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Abstract

The article presents a detailed analysis of the computing capabilities of the GPU (Graphics
Processing Unit) using NVIDIA Compute Unified Device Architecture (NVIDIA CUDA) compared
to traditional sequential computing methods. For this purpose, an application implementing the
Gaussian blur algorithm was developed. Then, an implementation of the problem was created in the
form of a program. The next step presented the methodology of conducting a study comparing the
efficiency of solving the problem with several test configurations. Then, research was carried out
during which the data obtained in the form of program implementation times were collected. This
paper aims to evaluate the computational capabilities of the GPU using NVIDIA CUDA compared
to traditional sequential computing methods. The comparison was made through a developed appli-
cation that implements the Gaussian fuzzy algorithm. The article can serve as a valuable educational
resource for teaching parallel programming and algorithm optimization using GPU and CUDA tech-
nologies. The conducted analysis also provides a strong example of an educational project that com-
bines algorithm theory with practical application in the context of improving computational perfor-
mance.
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Introduction

Central Processing Units (CPUs) are the foundation of computers designed
for general computing tasks, having a broad instruction set. This allows CPUs to
handle a wide variety of computing tasks. Early CPUs had only one core respon-
sible for executing arithmetic instructions (Kirk, Hwu 2009). A single-core pro-
cessor can perform calculations sequentially, meaning that each instruction must
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be executed in turn. The core cannot move on to execute the next instruction be-
fore the current instruction has finished. Despite the fact that they are less ad-
vanced than modern multi-core counterparts, single-core processors are still ef-
fective at efficiently managing lightweight, unparalleled tasks (Andersch et al,
2002; Bakyo, 2003). Among other things, they offer a simpler memory hierarchy,
which makes their design cost lower compared to multicore processors. Further-
more, software designed specifically for single-threaded environments typically
shows higher performance on single-threaded applications due to limited context
switching and minimal interference from other competing processes.

As technology has advanced, processor manufacturers have begun to add
multiple cores to a single processor, giving rise to multi-core processors. Modern
consumer desktops typically feature quad-core or six-core configurations, while
high-end servers and HPC platforms have dozens of cores per socket. Multi-core
processors allow multiple threads to run simultaneously, leading to increased per-
formance for parallel workloads (Polsson, 2012).

The advent of multi-core processors has brought more opportunities to im-
prove system-level performance with parallel processing techniques such as sym-
metric multi-core processing (SMP), asymmetric multi-core processing (AMP),
and NUMA architectures. SMP involves evenly distributing computational tasks
between identical cores that have equal access rights to memory and I/O resources.
AMP, on the other hand, assigns unique functions to individual cores, creating
dedicated channels for specific activities (e.g., video encoding and decoding, net-
work traffic management). NUMA architectures involve grouping cores around
localised memory banks, minimising latency associated with memory requests
(Gwizdata, 2016; Intel’s First Microprocessor).

Optimising multi-core processor computing requires consideration of key
elements such as cache hierarchy and shared resource allocation strategy. Ensuring
that tasks are appropriately allocated between available cores ensures optimal
resource utilisation and alleviates potential bottlenecks resulting from insufficient
memory or I/O device bandwidth. GPUs were originally designed to process
images and video on screens, but were not as efficient as CPUs in terms of pro-
cessing power. Nevertheless, they were more efficient at certain tasks due to their
parallel processing architecture, which allowed multiple allocated tasks to be pro-
cessed simultaneously. This parallel processing capability of GPUs was used by
developers to increase the performance of an entire computer or server. GPUs began
to be used for more general computing tasks, which is now commonly referred to
as GPU computing (Choquette, Lee, Krashinsky, Balan, Khailany, 2021).

The article can serve as a valuable educational resource for teaching key con-
cepts in computer science, particularly within courses focused on computer archi-
tecture, operating systems, and parallel programming. It offers a clear introduction
to the evolution of CPUs from single-core to multi-core processors, helping
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students understand the motivations and benefits of parallel processing. Concepts
such as SMP, AMP, and NUMA architectures can enrich discussions on system-
-level optimization and task scheduling. The comparison between CPU and GPU
architectures provides a foundation for exploring the differences between sequen-
tial and parallel computing, while the transition of GPUs into general-purpose
computing devices introduces students to modern hardware acceleration. Espe-
cially noteworthy is the innovative perspective on GPU computing, with a focus
on how NVIDIA’s parallel architecture has revolutionized data processing be-
yond traditional graphics tasks. By highlighting the repurposing of GPUs for
general-purpose computation (GPGPU), the text demonstrates the originality of
leveraging massively parallel architectures to achieve performance gains across
various computing domains. The discussion on memory hierarchy and resource
allocation strategies supports practical lessons in software engineering and system
design. This material can be effectively used for both theoretical understanding
and practical lab exercises, such as benchmarking different hardware configura-
tions. It encourages critical thinking about how technological advances influence
software development and system performance. By presenting these topics cohe-
rently and innovatively, the text supports the development of a well-rounded under-
standing of modern computing systems, which is essential for future IT profes-
sionals.

Building a sample CUDA program

The CUDA example application presented shows an implementation of
a simple program whose task is to perform the sum of two input matrices, A and
B of size N x N, and write the result to matrix C. The primary function responsible
for performing this operation is VecAdd, which is executed on the GPU as a ker-
nel using CUDA (Ghorpade, Parande, Kulkarni, Bawaskar; Dehal, Munjal, An-
sari, Kushwaha, 2018).

Initially, memory allocation is done on both the host and the CUDA device to
store the input matrices A and B, along with the resultant matrix C. Dynamic allo-
cation was invoked via malloc on the host side to reserve space for each matrix.
Once memory is allocated, the input arrays are initialised on the host before being
copied to device memory using cudaMalloc to allocate memory on the CUDA de-
vice and cudaMemcpy to transfer data between host and device memory.

The main piece of code resides within the VecAdd kernel, prefixed with
_global , where each thread computes one element from the final matrix C by
adding the corresponding elements of matrices A and B. Each thread is identified
to compute a specific subset of indexes through the following expression, which
defines the variable i:

| i = blockDim.x * blockIdx.x + threadIdx.x |
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Where blockDim.x indicates the number of threads per block, while block-
Idx.x represents the index of the current block in execution relative to all running
blocks. Finally, Threadldx.x indicates the position of a thread inside its corre-
sponding block. The mapping presented here helps to distribute work evenly
across multiple threads, ensuring efficient use of the computational resources
available on the GPU. Before performing the operation, we check that the index
i does not exceed the size of the matrices being computed. If everything is correct,
the kernel continues. At the very end, after executing the GPU kernel with
VecAdd<<blocksPerGrid, threadsPerBlock>>, the results stored in the C array
must be moved back to the system RAM so that they become available to the CPU
again. The cuda-Memcpy command is executed, where the data is now moved
from the CUDA device to the host. Once completed, the allocated device memory
is freed by calling cudaFree for all GPU-side variables. We also free the memory
on the host using the built-in free() function, after which the application is termi-
nated (Fatica, 2008; Tullsen, Eggers, Levy, 1995).

Gaussian blur

The Gaussian function, also known as the Gaussian curve or bell curve, was
developed by German mathematician Carl Friedrich Gauss in the early 19th cen-
tury. Gauss introduced the concept of a normal distribution, which is a continuous
probability distribution characterised by a symmetrical bell-shaped graph. This
distribution is often used to model real-world phenomena in which there is a ten-
dency towards a central value, with decreasing probability of extreme deviations
from this value (Ibrahim, ElFarag,Kadry, 2021).

The Gaussian blurring technique involves calculating a weighted average of
the pixel intensities around each target pixel in the input image. These weights are
determined according to their position along the Gaussian curve, meaning that
more weight is given to pixels closer to the centre than those at the edges. As
aresult, the output image appears softer and less noisy compared to the input,
making Gaussian blur a popular choice for postprocessing tasks such as noise re-
duction, edge smoothing, and antialiasing. The formula for the two-dimensional
Gaussian blur function has the following form:

_x2+y?
e 20?2

Gooy) = 2mo?

Gaussian blurring is a widely used technique in various fields due to its effec-
tiveness in reducing high-frequency noise. Thus, the algorithm reduces the noise
output, which is the reason for its variety of applications. One of these is data
animation, where Gaussian blurring gets rid of elements that can be subjected to
an identification process. For example, a blurred face, together with other covered
data on an ID card, will make it significantly more difficult to trace a person.
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Another application is the simulation of motion blur. Animations created with
computer programmes require the closest possible reproduction of reality in order
to accurately reproduce the situations occurring in it. Gaussian blur allows the
simulation of motion blur, so that animators are able to convincingly reflect the
movement of an object over time.

Performance testing of sequential and parallel processing

The performance test to be carried out was the application of a Gaussian blur
to images. The Gaussian blur will be applied through an application that can run
in CPU calculation mode and using CUDA technology. The application also
measures the time during which the calculations will be performed. It allows
a time comparison to be made between the two calculation methods.

Measurements were made on a dataset of selected images with different reso-
lutions. These files have the following resolutions: 512 x 512, 1280 x 720, 1920
x 1080, 2560 x 1440, 3840 x 2160, and 7680 x 4320, respectively (Figure 1).
Several images with different dimensions were selected to see if there was an
effect on the execution time of the programme from the number of pixels pro-
cessed. For each case, the test was performed 10 times, with their output value
being their average. The data was automatically collected by an automation
script, which at the end of the run saves the results in CSV format for analysis.

The Gaussian blur overlay programme was run in a minimum system load
situation to allow it to use as many system resources as possible to ensure con-
sistent and maximum performance.

Figure 1. Images on which tests were conducted

Implementation of the Gaussian blur algorithm
The entire programme fits into approximately 420 lines of code, written
in C++, specifically in the C++17 standard (https://gcc.gnu.org/onlinedocs/
gcc/Optimize-Options.html; https://en.cppreference.com/w/cpp/thread/thread;
https://en.cppreference.com/w/cpp/chrono). The programme is divided into an

190


https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://en.cppreference.com/w/cpp/thread/thread
https://en.cppreference.com/w/cpp/chrono

initialisation part, a computation part, and a finalisation part (Figure 2). It imple-
ments the Gaussian fuzzy algorithm in two ways: sequential computation and
parallel computation. The supported image format is PNG only.

Application Save result image
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Argument parsing A memory for Allocate memory for
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Figure 2. Block diagram of the designed Gaussian blur application

The first task of the program after it has started (the initialisation part) is to
parse the arguments that determine its operation. The path to the input image is
then checked for correctness. Once the programme has started, a timer is started
to measure the length of the segment. The application allocates the appropriate
amount of memory for storing the image data to RAM or in the memory of the
graphics card, depending on the device performing the calculation. The next step
is to allocate sub-tasks to the number of threads specified in the arguments to
the program, and to call the function that will start the calculation. A subtask is
a fragment of the whole task — applying a Gaussian blur. When the calculation
is complete, we copy the results to the output variable and stop the timer. We
then save the processed image with the superimposed Gaussian blur in the speci-
fied path, after which we write out the status of the timer, which will show us
how long it took to complete the task. Finally, we release the reserved memory
to avoid situations where the memory would not release automatically. At this
point, the programme is terminated (https://docs.nvidia.com/cuda/cuda-c-pro-
gramming-guide/index.html; https://docs.nvidia.com/cuda/cuda-runtime-api/
index.html).
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Analysis of measurement results

The first test carried out was to check the effect of the Gaussian blur radius
on execution time. The comparison was done on a "Leaves" image with a resolu-
tion of 7680 x 4320 with different numbers of allocated CPU threads, and blur
radii with the following values: r =2, r=4,r=6, r =8, and r = 10. The figure
shows six distinctive trends, each allocated to one of the test cases. The X-axis
shows the number of threads allocated to the task, from 1 thread to the maximum
number of threads available on the processor — 12, while the Y-axis shows the
Gaussian blur processing time in milliseconds.
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Figure 3. Gaussian blur processing time based on tested blur radius for a 7680 x 4320
image using 12 CPU threads

With a larger value of the Gaussian blur radius, the processing time of the
programme increases. The reason for this phenomenon is the increase in the num-
ber of pixels required to determine the blur factor for a single point in a given
region, which translates into a greater number of operations needed to be per-
formed. The second highlighted element is the correlation of processing time to
the number of threads dedicated to the task. As the number of threads increases, the
computation time decreases. The rationale for this relationship is the process of
allocating subtasks to the processor. The programme allocates an equal number of
pixels to be processed for each thread, so that the computational performance will
increase with the number of allocated threads. Upon closer observation, it can be
seen that there is an anomaly. When a computation is allocated to several threads
greater than the number of physical CPU cores, the task execution time does not
decrease. When a task is allocated to 7 threads, the process takes noticeably longer
to execute than with 6 threads (Figure 3).
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Another element investigated was the effect of the number of threads allo-
cated to apply Gaussian blur and image resolution, i.e., the number of pixels com-
puted, on processing time.

Figure 4 shows six distinctive trends, analogous to the previous graph, each
assigned to one of the test images. The X-axis shows the number of threads allo-
cated to the task, from 1 thread to 12, while the Y-axis represents the Gaussian
blur processing time in milliseconds. Analysing the graph, we can see a relation-
ship. The resolution of the image has a proportional effect on the processing time
of the Gaussian blur algorithm. The trend for the ‘Leaves’ image significantly di-
verges from the rest, where, for it, the time spent on calculation was 15.8 seconds at
best. This is due to the fact that as the pixels required for processing increase, we
will see the running time of the algorithm increase.
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Figure 4. Gaussian blur processing time based on image resolution and allocated
thread count

Figure 5 shows six different cases of CPU thread configuration and one GPU
(CUDA) configuration, where each case has a trend. The X-axis represents the
number of pixels of the processed image on a logarithmic scale, and the Y-axis
represents the time taken by the programme to complete the task, also placed on
a logarithmic scale. The logarithmic scale has been used for data clarity. CPU
trends are tested in 1, 2, 4, 6, 8, and 12 thread situations, where CUDA was allo-
cated the maximum number of cores available — 4864. After examining the graph
shown, it becomes clear that there is a direct proportional relationship between the
number of pixels computed and processing time in each configuration tested. This
relationship is somewhat less pronounced in the case of CUDA.
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Figure 5. Gaussian blur processing time based on image resolution and allocated thread
count on different devices

Table 1. Collection of results from Gaussian blur application on CPU and CUDA device

. Processing time for Processing time for .
Pixel count 12 CPU th%eads [ms] 4864 CUDA %hreads [ms] % Difference
262 144 163.46 91.88 77.91
921 600 478.80 150.71 217.70
2 073 600 1044.23 235.68 343.07
3 686 400 1923.91 392.26 390.47
8294 400 3827.68 816.49 368.80
33177 600 15830.40 3161.32 400.75
Optimization

Optimisation methods were used in the development and compilation of the
application. As a result, the programme is able to perform the task faster while
maintaining the structure of the algorithm. Two methods were used that allowed
a significant reduction in the execution time of the calculations. The first optimi-
zation method used is the so-called loop boring. This involves replicating the con-
tents of the for loop to create $N$ copies together with the original, thus reducing
the number of iterations needed. The second optimization method used lies in the
NVCC compiler (NVIDIA CUDA Compiler, NVCC). The compiler has a number
of flags that optimise the programme at the compilation stage. One of these is the
-O3 flag, which imposes more than 80 different optimisation methods. With this
flag, the compiler improves the performance of the application at the expense of
compile time and debuggability. However, this method has one disadvantage: The
functioning of the application may be subtly altered. Taking this into account,
the hashes of the resulting images were checked in both situations. It turned out
that the hashes are identical, which means that the resulting images are identical.
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The consistency of the programme’s performance is maintained, which means that
this optimisation method can be applied to the rest of the tests performed.

The test was performed with different numbers of allocated CPU threads on
the ‘Leaves’ image, assuming a Gaussian blur radius of r = 8. The highest resolu-
tion image was chosen to make the possible discrepancy as large as possible.

Table 2. Collection of results from Gaussian blur application on CPU
with and without applying optimizations during compilation

Pixel count Processing time without opti- | Processing time with optimi- | % Difference
mizations [ms] zations [ms]
262 144 917.75 163.46 461.45
921 600 2897.84 478.80 505.22
2 073 600 6663.05 1044.23 538.08
3 686 400 10368.00 192391 438.90
8294 400 23891.70 3827.68 524.18
33177 600 97657.00 15830.40 516.89

Figure 6 shows two situations: a program compiled with optimisations and
without optimisations. By analysing the graph, we are able to conclude that the
execution time of the program compiled with optimisations is significantly less
than without optimisations, regardless of the number of pixels. The difference in
performance is clear and significant. The processing time of the programme com-
piled with the aforementioned optimisations is faster by an average of 497%, and
by 538% in the best case. The optimisations applied had a very positive effect on
the execution speed.
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Figure 6. Performance comparison on the CPU without optimizations and with optimizations
on an image with a resolution of 7680 x 4320 and a Gaussian blur radius of r =8
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Conclusion

This paper analyses and compares the computational performance between
central processing units (CPUs) and graphics processing units (GPUs) using
NVIDIA Compute Unified Device Architecture (CUDA) technology. In this case,
a Gaussian blur overlay operation was applied to the images. A wide range of
resolutions, up to 8K (7680x4320), were used for the test to highlight the impact
of task size on execution time. Optimisation strategies such as loop boring and the
use of built-in optimisation methods in the NVCC compiler were applied.

Analysis of the resulting data shows a significant speed-up in the execution
of Gaussian fuzzing operations on the GPU compared to the CPU. Specifically,
the performance difference ranged from 77% up to 400% advantage for the GPU,
depending on the resolution of the image under test. The conclusions obtained
from the practical part of the work indicate the performance potential of the GPU
to accelerate complex tasks typically performed on traditional CPUs.

Studies have confirmed the performance advantage of GPUs using CUDA
technology over conventional CPU-based computing. More precisely, this ad-
vantage exists for several problems, such as the manipulation of large arrays and
intensive numerical calculations. Further developments in the field of algorithms
will make it possible to use them on the GPU, allowing an increase in computing
power for more problems.

The article serves as a highly effective educational resource for teaching
modern computing concepts, particularly in the fields of parallel programming,
high-performance computing, and system optimization. By comparing CPU and
GPU performance through a practical implementation of the Gaussian blur algo-
rithm using NVIDIA CUDA technology, students gain hands-on experience in
understanding the impact of data size, task distribution, and hardware architecture
on computational efficiency. The use of high-resolution image processing, up to
8K, allows learners to grasp scalability challenges and appreciate the performance
potential of GPUs. Innovative techniques such as loop unrolling and NVCC com-
piler optimizations demonstrate real-world strategies for improving code execu-
tion, fostering critical skills in performance tuning. The originality of applying
traditional algorithms to cutting-edge GPU architectures highlights how estab-
lished methods can evolve through hardware advancements. This educational ap-
proach not only deepens students’ understanding of architecture-level differences
but also equips them with key competencies in parallel and heterogeneous pro-
gramming—skills that are increasingly essential in Al, data science, and modern
software engineering. Moreover, analyzing real performance data enhances stu-
dents’ analytical thinking and problem-solving abilities, while exposing them to
the innovations of GPU computing and the transformative role of NVIDIA tech-
nologies in accelerating complex computations.
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