Pulmonoprotective effect of carnosol on LPS-induced cytokine storm model in mice
DOI:
https://doi.org/10.15584/ejcem.2026.1.23Keywords:
ARDS, carnosol, COVID-19, mouse model, phenolic diterpenesAbstract
Introduction and aim. The cytokine storm represents a severe hyperinflammatory response that can lead to acute lung injury and organ failure. Carnosol, a phenolic diterpene derived from Rosmarinus officinalis, exhibits documented antioxidant and anti-inflammatory properties. The aim was to evaluate the effects of carnosol, alone and in combination with methylprednisolone acetate (MPA), in a lipopolysaccharide (LPS)-induced cytokine storm model in mice.
Material and methods. Sixty male mice were randomly assigned to six groups: control, lipopolysaccharide (LPS), vehicle, carnosol (120 mg/kg), methylprednisolone acetate (50 mg/kg), and combined carnosol plus methylprednisolone acetate (half doses). Treatments were administered for seven days following LPS induction. Pulmonary concentrations of interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α) were quantified using enzyme-linked immunosorbent assay, and lung histopathology was evaluated.
Results. Lipopolysaccharide administration significantly increased pulmonary cytokine levels compared with controls (IL-1β: 85.8±13.5 vs. 11.5±3.8 pg/g; IL-6: 93.0±8.5 vs.16.6±4.8 pg/g; TNF-α: 144.4±10.1 vs.18.6±0.01 pg/g; all p<0.05). Treatment with carnosol significantly reduced IL-1β, IL-6, and TNF-α levels compared with the LPS group (p<0.05). The combined carnosol and methylprednisolone acetate therapy produced the greatest cytokine attenuation (e.g. IL-6: 24.6±1.8 pg/g vs. LPS; p<0.05) and was associated with the most pronounced improvement in lung histopathological scores (p<0.05).
Conclusion. Carnosol attenuates lipopolysaccharide-induced pulmonary inflammation and cytokine overproduction in a murine model. Its combination with methylprednisolone acetate may enhance anti-inflammatory efficacy and allow for glucocorticoid dose reduction. These findings provide preclinical evidence supporting further mechanistic and translational studies.
Downloads
References
Feuillet V, Canard B, Trautmann A. Combining antivirals and immunomodulators to fight COVID-19. Trends Immunol. 2021;42(1):31-44. doi:10.1016/j.it.2020.11.003
Al-Saray D, Al-Asady FM, Tuhair T. Role of antibodies against SARS-CoV-2 in the detection of coronavirus, its transmissibility and immunological status determination among different populations in Babylon Province. Open Access Maced J Med Sci. 2022;10(A):644-649. doi:10.3889/oamjms.2022.9372
Picchianti Diamanti A, Rosado MM, Pioli C, Sesti G, Laganà B. Cytokine release syndrome in COVID-19 patients: a new scenario for an old concern. Int J Mol Sci. 2020;21(9):3330. doi:10.3390/ijms21093330
Omran T, Al-Asady FM, Sajit EJ, Al-Saadi H. Assessment of D-dimer level and C-reactive protein in correlation with CT findings in positive PCR–COVID-19 patients. Malays J Microbiol. 2025;21(1):135-142. doi:10.21161/mjm.230200
Al-Taie SF, Fedwi MM, Merza M, et al. Evaluation of different sedation scales in the ICU management of COVID-19 patients. Sci Rep. 2025;15(1):28782. doi:10.1038/s41598-025-14421-1
Kozlov EM, Ivanova E, Grechko AV, et al. Involvement of oxidative stress and the innate immune system in SARS-CoV-2 infection. Diseases. 2021;9(1):17. doi:10.3390/diseases9010017
Al-Asady FM, Omran TZ, Abood FM. Humoral immunity role in diagnosis of COVID-19 among people visited a tertiary care hospital in Hilla City. Med J Babylon. 2023;20(3):497-502. doi:10.4103/MJBL.MJBL_124_23
Ayad ZM, Al-Ameedi AI, Hajwal SK, et al. Relationship between paediatric antibiotic misuse and recurrent acute respiratory tract infection. Pharmakeftiki. 2025;37(2 suppl):193-197. doi:10.60988/p.v37i2S.188
Luty RS, Abbas SF, Haji SA, Ridha-Salman H. Hepatoprotective effect of catechin on acetaminophen-induced liver injury in rats. Comp Clin Pathol. 2025;34(4):705-718. doi:10.1007/s00580-025-03682-x
Yahiya YI, Hadi NR, Abu Raghif A, et al. Protective effect of IAXO-102 on renal ischemia-reperfusion injury in rats. J Med Life. 2023;16(4):623-630. doi:10.25122/jml-2022-0280
Raheem AK, Abu-Raghif AR, Abbas AH, et al. Quercetin mitigates sepsis-induced renal injury via inhibition of inflammatory and oxidative pathways in mice. J Mol Histol. 2025;56(3):184. doi:10.1007/s10735-025-10442-2
Raheem AKK, Abu-Raghif AR, Zigam QA. Cilostazol protects against sepsis-induced kidney impairment in a mouse model. J Med Chem Sci. 2023;6(5):1193-1203. doi:10.26655/jmchemsci.2023.5.25
Aal-Aaboda M, Abu Raghif AR, Hadi NR. Effect of lipopolysaccharide from Rhodobacter sphaeroides on inflammatory pathways and oxidative stress in renal ischemia-reperfusion injury in rats. Arch Razi Inst. 2021;76(4):1013-1024. doi:10.22092/ari.2021.356003.1761
Shareef SM, Kathem SH, Ridha-Salman H. L-carvone alleviates lipopolysaccharide-induced acute kidney injury via modulation of MyD88-dependent and independent signaling pathways in mice. Mol Biol Rep. 2025;53(1):39. doi:10.1007/s11033-025-11213-8
Montazersaheb S, Hosseiniyan Khatibi SM, Hejazi MS, et al. COVID-19 infection: an overview on cytokine storm and related interventions. Virol J. 2022;19(1):92. doi:10.1186/s12985-022-01814-1
Coutinho AE, Chapman KE. Anti-inflammatory and immunosuppressive effects of glucocorticoids: recent developments and mechanistic insights. Mol Cell Endocrinol. 2011;335(1):2-13. doi:10.1016/j.mce.2010.04.005
Farooq Ali B, Abu-Raghif AR, Ridha-Salman H. Protective effect of cinnarizine on imiquimod-induced psoriasis in mice. J Res Pharm. 2025;29(4):1783-1791. doi:10.12991/jrespharm.1734970
Obaid SH, Gatea FK. Effect of kaempferol, amygdalin, and methylprednisolone alone and in combination in induced cytokine storm in mice. Acta Pharm Sci. 2024;62(4):735-747. doi:10.23893/1307-2080.APS6248
Al-Jabr KH, Alhumaidan LS, Alghamdi AA, et al. Awareness of side effects of corticosteroids among users and nonusers in Saudi Arabia. J Pharm Bioallied Sci. 2024;16(suppl 2):S1612-S1618. doi:10.4103/jpbs.jpbs_925_23
Wang L, Waltenberger B, Pferschy-Wenzig EM, et al. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem Pharmacol. 2014;92(1):73-89. doi:10.1016/j.bcp.2014.07.018
Al-Rajhi SH, Shihab EM, Ridha-Salman H, et al. Protective effect of combined glutathione and prednisolone administration in LPS-induced cytokine storm in mice. Pharmakeftiki. 2025;37(2 suppl):122-126. doi:10.60988/p.v37i2S.157
Poeckel D, Greiner C, Verhoff M, et al. Carnosic acid and carnosol inhibit human 5-lipoxygenase and suppress pro-inflammatory responses. Biochem Pharmacol. 2008;76(1):91-97. doi:10.1016/j.bcp.2008.04.013
Maione F, Cantone V, Pace S, et al. Anti-inflammatory and analgesic activity of carnosol and carnosic acid. Br J Pharmacol. 2017;174(11):1497-1508. doi:10.1111/bph.13545
Tariq ZT, Abu-Raghif AR, Raheem AK, et al. Huperzine A versus epicatechin in LPS-induced lung injury in mice. Pharmakeftiki. 2025;37(2 suppl). doi:10.60988/p.v37i2S.244
Aal-Aaboda M, Raghif ARA, Almudhafer RH, Hadi NR. Lipopolysaccharide from Rhodobacter sphaeroides modulates toll-like receptor expression in renal ischemia-reperfusion injury. J Med Life. 2022;15(5):685. doi:10.25122/jml-2021-0255
Abed-Mansoor A, Abu-Raghif AR. Attenuated effects of rivastigmine in induced cytokine storm in mice. J Emerg Med Trauma Acute Care. 2022;2022(3):12. doi:10.5339/jemtac.2022.ismc.12
Shi W, Xu G, Zhan X, et al. Carnosol inhibits inflammasome activation by targeting HSP90. Cell Death Dis. 2020;11(4):252. doi:10.1038/s41419-020-2460-x
Al-Naimi MS, Abu-Raghif AR, Fawzi HA. Rifaximin combined with methylprednisolone attenuates LPS-induced inflammation in mice. Toxicol Rep. 2024;13:101808. doi:10.1016/j.toxrep.2024.101808
Sadiq A, Zalzala M. Protective effect of safranal on LPS-induced acute lung injury in mice. Int J Drug Deliv Technol. 2021;11:771-776. doi:10.25258/ijddt.11.3.19
Shao C, Lin S, Liu S, et al. HIF-1α-induced glycolysis in macrophages during endotoxemia. Oxid Med Cell Longev. 2019;2019:7136585. doi:10.1155/2019/7136585
AlBairmani RJH, Shihab EM, Ridha-Salman H, et al. D-limonene attenuates D-galactose-induced skin aging in mice. J Mol Histol. 2025;56(6):364. doi:10.1007/s10735-025-10654-6
Sharif SJ, Kadhim HM, Ahmed BS, et al. Gastroprotective effects of emodin in diclofenac-induced gastric ulceration in rats. Naunyn Schmiedebergs Arch Pharmacol. 2025. doi:10.1007/s00210-025-04701-y
Tofiq SH, Idan HM. Hematological assessments of children with oral aphthous ulcer. J Appl Hematol. 2024;15(2):111-115. doi:10.4103/joah.joah_23_24
Idan HM, Hasani RA-M, Othman IQ. Effect of anemia on oral cavity and hematological assessments. Diyala J Med. 2024;26(1):153-162. doi:10.26505/djm.v26i1.1087
Hassan SF, Abu Raghif AR, Kadhim EJ, et al. Phenolic components of Iraqi sumac (Rhus coriaria): antioxidant and hepatoprotective effects. Eur J Clin Exp Med. 2025;23(3):1-24. doi:10.15584/ejcem.2025.3.29
Abbod MS, Al-Jawad FH, Anoze AA, et al. Antiatherosclerotic effect of L-thyroxine and verapamil in rabbits. Int J Pharm Sci Rev Res. 2014;27(1):254-260.
Hussein MN, Abu-Raghif AR, Ridha-Salman H, et al. Flavonoids from Conyza canadensis mitigate atopic dermatitis in mice. Comp Clin Pathol. 2025;34(5):987-1010. doi:10.1007/s00580-025-03709-3
Hulse EJ, Smith SH, Wallace WA, et al. Development of a pulmonary histopathology scoring system. PLoS One. 2020;15(10):e0240563. doi:10.1371/journal.pone.0240563
Daniel WW, Cross CL. Biostatistics: a foundation for analysis in the health sciences. Hoboken, NJ: John Wiley & Sons; 2018.
Tang Y, Liu J, Zhang D, et al. Cytokine storm in COVID-19: evidence and treatment strategies. Front Immunol. 2020;11:1708. doi:10.3389/fimmu.2020.01708
Al-Ani B, ShamsEldeen AM, Kamar SS, et al. Lipopolysaccharide-induced acute lung injury in a rat model of COVID-19. Clin Exp Pharmacol Physiol. 2022;49(4):483-491. doi:10.1111/1440-1681.13620
Dinarello CA. IL-1β as the gatekeeper of inflammation. Eur J Immunol. 2011;41(5):1203-1217. doi:10.1002/eji.201141550
Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140(6):821-832. doi:10.1016/j.cell.2010.01.040
Chen J, Sun N, Li F, et al. Carnosol alleviates collagen-induced arthritis. Biomed Res Int. 2023;2023:1179973. doi:10.1155/2023/1179973
Lee JE, Im DS. Suppressive effect of carnosol on ovalbumin-induced allergic asthma. Biomol Ther. 2021;29(1):58-63. doi:10.4062/biomolther.2020.050
Ishijima T, Nakajima K. Induction of TNF-α, IL-1β, and IL-6 in endotoxin-stimulated microglia. Sci Prog. 2021;104(4):00368504211054985. doi:10.1177/00368504211054985
Sapra L, Bhardwaj A, Azam Z, et al. Phytotherapy for cytokine storm in COVID-19. Front Biosci (Landmark Ed). 2021;26(5):51-75. doi:10.52586/4924
Gazzillo E, Saviano A, Raucci F, et al. Carnosol modulates mPGES-1/PPAR-γ axis. Biomed Pharmacother. 2025;191:118407.
Li L, Pan Z, Ning D, et al. Rosmanol and carnosol alleviate rheumatoid arthritis. Molecules. 2021;27(1):78. doi:10.3390/molecules27010078
Kadhim HM, Al-Mosawi AM. Effects of emodin and salvianolic acid on lung fibrosis. Int J Drug Deliv Technol. 2021;11(4):1269-1274. doi:10.25258/ijddt.11.4.25
Zein L, Grossmann J, Swoboda H, et al. Haptoglobin buffers lipopolysaccharides. Front Immunol. 2024;15:1401527.
Shareef SM, Kathem SH, Ridha-Salman H. L-carvone protects against sepsis-associated renal injury. J Taibah Univ Med Sci. 2026;21(1):49-66. doi:10.1016/j.jtumed.2025.12.008
Habtemariam S. Anti-inflammatory mechanisms of rosemary diterpenes. Biomedicines. 2023;11(2):545. doi:10.3390/biomedicines11020545
Schwager J, Hoeller U, Wolfram S, et al. Carnosol modulates cytokine production. Molecules. 2016;21(4):465. doi:10.3390/molecules21040465
Chen CC, Chen HL, Hsieh CW, et al. Nrf2-dependent glutathione induction by carnosol. Acta Pharmacol Sin. 2011;32(1):62-69. doi:10.1038/aps.2010.181
Lee DY, Hwang CJ, Choi JY, et al. Carnosol inhibits phthalic anhydride-induced dermatitis. Biomol Ther. 2017;25(5):535-544. doi:10.4062/biomolther.2017.006
Bhargava R, Janssen W, Altmann C, et al. Intratracheal IL-6 in acute lung injury. PLoS One. 2013;8(5):e61405. doi:10.1371/journal.pone.0061405
Fan H, Cook JA. Molecular mechanisms of endotoxin tolerance. J Endotoxin Res. 2004;10(2):71-84. doi:10.1179/096805104225003997
Ciavarella C, Motta I, Valente S, et al. PPAR-γ agonists for cytokine storm modulation. Molecules. 2020;25(9):2076. doi:10.3390/molecules25092076
Zhang YA, Li FW, Dong YX, et al. PPAR-γ regulates macrophage polarization. FASEB J. 2024;38(8):e23613.
Li Q, Liu L, Sun H, et al. Carnosic acid protects against acute lung injury. Exp Ther Med. 2019;18(5):3707-3714. doi:10.3892/etm.2019.8042
Tian XF, Yao JH, Zhang XS, et al. Protective effect of carnosol on lung injury. Surg Today. 2010;40(9):858-865. doi:10.1007/s00595-009-4170-y
Fernandes RM, Wingert A, Vandermeer B, et al. Safety of corticosteroids in children. BMJ Open. 2019;9(8):e028511. doi:10.1136/bmjopen-2018-028511
Abbas AH, Hassan ZM, Albarki MA, et al. Cimifugin and vinpocetine in psoriasis-like model. Pharmakeftiki. 2025;37(2S). doi:10.60988/p.v37i2S.134
Kashyap D, Kumar G, Sharma A, et al. Mechanistic insight into carnosol pharmacology. Life Sci. 2017;169:27-36. doi:10.1016/j.lfs.2016.11.013
Singh D, Mittal N, Siddiqui M. Pharmacological potentials of phenolic diterpenes from Rosmarinus officinalis. Trends Phytochem Res. 2023;7(3):156-169. doi:10.30495/tpr.2023.1990761.1365
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 European Journal of Clinical and Experimental Medicine

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our open access policy is in accordance with the Budapest Open Access Initiative (BOAI) definition: this means that articles have free availability on the public Internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from having access to the Internet itself.
All articles are published with free open access under the CC-BY Creative Commons attribution license (the current version is CC-BY, version 4.0). If you submit your paper for publication by the Eur J Clin Exp Med, you agree to have the CC-BY license applied to your work. Under this Open Access license, you, as the author, agree that anyone may download and read the paper for free. In addition, the article may be reused and quoted provided that the original published version is cited. This facilitates freedom in re-use and also ensures that Eur J Clin Exp Med content can be mined without barriers for the research needs.




