Histochemical evaluation of ethanol extracts of Senecio biafrae leaves in mercury chloride-induced hepatic injury in adult male Wistar rats

Authors

DOI:

https://doi.org/10.15584/ejcem.2026.1.18

Keywords:

DNA integrity, Feulgen staining, glycogen storage, hepatic injury, mercury chloride, PAS reaction

Abstract

Introduction and aim. Mercury chloride is a potent hepatotoxin that disrupts liver architecture, glucose metabolism, and nuclear integrity. To our knowledge, no previous study has evaluated the histochemical effects of the ethanol extract of Senecio biafrae leaves (EESBL) on mercury chloride-induced hepatic injury. This study presents new evidence for the glycogen stabilizing and genoprotective properties of its compounds.

Material and methods. Forty-nine adult Wistar rats were randomly assigned to seven groups (n=7 per group). Except for the control, all received 4 mg/kg mercury chloride orally for 21 days. Group II rats were sacrificed immediately after exposure, while group III underwent a 21-day recovery. Group IV received 2 mg/kg silymarin, and also Groups V–VII received 200, 400, and 600 mg/kg EESBL, respectively, for 21 days. Liver tissues were harvested for histochemical evaluation using periodic acid-Schiff (PAS) and Feulgen staining.

Results. Mercury chloride significantly depleted liver glycogen stores (PAS-positive area: control 75.00±0.56% vs toxic 20.00±1.09%). EESBL restored glycogen storage in a dose-dependent manner (200 mg/kg: 52.02±0.56%; 400 mg/kg: 60.00±0.57%; 600 mg/kg: 72.06±0.57%), approaching silymarin (68.00±0.57%). Nuclear DNA integrity was markedly affected by HgCl2 (Feulgen-positive area: control 16.20±0.19% vs toxic 9.00±0.33%). EESBL improved nuclear morphology and DNA intensity (200 mg/kg: 11.11±0.12%; 400 mg/kg: 13.20±0.44%; 600 mg/kg: 14.06±0.33%), comparable to silymarin (14.00±0.25%) (all p<0.001).

Conclusion. EESBL demonstrated protective effects against mercury chloride-induced hepatotoxicity by stabilizing hepatic glycogen metabolism and nuclear structure, underscoring its therapeutic potential in mitigating heavy metal-induced liver injury.

Downloads

Download data is not yet available.

References

Agency for Toxic Substances and Diseases Registry (ATSDR). Toxicological Profile for Mercury. Atlanta, GA: U.S. Department of Health and Human Services; 2022. https://www.atsdr.cdc.gov/toxprofiles/tp46.pdf.

Ruggieri F, Majorani C, Domanico F, Alimonti A. Mercury in children: current state on exposure through human biomonitoring studies. Int J Environ Res Public Health. 2017;14(5):519. doi:10.3390/ijerph14050519

Clarkson TW, Magos L. The toxicology of mercury and its chemical compounds. Crit Rev Toxicol. 2006;36(8):609-662. doi:10.1080/10408440600845619

Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol. 2021;12:643972. doi: 10.3389/fphar.2021.643972

Crespo-López ME, Macêdo GL, Pereira SI, et al. Mercury and human genotoxicity: critical considerations and possible molecular mechanisms. Pharmacol Res. 2009;60(4):212-220. doi:10.1016/j.phrs.2009.02.011

Maqbool F, Bahadar H, Hassani S, et al. Biochemical evidence on the potential role of methyl mercury in hepatic glucose metabolism through inflammatory signaling and free radical pathways. J Cell Biochem. 2019;120(9):16195-16205. doi:10.1002/jcb.28899

Liu X, Wang H, Liang X, Roberts MS. Hepatic metabolism in liver health and disease. In: Liver Pathophysiology. Academic Press; 2017:391-400. doi:10.1016/B978-0-12-804274-8.00030-8

Kanungo S, Wells K, Tribett T, El-Gharbawy A. Glycogen metabolism and glycogen storage disorders. Ann Transl Med. 2018;6(24):474. doi:10.21037/atm.2018.10.59

Adeva-Andany MM, González-Lucán M, Donapetry-García C, Fernández-Fernández C, Ameneiros-Rodríguez E. Glycogen metabolism in humans. BBA Clin. 2016;5:85-100. doi:10.1016/j.bbacli.2016.02.001

Schulze RJ, Schott MB, Casey CA, Tuma PL, McNiven MA. The cell biology of the hepatocyte: a membrane trafficking machine. J Cell Biol. 2019;218(7):2096-2112. doi:10.1083/jcb.201903090

Obun FE, Aliu TB, Popoola DA, Raji RO. Toxicological implications and therapeutic approaches in heavy metal exposure: focus on lead and mercury. AROC Nat Prod Res. 2025;5:1-10. doi:10.53858/arocnpr05010110

Kasmi S, Bkhairia I, Harrabi B, et al. Modulatory effects of quercetin on liver histopathological, biochemical, hematological, oxidative stress, and DNA alterations in rats exposed to graded doses of SCORE 250. Toxicol Mech Methods. 2018;28(1):12-22. doi:10.1080/15376516.2017.1351507

Basu N, Goodrich JM, Head J. Ecotoxicology of mercury in fish and wildlife: recent advances. Ecotoxicol. 2016;25(5): 1093-1100. doi:10.1038/jes.2015.52

Iezzoni JC. Diagnostic histochemistry in hepatic pathology. Semin Diagn Pathol. 2018;35(6):381-389. doi:10.1016/j.hpr.2022.300651

Kilic KD, Gokhan A, Sozmen EY, Uysal A. Liver histology and biochemistry of exposed newborn and infant rats with experimental aflatoxicosis. Pakistan Veterinary Journal. 2022;42(4). doi:10.29261/pakvetj/2022.066

Saad B, Zaid H, Shanak S, et al. Introduction to medicinal plant safety and efficacy. In: Anti-Diabetes and Anti-Obesity Medicinal Plants and Phytochemicals: Safety, Efficacy, and Action Mechanisms. 2017:21-55. doi:10.1007/978-3-319-54102-0

Balkrishna A, Sharma N, Srivastava D, et al. Exploring the safety, efficacy, and bioactivity of herbal medicines: bridging traditional wisdom and modern science in healthcare. Future Integr Med. 2024;3(1):35-49. doi:10.14218/FIM.2023.00086

Michael OA, Banji OM, Olufunso AB, et al. Determination of nutrients, antinutrients, and antioxidants concentrations in some edible forest vegetables in Ondo and Oyo State, South Western Nigeria. Niger J Nutr Sci. 2023;44(2). doi:10.36349/easjnfs.2024.v06i06.005

Borokini FB, Olaleye MT, Lajide L. Nutritional and chemical compositions of two underutilized vegetables in Nigeria. Bangladesh J Sci Ind Res. 2017;52(3):201-208. doi:10.3329/bjsir.v52i3.34156.

Ayoola GA, Johnson OO, Adeyemi DK, Lapite OM, Doherty CO. Antioxidant and hypoglycaemic activities of the ethanol extract of Senecio biafrae leaves. J Chem Soc Nigeria. 2017;42(2):59-62.

National Research Council (NRC), Institute of Laboratory Animal Research (ILAR). Guide for the Care and Use of Laboratory Animals. 8th ed. Washington, DC: National Academy Press; 2011:246. doi:10.1007/978-981-16-0987-9

Matsubara T, Touchi A, Masuda Y, Takeuchi Y. Carbon tetrachloride-induced hepatotoxicity in rats: evidence for different susceptibilities of rat liver lobes. Jpn J Pharmacol. 1983;33(2):435-445. doi:10.3390/toxics11070625

Bancroft JD, Gamble M. Theory and Practice of Histological Techniques. Elsevier Health Sciences; 2008.

Kilcoyne M, Gerlach JQ, Farrell MP, Bhavanandan VP, Joshi L. Periodic acid-Schiff's reagent assay for carbohydrates in a microtiter plate format. Anal Biochem. 2011;416(1):18-26. doi:10.1016/j.ab.2011.05.006

Mello MLS, de Campos Vidal B. The Feulgen reaction: a brief review and new perspectives. Acta Histochem. 2017;119(6):603-609. doi:10.1016/j.acthis.2017.07.002

Amber WS, Musa SA, Sambo SJ, Agbon AN. Nephroprotective effect of Citrus sinensis L. on mercury-exposed Wistar rats. Ann Trop Pathol. 2020;11(2):157-165.

Qaid MM, Abdelrahman MM. Role of insulin and other related hormones in energy metabolism: a review. Cogent Food Agric. 2016;2(1):1267691. doi:10.1080/23311932.2016.1267691

Lema-Pérez L. Main organs involved in glucose. In: Sugar Intake: Risks and Benefits and the Global Diabetes Epidemic. 2021:121.

Mandl J. Glycogen–endoplasmic reticulum connection in the liver. Int J Mol Sci. 2023;24(2):1074. doi:10.3390/ijms24021074

Hantzidiamantis PJ, Awosika AO, Lappin SL. Physiology, glucose. In: StatPearls Publishing; 2024.

Mohamed MEB, El-Meligy M, Bushra RR, Mohamed EK. Effect of mercuric chloride exposure during pregnancy and lactation on the postnatal development of the liver in the albino rat. Egypt J Anat. 2019;42(1):10-27. doi:10.21608/ejana.2019.251310

Lindström MS, Bartek J, Maya-Mendoza A. p53 at the crossroad of DNA replication and ribosome biogenesis stress pathways. Cell Death Differ. 2022;29(5):972-982. doi:10.1038/s41418-022-00999-w

Cannan WJ, Pederson DS. Mechanisms and consequences of double-strand DNA break formation in chromatin. J Cell Physiol. 2016;231(1):3-14. doi:10.1002/jcp.25048

Caldecott KW. Causes and consequences of DNA single-strand breaks. Trends Biochem Sci. 2024;49(1):68-78. doi:10.1016/j.tibs.2023.11.001

Singh P, Mitra P, Goyal T. Evaluation of DNA damage and expressions of DNA repair gene in occupationally lead-exposed workers (Jodhpur, India). Biol Trace Elem Res. 2021;199:1707-1714. doi:10.1007/s12011-020-02298-2

Hemmaphan S, Bordeerat NK. Genotoxic effects of lead and their impact on the expression of DNA repair genes. Int J Environ Res Public Health. 2022;19(7):4307. doi:10.3390/ijerph19074307

Downloads

Published

2026-01-05

How to Cite

Ibitoye, A. O., & Adeyemi, D. O. (2026). Histochemical evaluation of ethanol extracts of Senecio biafrae leaves in mercury chloride-induced hepatic injury in adult male Wistar rats. European Journal of Clinical and Experimental Medicine. https://doi.org/10.15584/ejcem.2026.1.18

Issue

Section

ORIGINAL PAPERS