8336

Wu PC, Tsai CL, Wu HL, Yang YH, Kuo HK. Outdoor activity during class recess reduces myopia onset and progression in school children. Ophthalmology. 2013;120(5):1080-1085. doi: 10.1016/j.ophtha.2012.11.009

Maduka-Okafor FC, Okoye O, Ezegwui I, et al. Refractive Error and Visual Impairment Among School Children: Result of a South-Eastern Nigerian Regional Survey. Clin Ophthalmol. 2021;15:2345-2353. doi: 10.2147/opth.S298929

Al Bahhawi T, Makeen AM, Daghreeri HH, et al. Refractive Error among Male Primary School Students in Jazan, Saudi Arabia: Prevalence and Associated Factors. Open Ophthalmol J. 2018;12:264-272. doi: 10.2174/1874364101812010264

Diress M, Yeshaw Y, Bantihun M, et al. Refractive error and its associated factors among pregnant women attending antenatal care unit at the University of Gondar Comprehensive Specialized Hospital, Northwest Ethiopia. PLoS One. 2021;16(2):e0246174. doi: 10.1371/journal.pone.0246174

Jeganathan VSE, Robin AL, Woodward MA. Refractive error in underserved adults: causes and potential solutions. Curr Opin Ophthalmol. 2017;28(4):299-304. doi: 10.1097/icu.0000000000000376

Trieu LH, Lavrich JB. Current concepts in convergence insufficiency. Curr Opin Ophthalmol. 2018;29(5):401-406. doi: 10.1097/icu.0000000000000502

Hussaindeen JR, Rakshit A, Singh NK, et al. Prevalence of non-strabismic anomalies of binocular vision in Tamil Nadu: report 2 of BAND study. Clin Exp Optom. 2017;100(6):642-648. doi: 10.1111/cxo.12496

Ma MM, Long W, She Z, et al. Convergence insufficiency in Chinese high school students. Clin Exp Optom. 2019;102(2):166-171. doi: 10.1111/cxo.12838

Hoseini-Yazdi SH, Yekta A, Nouri H, Heravian J, Ostadimoghaddam H, Khabazkhoob M. Frequency of convergence and accommodative disorders in a clinical population of Mashhad, Iran. Strabismus. 2015;23(1):22-9. doi: 10.3109/09273972.2014.1002622

Jang JU, Park IJ. Prevalence of general binocular dysfunctions among rural schoolchildren in South Korea. Taiwan J Ophthalmol. 2015;5(4):177-181. doi: 10.1016/j.tjo.2015.07.005

González-Pérez M, Pérez-Garmendia C, Barrio AR, García-Montero M, Antona B. Spanish Cross-Cultural Adaptation and Rasch Analysis of the Convergence Insufficiency Symptom Survey (CISS). Transl Vis Sci Technol. 2020;9(4):23. doi: 10.1167/tvst.9.4.23

Barnhardt C, Cotter SA, Mitchell GL, Scheiman M, Kulp MT. Symptoms in children with convergence insufficiency: before and after treatment. Optom Vis Sci. 2012;89(10):1512-1520. doi: 10.1097/OPX.0b013e318269c8f9

Horan LA, Ticho BH, Khammar AJ, Allen MS, Shah BA. Is The Convergence Insufficiency Symptom Survey Specific for Convergence Insufficiency? A Prospective, Randomized Study. Am Orthopt J. 2015;65:99-103. doi: 10.3368/aoj.65.1.99

Menjivar AM, Kulp MT, Mitchell GL, Toole AJ, Reuter K. Screening for convergence insufficiency in school-age children. Clin Exp Optom. 2018;101(4):578-584. doi: 10.1111/cxo.12661

Clark TY, Clark RA. Convergence Insufficiency Symptom Survey Scores for Reading Versus Other Near Visual Activities in School-Age Children. Am J Ophthalmol. 2015;160(5):905-912.e2. doi: 10.1016/j.ajo.2015.08.008

De-Hita-Cantalejo C, García-Pérez Á, Sánchez-González JM, Capote-Puente R, Sánchez-González MC. Accommodative and binocular disorders in preteens with computer vision syndrome: a cross-sectional study. Ann N Y Acad Sci. 2021;1492(1):73-81. doi: 10.1111/nyas.14553

Lee JW, Cho HG, Moon BY, Kim SY, Yu DS. Effects of prolonged continuous computer gaming on physical and ocular symptoms and binocular vision functions in young healthy individuals. PeerJ. 2019;7:e7050. doi: 10.7717/peerj.7050

Antona B, Barrio AR, Gascó A, Pinar A, González-Pérez M, Puell MC. Symptoms associated with reading from a smartphone in conditions of light and dark. Appl Ergon. 2018;68:12-17. doi: 10.1016/j.apergo.2017.10.014

Long J, Cheung R, Duong S, Paynter R, Asper L. Viewing distance and eyestrain symptoms with prolonged viewing of smartphones. Clin Exp Optom. 2017;100(2):133-137. doi: 10.1111/cxo.12453

Qu XM, Chu RY, Wang L, Yao PJ, Liu JR. Effects of short-term VDT usage on visual functions. Zhonghua Yan Ke Za Zhi. 2005;41(11):986-989.

Clark TY, Clark RA. Convergence Insufficiency Symptom Survey scores for required reading versus leisure reading in school-age children. J Aapos. 2017;21(6):452-456. doi: 10.1016/j.jaapos.2017.06.019

Borsting E, Mitchell GL, Kulp MT, Scheiman M, Amster DM, Cotter S, et al. Improvement in academic behaviors after successful treatment of convergence insufficiency. Optom Vis Sci. 2012;89(1):12-18. doi: 10.1097/OPX.0b013e318238ffc3

Scheiman M, Kulp MT, Cotter SA, Lawrenson JG, Wang L, Li T. Interventions for convergence insufficiency: a network meta-analysis. Cochrane Database Syst Rev. 2020;12(12):Cd006768. doi: 10.1002/14651858.CD006768.pub3

Treatment of Symptomatic Convergence Insufficiency in Children Enrolled in the Convergence Insufficiency Treatment Trial-Attention & Reading Trial: A Randomized Clinical Trial. Optom Vis Sci. 2019;96(11):825-835. doi: 10.1097/opx.0000000000001443

Hussaindeen JR, Shah P, Ramani KK, Ramanujan L. Efficacy of vision therapy in children with learning disability and associated binocular vision anomalies. J Optom. 2018;11(1):40-48. doi: 10.1016/j.optom.2017.02.002

The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf. 2007;5(2):75-92. doi: 10.1016/s1542-0124(12)70081-2

Verjee MA, Brissette AR, Starr CE. Dry Eye Disease: Early Recognition with Guidance on Management and Treatment for Primary Care Family Physicians. Ophthalmol Ther. 2020;9(4):877-888. doi: 10.1007/s40123-020-00308-z

Stapleton F, Alves M, Bunya VY, et al. TFOS DEWS II Epidemiology Report. Ocul Surf. 2017;15(3):334-365. doi: 10.1016/j.jtos.2017.05.003

Vehof J, Snieder H, Jansonius N, Hammond CJ. Prevalence and risk factors of dry eye in 79,866 participants of the population-based Lifelines cohort study in the Netherlands. Ocul Surf. 2021;19:83-93. doi: 10.1016/j.jtos.2020.04.005

Moon JH, Kim KW, Moon NJ. Smartphone use is a risk factor for pediatric dry eye disease according to region and age: a case control study. BMC Ophthalmol. 2016;16(1):188. doi: 10.1186/s12886-016-0364-4

Hanyuda A, Sawada N, Uchino M, et al. Physical inactivity, prolonged sedentary behaviors, and use of visual display terminals as potential risk factors for dry eye disease: JPHC-NEXT study. Ocul Surf. 2020;18(1):56-63. doi: 10.1016/j.jtos.2019.09.007

Kim DJ, Lim CY, Gu N, Park CY. Visual Fatigue Induced by Viewing a Tablet Computer with a High-resolution Display. Korean J Ophthalmol. 2017;31(5):388-393. doi: 10.3341/kjo.2016.0095

Uchino M, Yokoi N, Uchino Y, et al. Prevalence of dry eye disease and its risk factors in visual display terminal users: the Osaka study. Am J Ophthalmol. 2013;156(4):759-766. doi: 10.1016/j.ajo.2013.05.040

Choi JH, Li Y, Kim SH, et al. The influences of smartphone use on the status of the tear film and ocular surface. PLoS One. 2018;13(10):e0206541. doi: 10.1371/journal.pone.0206541

Fenga C, Aragona P, Cacciola A, et al. Meibomian gland dysfunction and ocular discomfort in video display terminal workers. Eye (Lond). 2008;22(1):91-95. doi: 10.1038/sj.eye.6703025

Cortes M, Esposito G, Sacco R, Gillet VB, Ianni A, Micera A. NGF and iNOS Changes in Tears from Video Display Terminal Workers. Curr Eye Res. 2018;43(9):1119-1125. doi: 10.1080/02713683.2018.1475014

Nakamura S. Approach to Dry Eye in Video Display Terminal Workers (Basic Science). Invest Ophthalmol Vis Sci. 2018;59(14):Des130-des137. doi: 10.1167/iovs.17-23762

Argilés M, Cardona G, Pérez-Cabré E, Rodríguez M. Blink Rate and Incomplete Blinks in Six Different Controlled Hard-Copy and Electronic Reading Conditions. Invest Ophthalmol Vis Sci. 2015;56(11):6679-85. doi: 10.1167/iovs.15-16967

Rosenfield M, Li RT, Kirsch NT. A double-blind test of blue-blocking filters on symptoms of digital eye strain. Work. 2020;65(2):343-348. doi: 10.3233/wor-203086

Kim AD, Muntz A, Lee J, Wang MTM, Craig JP. Therapeutic benefits of blinking exercises in dry eye disease. Cont Lens Anterior Eye. 2021;44(3):101329. doi: 10.1016/j.clae.2020.04.014

Balci R, Aghazadeh F. The effect of work-rest schedules and type of task on the discomfort and performance of VDT users. Ergonomics. 2003;46(5):455-465. doi: 10.1080/0014013021000047557

Anshel JR. Visual ergonomics in the workplace. Aaohn J. 2007;55(10):414-420. doi: 10.1177/216507990705501004

Golebiowski B, Long J, Harrison K, Lee A, Chidi-Egboka N, Asper L. Smartphone Use and Effects on Tear Film, Blinking and Binocular Vision. Curr Eye Res. 2020;45(4):428-434. doi: 10.1080/02713683.2019.1663542

Huang PC, Hsiao YC, Tsai CY, et al. Protective behaviours of near work and time outdoors in myopia prevalence and progression in myopic children: a 2-year prospective population study. Br J Ophthalmol. 2020;104(7):956-961. doi: 10.1136/bjophthalmol-2019-314101

Joines S, James T, Liu S, Wang W, Dunn R, Cohen S. Adjustable task lighting: Field study assesses the benefits in an office environment. Work. 2015;51(3):471-481. doi: 10.3233/wor-141879

Vera J, Redondo B, Ortega-Sanchez A, et al. Blue-blocking filters do not alleviate signs and symptoms of digital eye strain. Clin Exp Optom. 2022:1-6. doi: 10.1080/08164622.2021.2018914

Singh S, Downie LE, Anderson AJ. Do Blue-blocking Lenses Reduce Eye Strain From Extended Screen Time? A Double-Masked Randomized Controlled Trial. Am J Ophthalmol. 2021;226:243-251. doi: 10.1016/j.ajo.2021.02.010

Mou Y, Shen X, Yuan K, et al. Comparison of the influence of light between circularly polarized and linearly polarized smartphones on dry eye symptoms and asthenopia. Clin Transl Sci. 2021;15(4):994-1002. doi: 10.1111/cts.13218

Ye Z, Abe Y, Kusano Y, et al. The influence of visual display terminal use on the physical and mental conditions of administrative staff in Japan. J Physiol Anthropol. 2007;26(2):69-73. doi: 10.2114/jpa2.26.69

Alabdulkader B. Effect of digital device use during COVID-19 on digital eye strain. Clin Exp Optom. 2021;104(6):698-704. doi: 10.1080/08164622.2021.1878843

Klaver C, Polling JR. Myopia management in the Netherlands. Ophthalmic Physiol Opt. 2020;40(2):230-240. doi: 10.1111/opo.12676

Downloads

Published

2024-03-30

How to Cite

Dyrek, M., Sikorska, E., Partyka, A., Sikorski, P., Dusza, E., & Kopacz, D. (2024). Prolonged screen-time as the cause of ocular disorders: what can we do with the problem? – a review. European Journal of Clinical and Experimental Medicine, 22(1), 222–231. https://doi.org/10.15584/ejcem.2024.1.26

Issue

Section

REVIEW PAPERS