© Rzeszow University Press  “Journal of Education, Technology and Computer Science”

ISSN 2719-6550 No. 6(36)/2025

e-ISSN 2719-7417 https://journals.ur.edu.pl/jetacomps
Received: 12.04.2025 DOI: 10.15584/jetacomps.2025.6.10
Accepted for printing: 24.11.2025 Scientific

Published: 31.12.2025
License: CC BY-NC-ND 4.0

BORIS LICINA“!, LUKA LICINA“2, SLAVOLJUB HILCENKO"" 3,
SANJA NIKOLIC'“*

Enhancing IT Competencies Through Python-Based
Computational Thinking Modules for Teachers

I ORCID: 0000-0002-5090-1590, Ph.D., College for Vocational Education of Preschool Teachers
and Coaches, Subotica, Serbia; email: boris.licina007@gmail.com

2 ORCID: 0009-0002-0771-3604, B.Sc., University of Novi Sad, Faculty of Technical Sciences,
Novi Sad, Serbia; email: licina.luka@gmail.com

3 ORCID: 0000-0003-2123-6285, Ph.D., College for Vocational Education of Preschool Teachers
and Coaches, Subotica, Serbia; email: s.hilcenko@gmail.com

4 ORCID: 0000-0001-9632-2458, Ph.D., College for Vocational Education of Preschool Teachers
and Coaches, Subotica, Serbia; email: drsanjanikolic294@gmail.com

Abstract

This study addresses the growing need for IT competency among educators in higher education
by introducing Python-based computational thinking modules. Computational thinking — involving
decomposition, pattern recognition, abstraction, and algorithm design — is a critical skill for navi-
gating the digital era. Python, known for its simplicity and versatility, is an ideal language for en-
hancing these skills. This paper details the design of professional development programs tailored for
higher education faculty, focusing on curriculum structures, practical exercises, and case studies of
successful implementations. The findings demonstrate how such programs can empower educators to
integrate computational thinking into their pedagogy, fostering a culture of innovation and technolog-
ical fluency in academic environments. Furthermore, this study explores the role of artificial intelli-
gence (Al) in enhancing Python's applicability, highlighting its potential to revolutionize education
through tools like machine learning frameworks and intelligent tutoring systems.

Keywords: Computational Thinking, Python Programming, Higher Education, Teacher Training,
Professional Development

Introduction

The integration of computational thinking into higher education is essential
for preparing both educators and students for the demands of the modern digital
world. Computational thinking, as defined by Wing (2006), is a problem-solving

115


http://dx.doi.org/10.15584/jetacomps.2025.6.10
https://orcid.org/0000-0002-5090-1590
https://orcid.org/0009-0002-0771-3604
https://orcid.org/0000-0003-2123-6285
https://orcid.org/0000-0001-9632-2458

methodology that involves decomposition, pattern recognition, abstraction, and
algorithmic thinking. These skills are foundational for navigating not only computer
science but also a broad range of academic disciplines and real-world challenges.

Python, a high-level programming language known for its readability and
extensive library support, has gained popularity as a teaching tool in higher edu-
cation. Its versatility makes it an effective medium for introducing computational
thinking concepts to educators, allowing them to bridge theoretical knowledge
with practical applications. Faculty equipped with Python skills can design inno-
vative teaching strategies, create interdisciplinary connections, and improve stu-
dent engagement in various courses.

Higher education institutions play a pivotal role in equipping faculty with
these competencies. Educators require not only technical proficiency in Python
but also pedagogical strategies tailored to adult learners. Professional develop-
ment programs tailored for faculty members are crucial to achieving this dual goal.
Such programs should focus on integrating computational thinking into existing
curricula, fostering collaborative learning environments, and supporting conti-
nuous professional growth.

This paper outlines the framework for Python-based computational thinking
training tailored to higher education faculty. It explores curriculum design princi-
ples, practical exercises to enhance IT competence, and case studies demonstra-
ting the transformative impact of these programs. By empowering educators,
higher education institutions can advance their mission of fostering innovation
and preparing students for a technology-driven future.

Curriculum Design for Teacher Training in Computational Thinking

Learning Objectives:

1. Understanding Computational Thinking: Faculty members are introduced
to core components of computational thinking, such as decomposition, pattern
recognition, abstraction, and algorithm design. These skills are essential for struc-
turing complex problems into manageable parts (Wing, 2006; Hil¢enko, 2023).

2. Solving Real-World Problems: Educators learn to apply Python in mode-
ling and solving problems relevant to their academic disciplines, such as data vi-
sualization or automating research workflows (Grover, Pea, 2013; Hil¢enko, 2024).

3. Teaching Strategies: Training includes strategies for teaching computa-
tional thinking to university students, emphasizing interactive and student-
-centered approaches (Van Roy, 2009).

Module Structure:

1. Introductory Module: This module provides a foundational understanding
of Python syntax, variables, and data types. These basics prepare faculty for more
advanced topics and ensure all participants have a common starting point (Py-
thon.org., 2025).

116



2. Intermediate Module: Participants delve deeper into loops, conditionals,
and functions. These skills are vital for developing structured and efficient code,
which is critical for solving real-world problems (Code.org., 2025).

3. Advanced Module: Faculty work on real-world applications, such as au-
tomating repetitive tasks, analyzing datasets, and designing algorithms. This mo-
dule bridges theoretical learning with practical application, fostering confidence
in applying Python in diverse scenarios (Shute, Sun, Asbell-Clarke, 2017).

4. Pedagogical Module: This module equips educators with tools and strat-
egies to integrate computational thinking into their teaching. Techniques such as
project-based learning and flipped classrooms are explored to enhance student en-
gagement (Sengupta, Kinnebrew, Basu, Biswas, Clark, 2013).

Resources and Tools:

1. Python IDEs: Tools such as Jupyter Notebook and Thonny are introduced
for their user-friendly environments that support coding and visualization (Py-
thon.org., 2025).

2. Interactive Platforms: Platforms like Replit and Code.org provide oppor-
tunities for additional practice and collaboration, ensuring learning continues
beyond structured sessions (Code.org., 2025).

3. Educational Libraries: Python libraries like Turtle Graphics for visualiza-
tion and pandas for data analysis are integrated into the curriculum to demonstrate
practical use cases (Wilson, Guzdial, 2013).

Practical Exercises to Boost I'T Competence

Interactive Activities:

1. Programming Puzzles: These exercises are designed to reinforce founda-
tional concepts like loops and conditionals. They encourage hands-on problem
solving, helping participants bridge theory and practice (Grover, Pea, 2013).

2. Turtle Graphics Projects: Faculty use Python’s Turtle library to create visual
representations, such as geometric patterns. These activities foster creativity and
logical reasoning, showcasing the versatility of Python in visual problem-solving
(Wilson, Guzdial, 2013).

3. Data Manipulation Tasks: Using the pandas library, participants learn to
clean and analyze simple datasets. These tasks provide a gateway to advanced data
science concepts while remaining accessible to beginners (Resnick et al., 2009).

Collaborative Learning:

1. Pair Programming: Participants work in pairs to write and debug code,
which promotes peer learning and fosters collaboration. This approach mirrors
real-world programming practices and enhances problem-solving skills (Van Roy,

117



2009). Additionally, research highlights the importance of choosing beginner-
-friendly programming languages, such as Python, to ensure an inclusive and
accessible learning experience. Python's simple syntax and wide applicability
make it particularly effective for engaging educators in collaborative tasks
(Viduka, Kraguljac, Li¢ina, 2021).

2. Group Projects: Teams of educators collaborate on developing small ap-
plications or simulations, such as grading systems or classroom management
tools. These projects encourage interdisciplinary collaboration and practical ap-
plication of skills (Lye, Koh, 2014).

Real-World Applications:

1. Automation: Faculty are trained to write Python scripts that automate re-
petitive tasks like grading assignments or managing datasets. This streamlines ad-
ministrative workflows and demonstrates Python’s practical utility (Shute, Sun,
Asbell-Clarke, 2021). Additionally, the integration of Python with Raspberry Pi
has proven particularly effective in small-scale production environments, enabling
the automation of tasks such as product counting and packaging. Such applications
highlight Python’s capacity to combine affordability with powerful industrial so-
lutions, as demonstrated in a case study of Raspberry Pi and Python optimizing
workflows in manufacturing plants (Lic¢ina, Viduka, Ili¢, 2021).

2. Classroom Simulations: Python is used to model educational scenarios,
such as simulating statistical experiments or visualizing complex mathematical
concepts. These applications enhance teaching efficacy by making abstract con-
cepts more tangible (Sengupta et al., 2013).

Case Studies of Successful Python Integration

Table 1 summarizes the key findings from three case studies that explore the
integration of Python into professional development for higher education faculty.
Each case study highlights different contexts and activities, showcasing the diver-
sity and effectiveness of Python-based training programs:

Table 1. Three case studies that explore the integration of Python into professional
development for higher education faculty

Case Study Participants Key Activities Qutcomes

Professional Python scripting, ad- 30% improvement in technical profi-
Development 50 faculty ministrative automa- ciency; increased confidence in peda-
Workshops tion, Turtle Graphics gogy

Online lessons, live 20% increase in computational thinking
Blended Lear- . . . .

. 100 faculty coding sessions, pro- integration; enhanced student engage-

ning Approach . .

ject design ment
Community- Workshops, collabora- | 40% increase in interdisciplinary collab-
Driven Python 30 faculty tive projects, oration; repository of teaching materials
Learning Circles knowledge sharing

118



Case Study 1: Professional Development Workshops

A university conducted a series of workshops to introduce faculty members
to Python and computational thinking. Each session combined theoretical discus-
sions with practical activities, such as creating scripts to automate administrative
workflows and developing visualizations using Turtle Graphics. Participants re-
ported increased confidence in their ability to incorporate Python into teaching
and research. Additionally, faculty who participated in the workshops reported
a 30% improvement in their technical proficiency, enabling them to implement
innovative teaching methods in their courses (Wilson, Guzdial, 2013).

These workshops emphasized hands-on learning, with participants engaging
in activities such as scripting and administrative task automation using Python.
The result was a significant improvement in technical skills and increased con-
fidence among faculty in integrating computational thinking into their teaching.

Case Study 2: Blended Learning Approach in Teacher Training

An online professional development program was launched to train higher
education faculty in computational thinking. The course featured asynchronous
video lessons on Python fundamentals and live coding sessions for real-time prob-
lem-solving. Faculty were tasked with designing Python-based projects relevant
to their disciplines, such as data visualization tools or interactive simulations.
Post-course evaluations highlighted a marked improvement in participants’ con-
fidence and student engagement. Furthermore, educators reported a 20% increase
in the integration of computational thinking activities into their curricula (Van
Roy, 2009).

This approach combined asynchronous and synchronous learning to deliver
Python training. Participants developed discipline-specific projects, such as data
visualization tools, resulting in a marked increase in both student engagement and
the adoption of computational thinking methodologies in classrooms.

Case Study 3: Community-Driven Python Learning Circles

In a peer-driven initiative, faculty members from diverse disciplines formed
local learning circles to explore Python’s applications in education. Monthly
workshops included topics such as automating data collection, creating visual aids
for lectures, and teaching computational concepts in non-technical fields. These
meetings fostered a collaborative learning environment, allowing participants to
share resources and best practices. Outcomes included the development of
a shared repository of Python-based teaching materials, a 40% increase in inter-
disciplinary collaboration, and sustained engagement through quarterly hacka-
thons (Resnick et al., 2009).

119



Faculty from various disciplines collaborated in local learning circles, sharing
resources and developing Python-based teaching tools. This peer-driven initiative
fostered interdisciplinary collaboration and the creation of a shared repository of
educational materials.

Conclusion and recommendations

Python-based computational thinking modules provide an effective frame-
work for enhancing IT competencies among higher education faculty. These pro-
grams equip educators with the skills needed to address modern educational chal-
lenges, fostering a generation of computationally literate students. By empowering
educators with computational thinking skills, institutions can encourage innovation,
critical thinking, and problem-solving in academic environments.

To ensure the success of such programs, institutions should:

1. Provide ongoing support through mentoring and resources to help faculty
continuously refine their computational thinking skills.

2. Encourage collaboration among educators through communities of prac-
tice, promoting the sharing of knowledge, resources, and innovative teaching
strategies.

3. Regularly update curriculum content to reflect technological advance-
ments, ensuring that faculty stay ahead of emerging trends and applications.

4. Develop assessment metrics to evaluate the impact of computational
thinking programs on teaching efficacy and student engagement.

5. Offer incentives for faculty participation in professional development pro-
grams, recognizing the importance of these efforts in advancing institutional
goals.

6. Foster partnerships with industry and research organizations to create
real-world applications and case studies for training modules.

The integration of artificial intelligence (Al) into Python programming intro-
duces transformative opportunities for both educators and students. Al-powered
tools and frameworks, such as TensorFlow and Scikit-learn, allow educators
to explore machine learning concepts and their applications in problem-
-solving and data analysis. These advancements enable higher education faculty
to incorporate cutting-edge Al techniques into their curricula, preparing students
for careers in emerging technological fields. Furthermore, Al applications in edu-
cation, including personalized learning platforms and intelligent tutoring systems,
can be developed using Python, demonstrating its potential as a tool for innovation
in pedagogy. By implementing these recommendations and embracing Al ad-
vancements, higher education institutions can establish a culture of continuous
learning and technological adaptability. This proactive approach ensures that both
educators and students are well-prepared for the demands of a rapidly evolving
digital landscape.

120



References

Code.org (n.d.). Professional Learning for Educators. Retrieved from: https://code.org (14.04.2025).

Grover, S., Pea, R. (2013). Computational Thinking in K—12: A Review of the State of the Field.
Educational Researcher, 42(1), 38—43.

Research Review, 22, 142—158.

Hil¢enko, S., Nikoli¢, S. (2023). CHILD: “I don’t understand — we didn’t learn that in kindergarten!”
Journal of Education, Technology and Computer Science, 4(34), 41-48.

Hil¢enko, S., Nikoli¢, S. (2024). I'm a retiree my brain after the age of 60. Journal of Education,
Technology and Computer Science, 5(35), 127-131.

Lic¢ina, B., Viduka, D., Ili¢, L. (2020). Application of Raspberry Pi Hardware and Python Program-
ming Language in Small Production Plants. Quaestus Multidisciplinary Research Journal, 19,
305-317.

Lye, S.Y., Koh, J.H.L. (2014). Review on Teaching and Learning of Computational Thinking
Through Programming: What is Next for K-12? Computers in Human Behavior, 41, 51-61.

Python.org (n.d.). Python for Education. Retrieved from: https://www.python.org (17. 02. 2025).

Resnick, M., Maloney, J., Monroy-Hernandez, A. et al. (2009). Scratch: Programming for All. Com-
munications of the ACM, 52(11), 60—67.

Sengupta, P., Kinnebrew, J.S., Basu, S., Biswas, G., Clark, D. (2013). Integrating Computational
Thinking with K-12 Science Education Using Agent-Based Computation. Education and
Information Technologies, 18(2), 351-380.

Shute, V.J., Sun, C., Asbell-Clarke, J. (2017). Demystifying Computational Thinking. Educational

Van Roy, P. (2009). Programming Paradigms for Dummies: What Every Programmer Should
Know. New Computational Paradigms for Computer Science.

Viduka, D., Kraguljac, V., Li¢ina, B. (2020). A Comparative Analysis of the Benefits of Python and
Java for Beginners. Quaestus Multidisciplinary Research Journal, 19, 318-327.

Wilson, C., Guzdial, M. (2010). How to Make Progress in Computing Education. Communications
of the ACM, 53(5), 35-39.

Wing, J.M. (2006). Computational Thinking. Communications of the ACM, 49(3), 33-35.


https://code.org/

