
49

© University Press 2024

ISSN 2719-6550

ISSN 2719-7417 online

“Journal of Education, Technology and Computer Science”

No. 5(35)/2024

www.eti.ur.edu.pl

Received: 3.09.2024 DOI: 10.15584/jetacomps.2024.5.5

Accepted for printing: 11.12.2024

Published: 20.12.2024

License: CC BY-NC-ND 4.0

ROBERT PĘKALA 1, JAKUB SZUMILAK 2, ADRIAN MUCHA 3

Parallel Programming in PC and Computer Cluster

Environment – Selected Computational Problems

1 ORCID: 0000-0003-0530-0005, Ph.D., Department of Computer Science, State University of

Applied Sciences in Jarosław, ul. Czarnieckiego 16, 37-500 Jarosław, Poland
2 ORCID: 0009-0006-7798-0897, student, State University of Applied Sciences in Jarosław, ul.

Czarnieckiego 16, 37-500 Jarosław, Poland
3 ORCID: 0009-0004-5491-7647, student, State University of Applied Sciences in Jarosław, ul.

Czarnieckiego 16, 37-500 Jarosław, Poland

Abstract

Parallel programming is a skill that requires the use of technologies and techniques that allow

applications to use multiple threads/processes simultaneously. In some cases, this is a condition for

their launch or correct operation. This article presents selected aspects of such a programming

using the example of two proposed applications: for PC computers with the .NET platform and

application designed for a computer cluster operating in the GNU/Linux system. These are two

applications with different purposes – the first uses image processing mechanisms, while the se-

cond – is the implementation of precise numerical calculations. The proposed applications were

designed in the context of using multithreading and multiprocessing technologies. The obtained

results indicate that implementing appropriate programming techniques is an important aspect of

programming various types of applications, ensuring their correct operation and acceleration of

long-term calculations.

Keywords: thread, process, synchronization, OpenMPI, Amdahl’s law

Introduction
Sequential calculations, by default are performed serially, this means that

one thread performs calculations one by one as they are placed in the application

code. This method works well for small workloads or when tasks have strong

data dependencies.

It should be noted that there are computational problems that require the use

of large computing power and a large amount of memory. Without these condi-

http://dx.doi.org/10.15584/jetacomps.2024.5.5
https://orcid.org/0000-0003-0530-0005
https://orcid.org/0009-0006-7798-0897
https://orcid.org/0009-0004-5491-7647

50

tions solving such tasks is problematic and sometimes even impossible. The

answer to this is parallel programming whose idea is to break the computation

into subtasks and assign each of them to a different thread or process that can

run independently of each other (Robey, Zamora, 2021; https://www.open-

mpi.org 2024). Moreover, each thread can run on a different processor core

within the same physical system or on the computer cluster which usually – es-

pecially in the second case – significantly translates into increased speed of opera-

tion (Rainders, 2007; Robey, Zamora, 2021).

Parallel programming is a relatively narrow specialization in the broadly

understood field of programming. There are several internationally published

scientific journals dedicated only to this programming technique. Solutions pre-

sented there are concerned to many fields of science and technology (e.q.: Col-

lange, Defour, Graillat, Iakymchuk, 2015; Herrmann, Kuchen, 2023; Birath,

Ernstsson, Tinnerholm, Kessler, 2024). However, this topic is also presented in

other journals, (e.q.: Szyszko, Smołka, 2018; Hielscher, Bartel, 2024), if only the

problem under consideration requires parallelization of computations.

What kind of increase in computational speedup we can expect depends on

how much we can split a program code which can be assigned to separate

threads or processes. The theoretical relationship between their number and ap-

plication performance is described by Amdahl’s law (Rainders, 2007). It indi-

cates that the maximum acceleration of the execution time is limited by the lar-

gest indivisible part of the program. The specific courses and well known analy-

tical formula, which should be treated rather as a classical approach, are shown

below:

 𝑆 =
1

(1−𝑃)+
𝑃

𝑁

 (1)

where: S – maximum speed up of

the program,

N – amount of threads/processes,

P – is percentage of program code,

that can be parallelized (parallel

portion).

Figure 1. Amdahl’s law of speeding up program execution depending on the

number of processors (https://www.researchgate.net 2016)

51

Figure 1 shows the saturation of the curve representing the acceleration of

the program. This means that with the number of processing units, theoretically

approaching infinity, the time to solve a given task is established because the

acceleration cannot exceed the value determined by the sequential part of the

program code – which of course is a feature of even the most modern computing

systems, including computer clusters.

One of the important aspects in parallel programming is the problem of syn-

chronizing threads/processes so that each works efficiently on their task and

maintains data integrity. Two or more threads can use and change the same va-

riable. If the processes are not synchronized, the variable will not reach the

proper value after the calculation is completed. This applies to both solutions

implemented using cluster technologies, as well as applications created for PC

computers. In our article, using the example of created applications, we show

how implementing parallelized code has a positive impact not only on the speed

of operation, but also on their responsiveness. We also pay attention to selected

aspects of synchronization, which in turn ensures the correctness of the calcula-

tion of shared variables. Presented applications were implemented in the .NET

programming environment and the C# language, as well as in the C++ language

environment and the OpenMPI library of the didactic computing cluster, which

is equipped with the Department of Computer Science at the State University of

Applied Sciences in Jarosław (PANS Jarosław).

Technology of multithreading

As the name suggests, a program that implements a multithreading feature

can have the code run on multiple threads at the same time. We can treat threads

as workers and the program as the supervisor of the workers. Multithreading is

the ability of the “supervisor” to split the work among his “workers” instead of

having just one worker do all the work on their own. Each thread is given a unique

ID. This way the flow remains controllable and the threads can be managed

through dedicated libraries to avoid leaks and errors. In our case we consider Task

Parallel Library (TPL) for .NET Framework (https://learn.microsoft.com/pl-

-pl/dotnet/standard/parallel-programming 2022)

The main reason to use, and the biggest advantage of multithreading is the

application execution speed. If implemented correctly, multithreading can cause

the code to finish much faster than it would in a single thread. Moreover, run-

ning complex code on only one thread can sometimes create application security

issues or other deficiencies in its functioning. On the other hand though, keeping

multiple threads in check, starting them, making sure they don’t interrupt each

other pose a serious challenge, therefore writing programs that make use of mul-

tithreading is much more difficult and takes much more time. What is more,

errors that originate from using multithreading are much more difficult to spot.

52

It should be noted that not all cases of implementing multithreaded techno-

logy collide with the problem of synchronization related to the sharing of varia-

bles. There exist applications in which threads can be executed asynchronously,

concurrently, and even in parallel, while the synchronization mechanism comes

down only to the “supervisor” collecting the results from the “workers”. As an

illustration of this problem, an application from the field of image processing

was implemented. The figures below show the performance results of an avera-

ging filter for a bitmap image (https://eeweb.engineering.nyu.edu) with a resolu-

tion of 512x512 pixels. The filter calculates new values of each pixel as an aver-

age of the other pixel values from the area of the sliding 40-pixel wide window,

which provides an intense blurring of the image. The filter works in two ver-

sions: a serial version and a parallel version. The output under the image shows

the running time of both versions of the filter.

 a)

b) c)

Figure 2. Original image (a) as the input to the averaging filter and calculation times

in milliseconds: for serial calculations (b) and for parallel calculations (c)

53

The application was implemented in the C# language environment and the

.NET platform. For the version of the parallel filter, the total image area was

divided into 4 blocks of pixels, which is determined by the variable declared in

the first line of the application code (Figure 3). Each block of parallel filter is

processed by a separate thread, while the serial calculations run in the context

of the main thread only. Additional threads of the parallel filter were run in the

context of the task factory (Task.Run() method) using the default queuing

mechanism. The Filter() method – used as a parameter – calculates the average

value for each pixel in a 40-pixel window. Synchronization between additional

threads and the main thread is provided by the WaitAll() method (the last red

code line). It causes the main thread to wait until the additional threads com-

plete their calculations. Running the application on a PC with Intel Core i7 2.2

GHz processor indicates that filtering the image in 4 additional threads speeds

up the calculations several times.

const int number_of_blocks=4;

var tasks = new Task[number_of_blocks];

for (int i = 0; i < square_block; i++)

{

 if (i == square_block - 1) wEnd = (int)bitmap_k.Width;

 var hStart = 0; var hEnd = th;

 for (int j = 0; j < square_block; j++)

 {

 if (j == square_block - 1) hEnd = (int)bitmap_k.Height;

 var fWstart = wStart; var fWEnd = wEnd; var fHstart = hStart; var fHend = hEnd;

 tasks[block++] = Task.Run(() => Filter(img, imgCpy, w, h, WindowSz, fWstart, fWEnd, fHstart,

fHend));

 hStart = hEnd; hEnd += th;

 }

 wStart = wEnd; wEnd += tw;

 }

Task.WaitAll(tasks);

Figure 3. Application code snippet responsible for running the filter algorithm

in 4 tasks-threads

Taking into account the formula (1) for the proposed application, in which

P = 0.82 and N = 4, it can be stated that the estimated value of the maximum

speed up obtained from Amdahl’s law and the value obtained in real conditions

are similar.

54

The second important aspect is that implementing filter calculations in addi-

tional threads makes the main application window responsive — unlike the se-

rial filter version, where the graphical interface and the filter run in the same,

main application thread.

Multiprocessing programming with using MPI – solution of a selected

numerical problem

The application presented in the previous chapter concerns solutions that

can be used on PC computers. However, demanding computational processes,

e.g. complex engineering calculations, may require the construction of applica-

tions implemented on high-performance computing systems – usually computer

clusters that implement computational algorithms in a distributed multiprocessor

environment.

Applications built for computing clusters can use MPI (Message Passing In-

terface) technology. It is a set of libraries used to enable communication in parallel

computing architectures. It provides useful functions in C, C++ and Fortran that

allow control over multiple processes even if they are run on different machines

(https://www.open-mpi.org 2024). The interface also supports synchronization and

communication functionality between a set of processes. This communication

involves sending messages between processes, hence the name – message passing

interface. These messages may be, for example, variables of different types, repre-

senting data for various computational problems. In our research we used a cluster

located in PANS Jarosław running under the GNU/Linux operating system with

the OpenMPI library in the form of a loadable module. Simplified diagrams and

general parameters of the cluster are shown on Figure 4.

Figure 4. Computer cluster’s connections and general specification of the nodes

55

Calculating nodes wn1÷wn5 as well as the administrative node master (in

redundant solution) are connected via an Ethernet switch. The built applications

must be placed on the one of the master nodes that has the tools to compile and

run them on calculating nodes.

Some problems from various fields of technology require calculation of de-

finite integrals of a function of one variable. Calculated values of the integrals

may represent different physical quantities describing a given phenomenon or

object. Appropriate calculations can be performed for data in the form of analy-

tically given integrands or when discrete values of an unknown function are

given only.

In numerical computations, one of the key problems is to ensure the best

possible accuracy. It is usually associated with the need to adopt discretization

steps in time or space that can require resources significantly exceeding the ca-

pabilities of PC computers. Implementing calculations on a computer cluster

with the OpenMPI library requires programmers to develop a different concept

of calculations than in the case of the serial approach - which is not always easy.

This of course also leads to the need to rebuild the serial application code into

a new form. To demonstrate this problem in integral calculations, Simpson’s

quadrature was used in the form given by formula 2 (Flowers, 2000):

𝐹 =
1

3
∆𝑥[𝑓(𝑎) + 4𝑓(𝑎 + ∆𝑥) + 2𝑓(𝑎 + 2∆𝑥) + 4𝑓(𝑎 + 3∆𝑥) + 2𝑓(𝑎 + 4∆𝑥) +

 + ⋯ + 4𝑓(𝑏 − ∆𝑥) + 𝑓(𝑏)] (2)

where: F denotes value of integral, a, b – b oundaries of calculations,

∆𝑥 – discretization step of the independent variable x.

In C++ the code of in sequential version might look like on the Figure 5:

Figure 5. Program code that allows to calculate sequentially the integral of the function

𝑓(𝑥) =𝑠𝑖𝑛 𝑠𝑖𝑛 (√𝑥) in the interval [a, b] and with a number of steps n

long double f (long double x)

{

 return sin(sqrt(x));

}

long double F (long double a, long double b, long int

n)

{

 long double dx = (b - a) / (double)(n - 1);

 long double output = f(a) + f(b); int multiplier;

 for (long int i = 1; i <= n; i++)

 {

 (i % 2 == 0) ? multiplier = 2 : multiplier = 4

 output += multiplier * f (a + (double) i * dx);

 }

 return output;

}

56

Used declaration of the variable n allows the number of steps to be entered

into the calculation area depending on the upper range of the unisgned int type,

which should be sufficient in most practical applications. It should be noted,

however, that PC calculations in the upper range of this type are time-consuming

and may lead to errors.

As mentioned earlier, the implementation of the above algorithm in a com-

puting cluster environment with the OpenMPI library requires the development

of a different concept than the serial one for calculating the integral according to

the formula (2). MPI is a standard for sending so-called messages between pro-

cesses. This means that it is possible to run applications within multiple proces-

ses distributed across computing nodes, with the ability to transfer data between

these processes. In our research, this idea was used so that individual processes

performed calculations for a finite number of Simpson’s formula components.

Figure 6 shows the essence of the adopted solution.

Figure 6. Visual explanation of idea the Simpson formula calculations by processes

of OpenMPI library

Each library process has its own unique identifier expressed as a natural

number. In our case, process no. 0 (called as root) was elected for storing the

first and last elements of the Simpson formula (which do not repeat). Moreover,

the middle parts of the formula are divided into other available processes. Once

the calculations are done, the outcome of each of them is collected in root pro-

cess, which sums partial totals and yields the final result of calculations. The

most important part of the code of application is shown in the figure below.

57

Figure 7. Main part of OpenMPI application code

Sending partial sums to the root process is implemented using two OpenMPI

library routines: MPI_SEND and MPI_RECEIVE ensure correct calculations –

and very importantly – synchronization between processes. This means that the

shared variable outcome, representing each partial sum, is correctly incremented in

the root process. The figure below presents the final results of the integral calcula-

tions of the function 𝑓(𝑥) =𝑠𝑖𝑛 𝑠𝑖𝑛 (√𝑥) . For comparison, the results for se-

quential calculations according to the code from Figure 5 are also included.

The calculations were performed for the same conditions, i.e. the integration

interval [a, b] and the discretization step Δx. The SLURM computational task

queuing system was used to run the application on the cluster. It is a convenient

tool that allows running the application with a specified number of processes

declared by the parameter n on N computational nodes. According to the tech-

nical data (Figure 4), the application can be run on a maximum of 5 computing

nodes (N=5). Each of them has 16 processor cores, so the maximum number of

available cores is 80. Of course, the declared number of processes, using the n

parameter can be greater than the number of cores, but our results include

a number of processes equal to the maximum number of physical cores of the

cluster. The computation times for different variants are given on Figure 8.

Obtained results show that even sequential calculations on a PC and on a se-

lected cluster node differ significantly due to the more efficient processor and

larger RAM resources of the node. Using the full computing power of the cluster

means that the computation time is almost 100 times shorter than on a PC.

Therefore, the adopted parallel computation algorithm can be considered highly

effective.

58

Figure 8. Comparison of calculation results obtained on the computer cluster and PC

Conclusions

This article discusses some aspects of the parallel programming used in ap-

plications for PCs and computer clusters. The general idea of programming for

both technologies is similar – it is about fully utilizing the capabilities of modern

computer systems, and in particular their multi-core/multi-threaded processors.

Both technologies offer dedicated libraries with appropriate classes and their

methods. One common feature is also the need to ensure synchronization be-

tween threads/processes – this is one of the key aspects defining the correctness

of the solutions – as indicated in the part describing the presented applications.

Of course, there are many more of these aspects and problems and it is impossi-

ble to mention all of them in such a short study.

The examples presented clearly indicate that implementing parallelism fea-

tures requires programmers to have a specific approach already at the application

design stage, in order to create the possibility of using the aforementioned paral-

lel programming libraries. In the first application, an approach was used in

which the image was divided into sections of pixels, and each of them was pro-

cessed independently by dedicated threads. It should be noted that the data from

individual sections of the image are independent of each other, so the processing

can actually be carried out in a parallel manner. This not only increases the

speed of calculations, but it also ensures the responsiveness of the main applica-

tion thread, implementing the GUI interface. A similar parallelization scheme

applies to the OpenMPI application, in which dedicated processes calculate in-

dependent sets of components of a numerical formula. The presented simulation

results for different conditions of code distribution between cluster nodes show

59

the high effectiveness of the approach used in accelerating calculations. Of

course, there are other additional aspects of numerical calculations – which

could not be discussed due to the volume of the article – such as the problem of

integration accuracy, development of the problem for integrals of functions of

two variables or the problem of applications of the presented solution in specific

engineering tasks. It is also worth pointing out the enormous scientific and edu-

cational benefits resulting from the access to a computer cluster. This allows

planning dedicated classes for students, giving the opportunity to familiarize

themselves with the physical structure of the cluster, management of its opera-

ting system, the system for managing computational tasks and finally, the im-

plementation and launch of OpenMPI applications. It seems that this allows

students to be equipped with specific knowledge and skills that can additionally

enrich their possibilities of adapting to the requirements of the IT industry.

References
Birath, B., Ernstsson, A., Tinnerholm, J., Kessler, Ch. (2024). High-level programming of FPGA –

accelerated systems with parallel patterns. International Journal of Parallel Programming,

52, 253–273.

Collange, C., Defour, D., Graillat, S., Iakymchuk, R. (2015). Numerical reproducibility for the

parallel reduction on multi – and many – core architectures. Parallel Computing, 49, 83–97.

https://doi.org/10.1016/j.parco.2015.09.001.

Flowers, B.H. (2000). An introduction to numerical methods in C++. Oxford University Press.

Herrmann, N., Kuchen, H., (2023). Distributed calculations with algorithmic skeletons for heteroge-

neous computing environments. International Journal of Parallel Programming, 51, 172–185.

Hielscher, A., Bartel, S. (2024). Parallel programming of gradient-based iterative image recon-

struction schemes for optical tomography. Computer Methods and Programs in Biomedicine,

73(2), 101–113.

https://learn.microsoft.com/pl-pl/dotnet/standard/parallel-programming (2022).

https://www.open-mpi.org (2024).

Madhuri, A.J. (2020). Digital image processing. An algorithmic approach. PHI Learning, India.

Rainders, J. (2007). Intel threading building blocks: outfitting C++ for multicore processor paral-

lelism. O’Reilly Media Inc. USA.

Robey, R., Zamora, Y. (2021). Parallel and high performance computing. Manning Shelter Island

Publications Co., USA.

Szyszko, P., Smołka, J. (2018). Five Ways to Introduce Concurrency into Your C# Program (in

Polish). Journal of Computer Science Institute, 6, 62–67.

