Phytochemical analysis, stability, and antimicrobial activity of eighteen medicinal plants studied against five multi-drug resistant human pathogens

Authors

  • G. Dharshana Malya Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
  • Jhumpa Bhattacharjee Assam Medical College and Hospital, Dibrugarh, Assam, India
  • Sahana Mukherjee Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
  • Shubhajyoti Deka Assam Medical College and Hospital, Dibrugarh, Assam, India
  • Lahari Saikia Assam Medical College and Hospital, Dibrugarh, Assam, India
  • Shoma Paul Nandi Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India https://orcid.org/0000-0003-1416-2425

DOI:

https://doi.org/10.15584/ejcem.2024.4.17

Keywords:

antibiotic resistance, antimicrobial activity, extracts, medicinal plants, phytochemicals

Abstract

Introduction and aim. Several medicinal plants from India have been reported to be effective against human pathogens, but comprehensive comparative studies are scarce. The aim of this study has been to evaluate and compare the antimicrobial activity, phytochemical composition, and stability at different temperatures and pH of ethanolic extracts of eighteen Indian medicinal plants which are prevalent in North-east India and thrive abundantly.

Material and methods. These plants included Syzygium cumini, Cannabis sativa, Camellia sinensis, Murraya koenigii, Alstonia scholaris, Terminalia chebula, Flemingia strobilifera, Azadirachta indica, Prunus persica, Euphorbia thymifolia, Averrhoa carambola, Paderia foetida, Psidium guajava, Spondias pinnata, Garcinia cowa, Litsea cubeba, Micania macrantha, and Phlogocanthus thyrsiflorus. Their potent medicinal properties made them the ideal choice for this study which included the use of agar well diffusion method and phytochemical analysis.

Results. Agar well diffusion has been used to test their antibacterial activity, which demonstrated higher antibacterial activity of G. cowa extract against Vibrio cholerae and Staphylococcus aureus, whereas S. pinnata extract was most effective against V. cholerae and Enterococcus faecium.

Conclusion. Phytochemical analysis revealed the presence of tannins, alkaloids, saponins, glycosides, steroids, terpenoids, flavonoids, and phenols. The antimicrobial activity of these plant extracts remained stable at higher temperatures and varying pH levels.

Supporting Agencies

This work was supported by the Dept. of Biotechnology, Government of India under Grant No. BT/PR16667/NER/95/237/2015.

Downloads

Download data is not yet available.

References

Bhattacharya PK. Emergence of antibiotic-resistant bacterial strains, methicillin-resistant Staphylococcus aureus, extended spectrum beta lactamases, and multi-drug resistance is a problem similar to global warming. Rev Soc Bras Med Trop. 2014;47(6):815-816. doi: 10.1590/0037-8682-0139-2014

Choi SH, Lee JE, Park SJ, et al. Emergence of antibiotic resistance during therapy for infections caused by Enterobacteriaceae producing AmpC beta-lactamase: implications for antibiotic use. Antimicrob Agents Chemother. 2008;52(3):995-1000. doi: 10.1128/AAC.01083-07

Mutuku C, Gazdag Z, Melegh S. Occurrence of antibiotics and bacterial resistance genes in wastewater: resistance mechanisms and antimicrobial resistance control approaches. World J Microbiol Biotechnol. 2022;38(9):152. doi: 10.1007/s11274-022-03334-0

Carey B, Cryan B. Antibiotic misuse in the community--a contributor to resistance? Ir Med J. 2003;96(2):43-44.

Bhardwaj S, Mehra P, Dhanjal DS, et al. Antibiotics and Antibiotic Resistance- Flipsides of the Same Coin. Curr Pharm Des. 2022;28(28):2312-2329. doi: 10.2174/1381612828666220608120238.

Abubaker EM. Antibacterial activity of crude extracts of Euphorbia hirta against some bacteria associated with enteric infections. J Med Plant Res. 2009;19(7):498-505.

Jian Z, Zeng L, Xu T, et al. Antibiotic resistance genes in bacteria: Occurrence, spread, and control. J Basic Microbiol. 2021;61(12):1049-1070. doi: 10.1002/jobm.202100201

AlSheikh HMA, Sultan I, Kumar V, et al. Plant-Based Phytochemicals as Possible Alternative to Antibiotics in Combating Bacterial Drug Resistance. Antibiotics (Basel). 2020;9(8):480. doi: 10.3390/antibiotics9080480

Hussain N, Mumtaz M, Adil M, et al. Investigation of VEGF (rs 699947) polymorphism in the progression of Rheumatoid Arthritis (RA) and in-silico nanoparticle drug delivery of potential phytochemicals to cure RA. Acta Biochim Pol. 2023;70(3):591-598. doi: 10.18388/abp.2020_6654

Aziz T, Qadir R, Anwar F, et al. Optimal Enzyme-Assisted Extraction of Phenolics from Leaves of Pongamia pinnata via Response Surface Methodology and Artificial Neural Networking. Appl Biochem Biotechnol. 2024. doi: 10.1007/s12010-024-04875-w

Ammara A, Sobia A, Nureen Z, et al. Revolutionizing the effect of Azadirachta indica extracts on edema induced changes in C-reactive protein and interleukin-6 in albino rats: in silico and in vivo approach. Eur Rev Med Pharmacol Sci. 2023;27(13):5951-5963. doi: 10.26355/eurrev_202307_32947

Saleem A, Afzal M, Naveed M, et al. HPLC, FTIR and GC-MS Analyses of Thymus vulgaris Phytochemicals Executing In Vitro and In Vivo Biological Activities and Effects on COX-1, COX-2 and Gastric Cancer Genes Computationally. Molecules. 2022;27(23):8512. doi: 10.3390/molecules27238512

Shah SWA, Afridi MS, Rehman M, et al. In-Vitro evaluation of phytochemicals, heavy metals and antimicrobial activities of leaf, stem and roots extracts of Caltha palustris var. alba. J Chil Chem Soc. 2023;68(1):5807-5812.

Zahra N, Fareed T, Humza M, et al. In-Vivo and In-Silico analysis of anti-inflammatory, analgesic and antipyretic activities of Citrus paradisi leaf extract. J Chil Chem Soc. 2023;68(2):5813-5821.

Riasat A, Jahangeer M, Sarwar A, et al. Scrutinizing the therapeutic response of Phyllanthus exmblica's different doses to restore the immunomodulation potential in immunosuppressed female albino rats. Eur Rev Med Pharmacol Sci. 2023;27(20):9854-9865. doi: 10.26355/eurrev_202310_34162

Rahim G, Qureshi R, Hazrat A, et al. Phytochemical, Antimicrobial, Radical scavenging and In-Vitro biological activities of Teucrium stocksianum leaves. J Chil Chem Soc. 2023;68(1):5748.

Aziz T, Ihsan F, Khan AA, et al. Assessing the pharmacological and biochemical effects of Salvia hispanica (Chia seed) against oxidized Helianthus annuus (sunflower) oil in selected animals. Acta Biochim Pol. 2023;70(1):211-218.

Saleema K, Aziz T, Khan AA, et al. Evaluating the in-vivo effects of olive oil, soya bean oil, and vitamins against oxidized ghee toxicity. Acta Biochim Pol. 2023;70(2):305-312.

Naveed M, Ali I, Aziz T, et al. Assessment of Melia azedarach plant extracts activity against hypothetical protein of Mycobacterium tuberculosis via GC-MS Analysis and in Silico Approaches. J Comput Biophys Chem. 2024;23(3):299-320.

Waseem M, Naveed M, Rehman SU, et al. Molecular Characterization of spa, hld, fmhA, and lukD Genes and Computational Modeling the Multidrug Resistance of Staphylococcus Species through Callindra harrisii Silver Nanoparticles. ACS Omega. 2023;8(23):20920-20936. doi: 10.1021/acsomega.3c01597

Naveed M, Ishfaq H, Rehman SU, et al. GC-MS profiling of Bacillus spp. metabolites with an in vitro biological activity assessment and computational analysis of their impact on epithelial glioblastoma cancer genes. Front Chem. 2023;11:1287599. doi: 10.3389/fchem.2023.1287599

Hussain Z, Raza MA, Jahangeer M, et al. Green synthesis of silver nanoparticles prepared by leaves extract of Trigonila foenum-graecum and its antibacterial potential against Escherichia coli and Pseudomonas aeruginosa. Biomass Convers Biorefin. 2023. doi: 10.1007/s13399-023-04852-z

AlSheikh HMA, Sultan I, Kumar V, et al. Plant-Based Phytochemicals as Possible Alternative to Antibiotics in Combating Bacterial Drug Resistance. Antibiotics (Basel). 2020;9(8):480. doi:10.3390/antibiotics9080480

Tarak D, Namsa ND, Tangjang S, et al. An inventory of the ethnobotanicals used as anti-diabetic by a rural community of Dhemaji district of Assam, Northeast India. J Ethnopharmacol. 2011;138(2):345-350. doi: 10.1016/j.jep.2011.08.018

Wary KK, Sharan RN. Aqueous extract of betel-nut of north-east India induces DNA-strand breaks and enhances rate of cell proliferation in vitro. Effects of betel-nut extract in vitro. J Cancer Res Clin Oncol. 1988;114(6):579-582. doi: 10.1007/BF00398180

Mehrotra S, Srivastava AK, Nandi SP. Comparative antimicrobial activities of Neem, Amla, Aloe, Assam Tea and Clove extracts against Vibrio cholerae, Staphylococcus aureus and Pseudomonas aeruginosa. J Med Plant Res. 2010;4(18):2473-2478.

Ananthanarayan R, Paniker CKJ. Text Book of Microbiology. 8th ed. 2009:44-48.

Mehrotra S, Jamwal R, Shyam R, et al. Anti-Helicobacter pylori and antioxidant properties of Emblica officinalis pulp extract; a potential source for therapeutic use against gastric ulcer. J Med Plant Res. 2011;5(12):2577-2583.

Mamta, Mehrotra S, Amitabh, et al. Phytochemical and antimicrobial activities of Himalayan Cordyceps sinensis. Indian J Exp Biol. 2015;53:36-43.

Mandal AP, Hanfi MH, Saikia L, Deka S, Nandi SP. Effect of extraction temperature on antimicrobial and antioxidant properties of Assam tea. Intl J Phytomedicine. 2014;6:225-231.

Kader J, Noor HM, Radzi SM, Wahabet NAA. Antibacterial activities and phytochemical screening of acetone extract from Euphorbia hirta. Intl J Med Plant Res. 2013;2(4):209-214.

Mehrotra V, Mehrotra S, Kirar V, et al. Antioxidant and antimicrobial activities of aquous extracts of Withania somnifera against methicillin-resistant S. aureus. J Microbiol Biotechnol Res. 2011;1(1):40-45.

Jarald EE, Jarald SE. Text book of pharmacognocy and phytochemistry 1st ed. India: CBS Publishers and Distributers; 2009.

Chakraborty R, De B, Devanna N, Sen S. North-East India an ethnic storehouse of unexplored medicinal Plants. J Nat Prod Plant Resour. 2012:2(1):143-152.

Kiewhuo K, Gogoi D, Mahanta HJ, Rawal RK, Das D, Sastry GN. North East India medicinal plants database (NEI-MPDB), Comput Biol Chem. 2022;100:107728. doi: 10.1016/j.compbiolchem.2022.107728

Sadek PC. The HPLC solvent guide, 2nd Edition. Wiley-Interscience, 2002:1-607.

Qabaha KI. Antimicrobial and free radical scavenging activities of five Palestinian medicinal plants. Afr J Tradit Complement Altern Med. 2013;10(4):101-108. doi: 10.4314/ajtcam.v10i4.17

Tavares LS, Rettore JV, Freitas RM, et al. Antimicrobial activity of recombinant Pg-AMP1, a glycine-rich peptide from guava seeds. Peptides. 2012;37(2):294-300. doi: 10.1016/j.peptides.2012.07.017

Cheruiyot KR, Olila D, Kateregga J. In-vitro antibacterial activity of selected medicinal plants from Longisa region of Bomet district, Kenya. Afr Health Sci. 2009;9(1):42-46.

Chah KF, Eze CA, Emuelosi CE, Esimone CO. Antibacterial and wound healing properties of methanolic extracts of some Nigerian medicinal plants. J Ethnopharmacol. 2006;104(1-2):164-167. doi: 10.1016/j.jep.2005.08.070

Abdelrahim SI, Almagboul AZ, Omer ME, Elegami A. Antimicrobial activity of Psidium guajava L. Fitoterapia, 2002;73(7-8):713-715. doi: 10.1016/s0367-326x(02)00243-5

Vasavi HS, Arun AB, Rekha PD. Anti-quorum sensing activity of Psidium guajava L. flavonoids against Chromobacterium violaceum and Pseudomonas aeruginosa PAO1. Microbiol Immunol. 2014;58(5):286-293. doi: 10.1111/1348-0421.12150

Sharma A, Chandraker S, Patel VK, Ramteke P. Antibacterial Activity of Medicinal Plants Against Pathogens causing Complicated Urinary Tract Infections. Indian J Pharm Sci. 2009;71(2):136-139. doi: 10.4103/0250-474X.54279

Islam SN, Ferdous AJ, Ahsan M, Faroque AB. Antibacterial activity of clove extracts against phagogenic strains including clinically resistant isolates of Shigella and Vibrio cholerae. Pak J Pharm Sci. 1990;3(1):1-5.

Downloads

Published

2024-12-30

How to Cite

Malya, G. D., Bhattacharjee, J., Mukherjee, S., Deka, S., Saikia, L., & Nandi, S. P. (2024). Phytochemical analysis, stability, and antimicrobial activity of eighteen medicinal plants studied against five multi-drug resistant human pathogens. European Journal of Clinical and Experimental Medicine, 22(4), 811–819. https://doi.org/10.15584/ejcem.2024.4.17

Issue

Section

ORIGINAL PAPERS