Growth differentiation factor 15 – a review of current literature on biological roles and clinical significance

Authors

DOI:

https://doi.org/10.15584/ejcem.2024.4.19

Keywords:

biomarker, GDF15, GFRAL

Abstract

Introduction and aim. Growth differentiation factor 15 (GDF15), a member of the TGF-β superfamily, plays crucial roles in various physiological and pathological processes including inflammation, apoptosis, angiogenesis, cell repair, growth, metabolic regulation, and immune response. This review aims to discuss the biological roles and clinical significance of GDF15 and to analyze its impact across different medical fields such as cardiology, oncology, neurology, gynecology, and areas related to aging and metabolic disorders.

Material and methods. A review was constructed through a literature search on PubMed and Google Scholar databases, focusing on studies from 2014 to 2024, using relevant keywords.

Analysis of the literature. Recent research highlights GDF15’s potential as a biomarker in cardiovascular diseases, its role in cancer progression and resistance to therapies, and its significance in metabolic regulation affecting conditions like obesity, diabetes, and cachexia. Emerging research also points to its role in aging, mitochondrial diseases, and systemic conditions such as sepsis, liver, and lung disorders.

Conclusion. GDF15’s involvement in multiple pathological states and its broad impact across various medical disciplines underline its potential for future clinical applications. Understanding GDF15’s complex roles could lead to novel therapeutic strategies and enhance prognostic assessments in diverse medical fields.

Downloads

Download data is not yet available.

References

Piechota W, Krzesiński P. Growth differentiation factor-15 (GDF-15) for cardiovascular risk assessment. Pediatr Med Rodz. 2018;14(1):9-19. doi: 10.15557/PiMR.2018.0001

Bootcov MR, Bauskin AR, Valenzuela SM, et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc Natl Acad Sci U S A. 1997;94(21):11514-11519. doi: 10.1073/pnas.94.21.11514

Hsiao EC, Koniaris LG, Zimmers-Koniaris T, Sebald SM, Huynh TV, Lee SJ. Characterization of growth-differentiation factor 15, a transforming growth factor beta superfamily member induced following liver injury. Mol Cell Biol. 2000;20(10):3742-3751. doi: 10.1128/MCB.20.10.3742-3751.2000

Zimmers TA, Jin X, Hsiao EC, McGrath SA, Esquela AF, Koniaris LG. Growth differentiation factor-15/macrophage inhibitory cytokine-1 induction after kidney and lung injury. Shock. 2005;23(6):543-548.

Ago T, Sadoshima J. GDF15, a cardioprotective TGF-beta superfamily protein. Circ Res. 2006;98(3):294-297. doi: 10.1161/01.RES.0000207919.83894.9d

Rochette L, Dogon G, Zeller M, Cottin Y, Vergely C. GDF15 and Cardiac Cells: Current Concepts and New Insights. Int J Mol Sci. 2021;22(16):8889. doi: 10.3390/ijms22168889

Bonaterra GA, Zügel S, Thogersen J, et al. Growth differentiation factor-15 deficiency inhibits atherosclerosis progression by regulating interleukin-6-dependent inflammatory response to vascular injury. J Am Heart Assoc. 2012;1(6):e002550. doi: 10.1161/JAHA.112.002550

Mullican SE, Lin-Schmidt X, Chin CN, et al. GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nat Med. 2017;23(10):1150-1157. doi: 10.1038/nm.4392

Wollert KC, Kempf T, Lagerqvist B, et al. Growth differentiation factor 15 for risk stratification and selection of an invasive treatment strategy in non ST-elevation acute coronary syndrome. Circulation. 2007;116(14):1540-1548. doi: 10.1161/CIRCULATIONAHA.107.697714

Kempf T, Eden M, Strelau J, et al. The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ Res. 2006;98(3):351-360. doi: 10.1161/01.RES.0000202805.73038.48

Rochette L, Méloux A, Zeller M, Cottin Y, Vergely C. Functional roles of GDF15 in modulating microenvironment to promote carcinogenesis. Biochim Biophys Acta Mol Basis Dis. 2020;1866(8):165798. doi: 10.1016/j.bbadis.2020.165798

Ahmed DS, Isnard S, Lin J, Routy B, Routy JP. GDF15/GFRAL Pathway as a Metabolic Signature for Cachexia in Patients with Cancer. J Cancer. 2021;12(4):1125-1132. doi: 10.7150/jca.50376

Bellio C, Emperador M, Castellano P, et al. GDF15 Is an Eribulin Response Biomarker also Required for Survival of DTP Breast Cancer Cells. Cancers (Basel). 2022;14(10):2562. doi: 10.3390/cancers14102562

Spanopoulou A, Gkretsi V. Growth differentiation factor 15 (GDF15) in cancer cell metastasis: from the cells to the patients. Clin Exp Metastasis. 2020;37(4):451-464. doi: 10.1007/s10585-020-10041-3

Zhao X, Liu X, Hu S, et al. GDF15 Contributes to Radioresistance by Mediating the EMT and Stemness of Breast Cancer Cells. Int J Mol Sci. 2022;23(18):10911. doi: 10.3390/ijms231810911

Asrih M, Wei S, Nguyen TT, Yi HS, Ryu D, Gariani K. Overview of growth differentiation factor 15 in metabolic syndrome. J Cell Mol Med. 2023;27(9):1157-1167. doi: 10.1111/jcmm.17725

Dong XC, Xu DY. Research Progress on the Role and Mechanism of GDF15 in Body Weight Regulation. Obes Facts. 2024;17(1):1-11. doi: 10.1159/000535089

Tsai VW, Brown DA, Breit SN. Targeting the divergent TGFβ superfamily cytokine MIC-1/GDF15 for therapy of anorexia/cachexia syndromes. Curr Opin Support Palliat Care. 2018;12(4):404-409. doi: 10.1097/SPC.0000000000000384

Wollert KC, Kempf T, Wallentin L. Growth Differentiation Factor 15 as a Biomarker in Cardiovascular Disease. Clin Chem. 2017;63(1):140-151. doi: 10.1373/clinchem.2016.255174

Hagström E, Held C, Stewart RA, et al. Growth Differentiation Factor 15 Predicts All-Cause Morbidity and Mortality in Stable Coronary Heart Disease. Clin Chem. 2017;63(1):325-333. doi: 10.1373/clinchem.2016.260570

Khavinson VKh, Kuznik BI, Linkova NS, Kolchina NV. The Role of Cytokines MIC-1/GDF15 in Development of the Old Age Disease. Usp Fiziol Nauk. 2015;46(4):38-52.

Kempf T, von Haehling S, Peter T, et al. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. J Am Coll Cardiol. 2007;50(11):1054-1060. doi: 10.1016/j.jacc.2007.04.091

Lok DJ, Klip IT, Lok SI, et al. Incremental prognostic power of novel biomarkers (growth-differentiation factor-15, high-sensitivity C-reactive protein, galectin-3, and high-sensitivity troponin-T) in patients with advanced chronic heart failure. Am J Cardiol. 2013;112(6):831-837. doi: 10.1016/j.amjcard.2013.05.013

Anand IS, Kempf T, Rector TS, et al. Serial measurement of growth-differentiation factor-15 in heart failure: relation to disease severity and prognosis in the Valsartan Heart Failure Trial. Circulation. 2010;122(14):1387-1395. doi: 10.1161/CIRCULATIONAHA.109.928846

Wang X, Baek SJ, Eling TE. The diverse roles of nonsteroidal anti-inflammatory drug activated gene (NAG-1/GDF15) in cancer. Biochem Pharmacol. 2013;85(5):597-606. doi: 10.1016/j.bcp.2012.11.025

Li S, Ma YM, Zheng PS, Zhang P. GDF15 promotes the proliferation of cervical cancer cells by phosphorylating AKT1 and Erk1/2 through the receptor ErbB2. J Exp Clin Cancer Res. 2018;37(1):80. doi: 10.1186/s13046-018-0744-0

Zhang Y, Wang X, Zhang M, Zhang Z, Jiang L, Li L. GDF15 promotes epithelial-to-mesenchymal transition in colorectal [corrected] [published correction appears in Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):1272]. Artif Cells Nanomed Biotechnol. 2018;46(sup2):652-658. doi: 10.1080/21691401.2018.1466146

Guo L, Chen Y, Hu S, et al. GDF15 expression in glioma is associated with malignant progression, immune microenvironment, and serves as a prognostic factor. CNS Neurosci Ther. 2022;28(1):158-171. doi: 10.1111/cns.13749

Wang Z, He L, Li W, et al. GDF15 induces immunosuppression via CD48 on regulatory T cells in hepatocellular carcinoma. J Immunother Cancer. 2021;9(9):e002787. doi: 10.1136/jitc-2021-002787

Chelette B, Chidomere CL, Dantzer R. The GDF15-GFRAL axis mediates chemotherapy-induced fatigue in mice. Brain Behav Immun. 2023;108:45-54. doi: 10.1016/j.bbi.2022.11.008

Talbert EE, Guttridge DC. Emerging signaling mediators in the anorexia-cachexia syndrome of cancer. Trends Cancer. 2022;8(5):397-403. doi: 10.1016/j.trecan.2022.01.004

Tran T, Yang J, Gardner J, Xiong Y. GDF15 deficiency promotes high fat diet-induced obesity in mice. PLoS One. 2018;13(8):e0201584. doi: 10.1371/journal.pone.0201584

Hsu JY, Crawley S, Chen M, et al. Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature. 2017;550(7675):255-259. doi: 10.1038/nature24042

Emmerson PJ, Wang F, Du Y, et al. The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat Med. 2017;23(10):1215-1219. doi: 10.1038/nm.4393

Yang L, Chang CC, Sun Z, et al. GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat Med. 2017;23(10):1158-1166. doi: 10.1038/nm.4394

Tsai VW, Zhang HP, Manandhar R, et al. GDF15 mediates adiposity resistance through actions on GFRAL neurons in the hindbrain AP/NTS. Int J Obes (Lond). 2019;43(12):2370-2380. doi: 10.1038/s41366-019-0365-5

Zhang Y, Zhao X, Dong X, et al. Activity-balanced GLP-1/GDF15 dual agonist reduces body weight and metabolic disorder in mice and non-human primates. Cell Metab. 2023;35(2):287-298. doi: 10.1016/j.cmet.2023.01.001

Zhang SY, Bruce K, Danaei Z, et al. Metformin triggers a kidney GDF15-dependent area postrema axis to regulate food intake and body weight. Cell Metab. 2023;35(5):875-886. doi: 10.1016/j.cmet.2023.03.014

Wang D, Jabile MJT, Lu J, et al. Fatty Acids Increase GDF15 and Reduce Food Intake Through a GFRAL Signaling Axis. Diabetes. 2024;73(1):51-56. doi: 10.2337/db23-0495

Tsai VW, Lin S, Brown DA, Salis A, Breit SN. Anorexia-cachexia and obesity treatment may be two sides of the same coin: role of the TGF-b superfamily cytokine MIC-1/GDF15. Int J Obes (Lond). 2016;40(2):193-197. doi: 10.1038/ijo.2015.242

Liu H, Huang Y, Lyu Y, Dai W, Tong Y, Li Y. GDF15 as a biomarker of ageing. Exp Gerontol. 2021;146:111228. doi: 10.1016/j.exger.2021.111228

Fujita Y, Taniguchi Y, Shinkai S, Tanaka M, Ito M. Secreted growth differentiation factor 15 as a potential biomarker for mitochondrial dysfunctions in aging and age-related disorders. Geriatr Gerontol Int. 2016;16(1):17-29. doi: 10.1111/ggi.12724

Wang D, Wei X, Geng X, Li P, Li L. GDF15 enhances proliferation of aged chondrocytes by phosphorylating SMAD2. J Orthop Sci. 2022;27(1):249-256. doi: 10.1016/j.jos.2020.12.004

Burtscher J, Soltany A, Visavadiya NP, et al. Mitochondrial stress and mitokines in aging. Aging Cell. 2023;22(2):e13770. doi: 10.1111/acel.13770

Koene S, de Laat P, van Tienoven DH, et al. Serum GDF15 Levels Correlate to Mitochondrial Disease Severity and Myocardial Strain, but Not to Disease Progression in Adult m.3243A>G Carriers. JIMD Rep. 2015;24:69-81. doi: 10.1007/8904_2015_436

Fujita Y, Ito M, Kojima T, Yatsuga S, Koga Y, Tanaka M. GDF15 is a novel biomarker to evaluate efficacy of pyruvate therapy for mitochondrial diseases. Mitochondrion. 2015;20:34-42. doi: 10.1016/j.mito.2014.10.006

Yatsuga S, Fujita Y, Ishii A, et al. Growth differentiation factor 15 as a useful biomarker for mitochondrial disorders. Ann Neurol. 2015;78(5):814-823. doi: 10.1002/ana.24506

Conte M, Giuliani C, Chiariello A, Iannuzzi V, Franceschi C, Salvioli S. GDF15, an emerging key player in human aging. Ageing Res Rev. 2022;75:101569. doi: 10.1016/j.arr.2022.101569

Klein AB, Ranea-Robles P, Nicolaisen TS, et al. Cross-species comparison of pregnancy-induced GDF15. Am J Physiol Endocrinol Metab. 2023;325(4):E303-E309. doi: 10.1152/ajpendo.00134.2023

Liu C, Zhao G, Qiao D, et al. Emerging Progress in Nausea and Vomiting of Pregnancy and Hyperemesis Gravidarum: Challenges and Opportunities. Front Med (Lausanne). 2022;8:809270. doi: 10.3389/fmed.2021.809270

Lockhart SM, Saudek V, O'Rahilly S. GDF15: A Hormone Conveying Somatic Distress to the Brain. Endocr Rev. 2020;41(4):bnaa007. doi: 10.1210/endrev/bnaa007

Uhlén M, Fagerberg L, Hallström BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. doi: 10.1126/science.1260419

Patel S, Alvarez-Guaita A, Melvin A, et al. GDF15 Provides an Endocrine Signal of Nutritional Stress in Mice and Humans. Cell Metab. 2019;29(3):707-718. doi: 10.1016/j.cmet.2018.12.016

Lerner L, Tao J, Liu Q, et al. MAP3K11/GDF15 axis is a critical driver of cancer cachexia. J Cachexia Sarcopenia Muscle. 2016;7(4):467-482. doi: 10.1002/jcsm.12077

Sadeghi M, Keshavarz-Fathi M, Baracos V, Arends J, Mahmoudi M, Rezaei N. Cancer cachexia: Diagnosis, assessment, and treatment. Crit Rev Oncol Hematol. 2018;127:91-104. doi: 10.1016/j.critrevonc.2018.05.006

Zhang C, Kaye JA, Cai Z, Wang Y, Prescott SL, Liberles SD. Area Postrema Cell Types that Mediate Nausea-Associated Behaviors. Neuron. 2021;109(3):461-472. doi: 10.1016/j.neuron.2020.11.010

O'Donnell A, McParlin C, Robson SC, et al. Treatments for hyperemesis gravidarum and nausea and vomiting in pregnancy: a systematic review and economic assessment. Health Technol Assess. 2016;20(74):1-268. doi: 10.3310/hta20740

Colodro-Conde L, Jern P, Johansson A, et al. Nausea and Vomiting During Pregnancy is Highly Heritable. Behav Genet. 2016;46(4):481-491. doi: 10.1007/s10519-016-9781-7

Fejzo MS, Sazonova OV, Sathirapongsasuti JF, et al. Placenta and appetite genes GDF15 and IGFBP7 are associated with hyperemesis gravidarum. Nat Commun. 2018;9(1):1178. doi: 10.1038/s41467-018-03258-0

Zeng YT, Liu WF, Zheng PS, Li S. GDF15 deficiency hinders human trophoblast invasion to mediate pregnancy loss through downregulating Smad1/5 phosphorylation. iScience. 2023;26(10):107902. doi: 10.1016/j.isci.2023.107902

Lyu C, Ni T, Guo Y, et al. Insufficient GDF15 expression predisposes women to unexplained recurrent pregnancy loss by impairing extravillous trophoblast invasion. Cell Prolif. 2023;56(12):e13514. doi: 10.1111/cpr.13514

Yakut K, Öcal DF, Öztürk FH, et al. Is GDF-15 level associated with gestational diabetes mellitus and adverse perinatal outcomes?. Taiwan J Obstet Gynecol. 2021;60(2):221-224. doi: 10.1016/j.tjog.2020.12.004

Xue XH, Tao LL, Su DQ, Guo CJ, Liu H. Diagnostic utility of GDF15 in neurodegenerative diseases: A systematic review and meta-analysis. Brain Behav. 2022;12(2):e2502. doi: 10.1002/brb3.2502

Chai YL, Hilal S, Chong JPC, et al. Growth differentiation factor-15 and white matter hyperintensities in cognitive impairment and dementia. Medicine (Baltimore). 2016;95(33):e4566. doi: 10.1097/MD.0000000000004566

Xiang Y, Zhang T, Guo J, Peng YF, Wei YS. The Association of Growth Differentiation Factor-15 Gene Polymorphisms with Growth Differentiation Factor-15 Serum Levels and Risk of Ischemic Stroke. J Stroke Cerebrovasc Dis. 2017;26(10):2111-2119. doi: 10.1016/j.jstrokecerebrovasdis.2017.04.031

Brenière C, Méloux A, Pédard M, et al. Growth Differentiation Factor-15 (GDF-15) Is Associated With Mortality in Ischemic Stroke Patients Treated With Acute Revascularization Therapy. Front Neurol. 2019;10:611. doi: 10.3389/fneur.2019.00611

Li X, Huai Q, Zhu C, et al. GDF15 Ameliorates Liver Fibrosis by Metabolic Reprogramming of Macrophages to Acquire Anti-Inflammatory Properties. Cell Mol Gastroenterol Hepatol. 2023;16(5):711-734. doi: 10.1016/j.jcmgh.2023.07.009

Wang Y, Chen C, Chen J, et al. Overexpression of NAG-1/GDF15 prevents hepatic steatosis through inhibiting oxidative stress-mediated dsDNA release and AIM2 inflammasome activation. Redox Biol. 2022;52:102322. doi: 10.1016/j.redox.2022.102322

Zhang Z, Xu X, Tian W, et al. ARRB1 inhibits non-alcoholic steatohepatitis progression by promoting GDF15 maturation. J Hepatol. 2020;72(5):976-989. doi: 10.1016/j.jhep.2019.12.004

Kim KH, Lee MS. GDF15 as a central mediator for integrated stress response and a promising therapeutic molecule for metabolic disorders and NASH. Biochim Biophys Acta Gen Subj. 2021;1865(3):129834. doi: 10.1016/j.bbagen.2020.129834

Fujita Y, Ito M, Ohsawa I. Mitochondrial stress and GDF15 in the pathophysiology of sepsis. Arch Biochem Biophys. 2020;696:108668. doi: 10.1016/j.abb.2020.108668

Li H, Tang D, Chen J, Hu Y, Cai X, Zhang P. The Clinical Value of GDF15 and Its Prospective Mechanism in Sepsis. Front Immunol. 2021;12:710977. doi: 10.3389/fimmu.2021.710977

Liao J, Gan Y, Peng M, et al. GDF15 alleviates the progression of benign tracheobronchial stenosis by inhibiting epithelial-mesenchymal transition and inactivating fibroblasts. Exp Cell Res. 2022;421(2):113410. doi: 10.1016/j.yexcr.2022.113410

Deng M, Su D, Xiao N, et al. Gdf15 deletion exacerbates acute lung injuries induced by intratracheal inoculation of aerosolized ricin in mice. Toxicology. 2022;469:153135. doi: 10.1016/j.tox.2022.153135

Wan Y, Fu J. GDF15 as a key disease target and biomarker: linking chronic lung diseases and ageing. Mol Cell Biochem. 2024;479(3):453-466. doi: 10.1007/s11010-023-04743-x

Husebø GR, Grønseth R, Lerner L, et al. Growth differentiation factor-15 is a predictor of important disease outcomes in patients with COPD. Eur Respir J. 2017;49(3):1601298. doi: 10.1183/13993003.01298-2016

Verhamme FM, Seys LJM, De Smet EG, et al. Elevated GDF-15 contributes to pulmonary inflammation upon cigarette smoke exposure. Mucosal Immunol. 2017;10(6):1400-1411. doi: 10.1038/mi.2017.3

Martinez CH, Freeman CM, Nelson JD, et al. GDF-15 plasma levels in chronic obstructive pulmonary disease are associated with subclinical coronary artery disease. Respir Res. 2017;18(1):42. doi: 10.1186/s12931-017-0521-1

Rochette L, Zeller M, Cottin Y, Vergely C. GDF15: an emerging modulator of immunity and a strategy in COVID-19 in association with iron metabolism. Trends Endocrinol Metab. 2021;32(11):875-889. doi: 10.1016/j.tem.2021.08.011

Li Y, Zhu H, Xin W, Wang J, Yan C, Ying K. GDF15 affects venous thrombosis by promoting EndMT through smad2/p-smad2 pathway. Thromb J. 2023;21(1):98. doi: 10.1186/s12959-023-00547-7

Lorenz G, Ribeiro A, von Rauchhaupt E, et al. GDF15 Suppresses Lymphoproliferation and Humoral Autoimmunity in a Murine Model of Systemic Lupus Erythematosus. J Innate Immun. 2022;14(6):673-689. doi: 10.1159/000523991

Xu WD, Huang Q, Yang C, Li R, Huang AF. GDF-15: A Potential Biomarker and Therapeutic Target in Systemic Lupus Erythematosus. Front Immunol. 2022;13:926373. doi: 10.3389/fimmu.2022.926373

Tanrıkulu O, Sarıyıldız MA, Batmaz İ, et al. Serum GDF-15 level in rheumatoid arthritis: relationship with disease activity and subclinical atherosclerosis. Acta Reumatol Port. 2017;42(1):66-72.

De Paepe B, Verhamme F, De Bleecker JL. The myokine GDF-15 is a potential biomarker for myositis and associates with the protein aggregates of sporadic inclusion body myositis. Cytokine. 2020;127:154966. doi: 10.1016/j.cyto.2019.154966

Zhang J, He L, Wang Z, et al. Decreasing GDF15 Promotes Inflammatory Signals and Neutrophil Infiltration in Psoriasis Models. J Invest Dermatol. 2023;143(3):419-430. doi: 10.1016/j.jid.2022.07.026

Kim Y, Kang B, Kim JC, Park TJ, Kang HY. Senescent Fibroblast-Derived GDF15 Induces Skin Pigmentation. J Invest Dermatol. 2020;140(12):2478-2486. doi: 10.1016/j.jid.2020.04.016

Downloads

Published

2024-12-30

How to Cite

Rzemieniewski, B., Kasztelan, A., Poboży, K., & Domańska-Poboża, J. (2024). Growth differentiation factor 15 – a review of current literature on biological roles and clinical significance. European Journal of Clinical and Experimental Medicine, 22(4), 921–933. https://doi.org/10.15584/ejcem.2024.4.19

Issue

Section

REVIEW PAPERS