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Abstract 

The article presents a detailed analysis of the computing capabilities of the GPU (Graphics 

Processing Unit) using NVIDIA Compute Unified Device Architecture (NVIDIA CUDA) compared 

to traditional sequential computing methods. For this purpose, an application implementing the 

Gaussian blur algorithm was developed. Then, an implementation of the problem was created in the 

form of a program. The next step presented the methodology of conducting a study comparing the 

efficiency of solving the problem with several test configurations. Then, research was carried out 

during which the data obtained in the form of program implementation times were collected. This 

paper aims to evaluate the computational capabilities of the GPU using NVIDIA CUDA compared 

to traditional sequential computing methods. The comparison was made through a developed appli-

cation that implements the Gaussian fuzzy algorithm. The article can serve as a valuable educational 

resource for teaching parallel programming and algorithm optimization using GPU and CUDA tech-

nologies. The conducted analysis also provides a strong example of an educational project that com-

bines algorithm theory with practical application in the context of improving computational perfor-

mance. 
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Introduction 

Central Processing Units (CPUs) are the foundation of computers designed 

for general computing tasks, having a broad instruction set. This allows CPUs to 

handle a wide variety of computing tasks. Early CPUs had only one core respon-

sible for executing arithmetic instructions (Kirk, Hwu 2009). A single-core pro-

cessor can perform calculations sequentially, meaning that each instruction must 
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be executed in turn. The core cannot move on to execute the next instruction be-

fore the current instruction has finished. Despite the fact that they are less ad-

vanced than modern multi-core counterparts, single-core processors are still ef-

fective at efficiently managing lightweight, unparalleled tasks (Andersch et al, 

2002; Bakyo, 2003). Among other things, they offer a simpler memory hierarchy, 

which makes their design cost lower compared to multicore processors. Further-

more, software designed specifically for single-threaded environments typically 

shows higher performance on single-threaded applications due to limited context 

switching and minimal interference from other competing processes. 

As technology has advanced, processor manufacturers have begun to add 

multiple cores to a single processor, giving rise to multi-core processors. Modern 

consumer desktops typically feature quad-core or six-core configurations, while 

high-end servers and HPC platforms have dozens of cores per socket. Multi-core 

processors allow multiple threads to run simultaneously, leading to increased per-

formance for parallel workloads (Polsson, 2012). 

The advent of multi-core processors has brought more opportunities to im-

prove system-level performance with parallel processing techniques such as sym-

metric multi-core processing (SMP), asymmetric multi-core processing (AMP), 

and NUMA architectures. SMP involves evenly distributing computational tasks 

between identical cores that have equal access rights to memory and I/O resources. 

AMP, on the other hand, assigns unique functions to individual cores, creating 

dedicated channels for specific activities (e.g., video encoding and decoding, net-

work traffic management). NUMA architectures involve grouping cores around 

localised memory banks, minimising latency associated with memory requests 

(Gwizdała, 2016; Intel’s First Microprocessor). 

Optimising multi-core processor computing requires consideration of key 

elements such as cache hierarchy and shared resource allocation strategy. Ensuring 

that tasks are appropriately allocated between available cores ensures optimal 

resource utilisation and alleviates potential bottlenecks resulting from insufficient 

memory or I/O device bandwidth. GPUs were originally designed to process 

images and video on screens, but were not as efficient as CPUs in terms of pro-

cessing power. Nevertheless, they were more efficient at certain tasks due to their 

parallel processing architecture, which allowed multiple allocated tasks to be pro-

cessed simultaneously. This parallel processing capability of GPUs was used by 

developers to increase the performance of an entire computer or server. GPUs began 

to be used for more general computing tasks, which is now commonly referred to 

as GPU computing (Choquette, Lee, Krashinsky, Balan, Khailany, 2021). 

The article can serve as a valuable educational resource for teaching key con-

cepts in computer science, particularly within courses focused on computer archi-

tecture, operating systems, and parallel programming. It offers a clear introduction 

to the evolution of CPUs from single-core to multi-core processors, helping 
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students understand the motivations and benefits of parallel processing. Concepts 

such as SMP, AMP, and NUMA architectures can enrich discussions on system- 

-level optimization and task scheduling. The comparison between CPU and GPU 

architectures provides a foundation for exploring the differences between sequen-

tial and parallel computing, while the transition of GPUs into general-purpose 

computing devices introduces students to modern hardware acceleration. Espe-

cially noteworthy is the innovative perspective on GPU computing, with a focus 

on how NVIDIA’s parallel architecture has revolutionized data processing be-

yond traditional graphics tasks. By highlighting the repurposing of GPUs for 

general-purpose computation (GPGPU), the text demonstrates the originality of 

leveraging massively parallel architectures to achieve performance gains across 

various computing domains. The discussion on memory hierarchy and resource 

allocation strategies supports practical lessons in software engineering and system 

design. This material can be effectively used for both theoretical understanding 

and practical lab exercises, such as benchmarking different hardware configura-

tions. It encourages critical thinking about how technological advances influence 

software development and system performance. By presenting these topics cohe-

rently and innovatively, the text supports the development of a well-rounded under-

standing of modern computing systems, which is essential for future IT profes-

sionals. 

Building a sample CUDA program 

The CUDA example application presented shows an implementation of 

a simple program whose task is to perform the sum of two input matrices, A and 

B of size N x N, and write the result to matrix C. The primary function responsible 

for performing this operation is VecAdd, which is executed on the GPU as a ker-

nel using CUDA (Ghorpade, Parande, Kulkarni, Bawaskar; Dehal, Munjal, An-

sari, Kushwaha, 2018). 

Initially, memory allocation is done on both the host and the CUDA device to 

store the input matrices A and B, along with the resultant matrix C. Dynamic allo-

cation was invoked via malloc on the host side to reserve space for each matrix. 

Once memory is allocated, the input arrays are initialised on the host before being 

copied to device memory using cudaMalloc to allocate memory on the CUDA de-

vice and cudaMemcpy to transfer data between host and device memory. 

The main piece of code resides within the VecAdd kernel, prefixed with 

_global_, where each thread computes one element from the final matrix C by 

adding the corresponding elements of matrices A and B. Each thread is identified 

to compute a specific subset of indexes through the following expression, which 

defines the variable i: 

 

i = blockDim.x * blockIdx.x + threadIdx.x 
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Where blockDim.x indicates the number of threads per block, while block-

Idx.x represents the index of the current block in execution relative to all running 

blocks. Finally, ThreadIdx.x indicates the position of a thread inside its corre-

sponding block. The mapping presented here helps to distribute work evenly 

across multiple threads, ensuring efficient use of the computational resources 

available on the GPU. Before performing the operation, we check that the index 

i does not exceed the size of the matrices being computed. If everything is correct, 

the kernel continues. At the very end, after executing the GPU kernel with 

VecAdd<<blocksPerGrid, threadsPerBlock>>, the results stored in the C array 

must be moved back to the system RAM so that they become available to the CPU 

again. The cuda-Memcpy command is executed, where the data is now moved 

from the CUDA device to the host. Once completed, the allocated device memory 

is freed by calling cudaFree for all GPU-side variables. We also free the memory 

on the host using the built-in free() function, after which the application is termi-

nated (Fatica, 2008; Tullsen, Eggers, Levy, 1995). 

Gaussian blur 

The Gaussian function, also known as the Gaussian curve or bell curve, was 

developed by German mathematician Carl Friedrich Gauss in the early 19th cen-

tury. Gauss introduced the concept of a normal distribution, which is a continuous 

probability distribution characterised by a symmetrical bell-shaped graph. This 

distribution is often used to model real-world phenomena in which there is a ten-

dency towards a central value, with decreasing probability of extreme deviations 

from this value (Ibrahim, ElFarag,Kadry, 2021). 

The Gaussian blurring technique involves calculating a weighted average of 

the pixel intensities around each target pixel in the input image. These weights are 

determined according to their position along the Gaussian curve, meaning that 

more weight is given to pixels closer to the centre than those at the edges. As 

a result, the output image appears softer and less noisy compared to the input, 

making Gaussian blur a popular choice for postprocessing tasks such as noise re-

duction, edge smoothing, and antialiasing. The formula for the two-dimensional 

Gaussian blur function has the following form: 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2
 𝑒

−
𝑥2+𝑦2

2𝜎2  

Gaussian blurring is a widely used technique in various fields due to its effec-

tiveness in reducing high-frequency noise. Thus, the algorithm reduces the noise 

output, which is the reason for its variety of applications. One of these is data 

animation, where Gaussian blurring gets rid of elements that can be subjected to 

an identification process. For example, a blurred face, together with other covered 

data on an ID card, will make it significantly more difficult to trace a person. 
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Another application is the simulation of motion blur. Animations created with 

computer programmes require the closest possible reproduction of reality in order 

to accurately reproduce the situations occurring in it. Gaussian blur allows the 

simulation of motion blur, so that animators are able to convincingly reflect the 

movement of an object over time. 

Performance testing of sequential and parallel processing 

The performance test to be carried out was the application of a Gaussian blur 

to images. The Gaussian blur will be applied through an application that can run 

in CPU calculation mode and using CUDA technology. The application also 

measures the time during which the calculations will be performed. It allows 

a time comparison to be made between the two calculation methods. 

Measurements were made on a dataset of selected images with different reso-

lutions. These files have the following resolutions: 512 x 512, 1280 x 720, 1920 

x 1080, 2560 x 1440, 3840 x 2160, and 7680 x 4320, respectively (Figure 1). 

Several images with different dimensions were selected to see if there was an 

effect on the execution time of the programme from the number of pixels pro-

cessed. For each case, the test was performed 10 times, with their output value 

being their average. The data was automatically collected by an automation 

script, which at the end of the run saves the results in CSV format for analysis.  

The Gaussian blur overlay programme was run in a minimum system load 

situation to allow it to use as many system resources as possible to ensure con-

sistent and maximum performance. 

 

   

   

Figure 1. Images on which tests were conducted 

Implementation of the Gaussian blur algorithm 

The entire programme fits into approximately 420 lines of code, written  

in C++, specifically in the C++17 standard (https://gcc.gnu.org/onlinedocs/ 

gcc/Optimize-Options.html; https://en.cppreference.com/w/cpp/thread/thread; 

https://en.cppreference.com/w/cpp/chrono). The programme is divided into an 

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://en.cppreference.com/w/cpp/thread/thread
https://en.cppreference.com/w/cpp/chrono
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initialisation part, a computation part, and a finalisation part (Figure 2). It imple-

ments the Gaussian fuzzy algorithm in two ways: sequential computation and 

parallel computation. The supported image format is PNG only. 

 

 

Figure 2. Block diagram of the designed Gaussian blur application 

 

The first task of the program after it has started (the initialisation part) is to 

parse the arguments that determine its operation. The path to the input image is 

then checked for correctness. Once the programme has started, a timer is started 

to measure the length of the segment. The application allocates the appropriate 

amount of memory for storing the image data to RAM or in the memory of the 

graphics card, depending on the device performing the calculation. The next step 

is to allocate sub-tasks to the number of threads specified in the arguments to 

the program, and to call the function that will start the calculation. A subtask is 

a fragment of the whole task – applying a Gaussian blur. When the calculation 

is complete, we copy the results to the output variable and stop the timer. We 

then save the processed image with the superimposed Gaussian blur in the speci-

fied path, after which we write out the status of the timer, which will show us 

how long it took to complete the task. Finally, we release the reserved memory 

to avoid situations where the memory would not release automatically. At this 

point, the programme is terminated (https://docs.nvidia.com/cuda/cuda-c-pro-

gramming-guide/index.html; https://docs.nvidia.com/cuda/cuda-runtime-api/ 

index.html). 

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html
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Analysis of measurement results 

The first test carried out was to check the effect of the Gaussian blur radius 

on execution time. The comparison was done on a "Leaves" image with a resolu-

tion of 7680 x 4320 with different numbers of allocated CPU threads, and blur 

radii with the following values: r = 2, r = 4, r = 6, r = 8, and r = 10. The figure 

shows six distinctive trends, each allocated to one of the test cases. The X-axis 

shows the number of threads allocated to the task, from 1 thread to the maximum 

number of threads available on the processor – 12, while the Y-axis shows the 

Gaussian blur processing time in milliseconds. 

 

 

Figure 3. Gaussian blur processing time based on tested blur radius for a 7680 x 4320  

image using 12 CPU threads 

 

With a larger value of the Gaussian blur radius, the processing time of the 

programme increases. The reason for this phenomenon is the increase in the num-

ber of pixels required to determine the blur factor for a single point in a given 

region, which translates into a greater number of operations needed to be per-

formed. The second highlighted element is the correlation of processing time to 

the number of threads dedicated to the task. As the number of threads increases, the 

computation time decreases. The rationale for this relationship is the process of 

allocating subtasks to the processor. The programme allocates an equal number of 

pixels to be processed for each thread, so that the computational performance will 

increase with the number of allocated threads. Upon closer observation, it can be 

seen that there is an anomaly. When a computation is allocated to several threads 

greater than the number of physical CPU cores, the task execution time does not 

decrease. When a task is allocated to 7 threads, the process takes noticeably longer 

to execute than with 6 threads (Figure 3). 
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Another element investigated was the effect of the number of threads allo-

cated to apply Gaussian blur and image resolution, i.e., the number of pixels com-

puted, on processing time. 

Figure 4 shows six distinctive trends, analogous to the previous graph, each 

assigned to one of the test images. The X-axis shows the number of threads allo-

cated to the task, from 1 thread to 12, while the Y-axis represents the Gaussian 

blur processing time in milliseconds. Analysing the graph, we can see a relation-

ship. The resolution of the image has a proportional effect on the processing time 

of the Gaussian blur algorithm. The trend for the ‘Leaves’ image significantly di-

verges from the rest, where, for it, the time spent on calculation was 15.8 seconds at 

best. This is due to the fact that as the pixels required for processing increase, we 

will see the running time of the algorithm increase. 

 

 

Figure 4. Gaussian blur processing time based on image resolution and allocated  

thread count 

 

Figure 5 shows six different cases of CPU thread configuration and one GPU 

(CUDA) configuration, where each case has a trend. The X-axis represents the 

number of pixels of the processed image on a logarithmic scale, and the Y-axis 

represents the time taken by the programme to complete the task, also placed on 

a logarithmic scale. The logarithmic scale has been used for data clarity. CPU 

trends are tested in 1, 2, 4, 6, 8, and 12 thread situations, where CUDA was allo-

cated the maximum number of cores available – 4864. After examining the graph 

shown, it becomes clear that there is a direct proportional relationship between the 

number of pixels computed and processing time in each configuration tested. This 

relationship is somewhat less pronounced in the case of CUDA. 
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Figure 5. Gaussian blur processing time based on image resolution and allocated thread 

count on different devices 

 
Table 1. Collection of results from Gaussian blur application on CPU and CUDA device 

Pixel count 
Processing time for 

12 CPU threads [ms] 

Processing time for 

4864 CUDA threads [ms] 
% Difference 

262 144 163.46 91.88 77.91 

921 600 478.80 150.71 217.70 

2 073 600 1044.23 235.68 343.07 

3 686 400 1923.91 392.26 390.47 

8 294 400 3827.68 816.49 368.80 

33 177 600 15830.40 3161.32 400.75 

Optimization 

Optimisation methods were used in the development and compilation of the 

application. As a result, the programme is able to perform the task faster while 

maintaining the structure of the algorithm. Two methods were used that allowed 

a significant reduction in the execution time of the calculations. The first optimi-

zation method used is the so-called loop boring. This involves replicating the con-

tents of the for loop to create $N$ copies together with the original, thus reducing 

the number of iterations needed. The second optimization method used lies in the 

NVCC compiler (NVIDIA CUDA Compiler, NVCC). The compiler has a number 

of flags that optimise the programme at the compilation stage. One of these is the 

-O3 flag, which imposes more than 80 different optimisation methods. With this 

flag, the compiler improves the performance of the application at the expense of 

compile time and debuggability. However, this method has one disadvantage: The 

functioning of the application may be subtly altered. Taking this into account, 

the hashes of the resulting images were checked in both situations. It turned out 

that the hashes are identical, which means that the resulting images are identical. 
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The consistency of the programme’s performance is maintained, which means that 

this optimisation method can be applied to the rest of the tests performed. 

The test was performed with different numbers of allocated CPU threads on 

the ‘Leaves’ image, assuming a Gaussian blur radius of r = 8. The highest resolu-

tion image was chosen to make the possible discrepancy as large as possible. 

 
Table 2. Collection of results from Gaussian blur application on CPU  

with and without applying optimizations during compilation 

Pixel count Processing time without opti-

mizations [ms] 

Processing time with optimi-

zations [ms] 

% Difference 

262 144 917.75 163.46 461.45 

921 600 2897.84 478.80 505.22 

2 073 600 6663.05 1044.23 538.08 

3 686 400 10368.00 1923.91 438.90 

8 294 400 23891.70 3827.68 524.18 

33 177 600 97657.00 15830.40 516.89 

 

Figure 6 shows two situations: a program compiled with optimisations and 

without optimisations. By analysing the graph, we are able to conclude that the 

execution time of the program compiled with optimisations is significantly less 

than without optimisations, regardless of the number of pixels. The difference in 

performance is clear and significant. The processing time of the programme com-

piled with the aforementioned optimisations is faster by an average of 497%, and 

by 538% in the best case. The optimisations applied had a very positive effect on 

the execution speed. 

 

 

Figure 6. Performance comparison on the CPU without optimizations and with optimizations 

on an image with a resolution of 7680 x 4320 and a Gaussian blur radius of r = 8 
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Conclusion 

This paper analyses and compares the computational performance between 

central processing units (CPUs) and graphics processing units (GPUs) using 

NVIDIA Compute Unified Device Architecture (CUDA) technology. In this case, 

a Gaussian blur overlay operation was applied to the images. A wide range of 

resolutions, up to 8K (7680x4320), were used for the test to highlight the impact 

of task size on execution time. Optimisation strategies such as loop boring and the 

use of built-in optimisation methods in the NVCC compiler were applied.  

Analysis of the resulting data shows a significant speed-up in the execution 

of Gaussian fuzzing operations on the GPU compared to the CPU. Specifically, 

the performance difference ranged from 77% up to 400% advantage for the GPU, 

depending on the resolution of the image under test. The conclusions obtained 

from the practical part of the work indicate the performance potential of the GPU 

to accelerate complex tasks typically performed on traditional CPUs. 

Studies have confirmed the performance advantage of GPUs using CUDA 

technology over conventional CPU-based computing. More precisely, this ad-

vantage exists for several problems, such as the manipulation of large arrays and 

intensive numerical calculations. Further developments in the field of algorithms 

will make it possible to use them on the GPU, allowing an increase in computing 

power for more problems. 

The article serves as a highly effective educational resource for teaching 

modern computing concepts, particularly in the fields of parallel programming, 

high-performance computing, and system optimization. By comparing CPU and 

GPU performance through a practical implementation of the Gaussian blur algo-

rithm using NVIDIA CUDA technology, students gain hands-on experience in 

understanding the impact of data size, task distribution, and hardware architecture 

on computational efficiency. The use of high-resolution image processing, up to 

8K, allows learners to grasp scalability challenges and appreciate the performance 

potential of GPUs. Innovative techniques such as loop unrolling and NVCC com-

piler optimizations demonstrate real-world strategies for improving code execu-

tion, fostering critical skills in performance tuning. The originality of applying 

traditional algorithms to cutting-edge GPU architectures highlights how estab-

lished methods can evolve through hardware advancements. This educational ap-

proach not only deepens students’ understanding of architecture-level differences 

but also equips them with key competencies in parallel and heterogeneous pro-

gramming–skills that are increasingly essential in AI, data science, and modern 

software engineering. Moreover, analyzing real performance data enhances stu-

dents’ analytical thinking and problem-solving abilities, while exposing them to 

the innovations of GPU computing and the transformative role of NVIDIA tech-

nologies in accelerating complex computations. 
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