
186

© Rzeszów University Press

ISSN 2719-6550

e-ISSN 2719-7417

“Journal of Education, Technology and Computer Science”

No. 6(36)/2025

 https://journals.ur.edu.pl/jetacomps

Received: 3.08.2025 DOI: 10.15584/jetacomps.2025.6.17

Accepted for printing: 24.11.2025 Scientific

Published: 31.12.2025

License: CC BY-NC-ND 4.0

PAWEŁ DYMORA 1, MIROSŁAW MAZUREK 2

General Computing Using CUDA Technology

on NVIDIA GPU

1 ORCID: 0000-0002-4473-823X, PhD Eng., University of Technology, Faculty of Electrical and

Computer Engineering, Poland; email: Pawel.Dymora@prz.edu.pl
2 ORCID: 0000-0002-4366-1701, PhD Eng., University of Technology, Faculty of Electrical and

Computer Engineering, Poland; email: mirekmaz@prz.edu.pl

Abstract

The article presents a detailed analysis of the computing capabilities of the GPU (Graphics

Processing Unit) using NVIDIA Compute Unified Device Architecture (NVIDIA CUDA) compared

to traditional sequential computing methods. For this purpose, an application implementing the

Gaussian blur algorithm was developed. Then, an implementation of the problem was created in the

form of a program. The next step presented the methodology of conducting a study comparing the

efficiency of solving the problem with several test configurations. Then, research was carried out

during which the data obtained in the form of program implementation times were collected. This

paper aims to evaluate the computational capabilities of the GPU using NVIDIA CUDA compared

to traditional sequential computing methods. The comparison was made through a developed appli-

cation that implements the Gaussian fuzzy algorithm. The article can serve as a valuable educational

resource for teaching parallel programming and algorithm optimization using GPU and CUDA tech-

nologies. The conducted analysis also provides a strong example of an educational project that com-

bines algorithm theory with practical application in the context of improving computational perfor-

mance.

Keywords: CUDA, NVIDIA, GPU, Technology, Gaussian Blur, Parallel Compute

Introduction

Central Processing Units (CPUs) are the foundation of computers designed

for general computing tasks, having a broad instruction set. This allows CPUs to

handle a wide variety of computing tasks. Early CPUs had only one core respon-

sible for executing arithmetic instructions (Kirk, Hwu 2009). A single-core pro-

cessor can perform calculations sequentially, meaning that each instruction must

http://dx.doi.org/10.15584/jetacomps.2025.6.17
https://orcid.org/0000-0002-4473-823X
https://orcid.org/0000-0002-4366-1701

187

be executed in turn. The core cannot move on to execute the next instruction be-

fore the current instruction has finished. Despite the fact that they are less ad-

vanced than modern multi-core counterparts, single-core processors are still ef-

fective at efficiently managing lightweight, unparalleled tasks (Andersch et al,

2002; Bakyo, 2003). Among other things, they offer a simpler memory hierarchy,

which makes their design cost lower compared to multicore processors. Further-

more, software designed specifically for single-threaded environments typically

shows higher performance on single-threaded applications due to limited context

switching and minimal interference from other competing processes.

As technology has advanced, processor manufacturers have begun to add

multiple cores to a single processor, giving rise to multi-core processors. Modern

consumer desktops typically feature quad-core or six-core configurations, while

high-end servers and HPC platforms have dozens of cores per socket. Multi-core

processors allow multiple threads to run simultaneously, leading to increased per-

formance for parallel workloads (Polsson, 2012).

The advent of multi-core processors has brought more opportunities to im-

prove system-level performance with parallel processing techniques such as sym-

metric multi-core processing (SMP), asymmetric multi-core processing (AMP),

and NUMA architectures. SMP involves evenly distributing computational tasks

between identical cores that have equal access rights to memory and I/O resources.

AMP, on the other hand, assigns unique functions to individual cores, creating

dedicated channels for specific activities (e.g., video encoding and decoding, net-

work traffic management). NUMA architectures involve grouping cores around

localised memory banks, minimising latency associated with memory requests

(Gwizdała, 2016; Intel’s First Microprocessor).

Optimising multi-core processor computing requires consideration of key

elements such as cache hierarchy and shared resource allocation strategy. Ensuring

that tasks are appropriately allocated between available cores ensures optimal

resource utilisation and alleviates potential bottlenecks resulting from insufficient

memory or I/O device bandwidth. GPUs were originally designed to process

images and video on screens, but were not as efficient as CPUs in terms of pro-

cessing power. Nevertheless, they were more efficient at certain tasks due to their

parallel processing architecture, which allowed multiple allocated tasks to be pro-

cessed simultaneously. This parallel processing capability of GPUs was used by

developers to increase the performance of an entire computer or server. GPUs began

to be used for more general computing tasks, which is now commonly referred to

as GPU computing (Choquette, Lee, Krashinsky, Balan, Khailany, 2021).

The article can serve as a valuable educational resource for teaching key con-

cepts in computer science, particularly within courses focused on computer archi-

tecture, operating systems, and parallel programming. It offers a clear introduction

to the evolution of CPUs from single-core to multi-core processors, helping

188

students understand the motivations and benefits of parallel processing. Concepts

such as SMP, AMP, and NUMA architectures can enrich discussions on system-

-level optimization and task scheduling. The comparison between CPU and GPU

architectures provides a foundation for exploring the differences between sequen-

tial and parallel computing, while the transition of GPUs into general-purpose

computing devices introduces students to modern hardware acceleration. Espe-

cially noteworthy is the innovative perspective on GPU computing, with a focus

on how NVIDIA’s parallel architecture has revolutionized data processing be-

yond traditional graphics tasks. By highlighting the repurposing of GPUs for

general-purpose computation (GPGPU), the text demonstrates the originality of

leveraging massively parallel architectures to achieve performance gains across

various computing domains. The discussion on memory hierarchy and resource

allocation strategies supports practical lessons in software engineering and system

design. This material can be effectively used for both theoretical understanding

and practical lab exercises, such as benchmarking different hardware configura-

tions. It encourages critical thinking about how technological advances influence

software development and system performance. By presenting these topics cohe-

rently and innovatively, the text supports the development of a well-rounded under-

standing of modern computing systems, which is essential for future IT profes-

sionals.

Building a sample CUDA program

The CUDA example application presented shows an implementation of

a simple program whose task is to perform the sum of two input matrices, A and

B of size N x N, and write the result to matrix C. The primary function responsible

for performing this operation is VecAdd, which is executed on the GPU as a ker-

nel using CUDA (Ghorpade, Parande, Kulkarni, Bawaskar; Dehal, Munjal, An-

sari, Kushwaha, 2018).

Initially, memory allocation is done on both the host and the CUDA device to

store the input matrices A and B, along with the resultant matrix C. Dynamic allo-

cation was invoked via malloc on the host side to reserve space for each matrix.

Once memory is allocated, the input arrays are initialised on the host before being

copied to device memory using cudaMalloc to allocate memory on the CUDA de-

vice and cudaMemcpy to transfer data between host and device memory.

The main piece of code resides within the VecAdd kernel, prefixed with

global, where each thread computes one element from the final matrix C by

adding the corresponding elements of matrices A and B. Each thread is identified

to compute a specific subset of indexes through the following expression, which

defines the variable i:

i = blockDim.x * blockIdx.x + threadIdx.x

189

Where blockDim.x indicates the number of threads per block, while block-

Idx.x represents the index of the current block in execution relative to all running

blocks. Finally, ThreadIdx.x indicates the position of a thread inside its corre-

sponding block. The mapping presented here helps to distribute work evenly

across multiple threads, ensuring efficient use of the computational resources

available on the GPU. Before performing the operation, we check that the index

i does not exceed the size of the matrices being computed. If everything is correct,

the kernel continues. At the very end, after executing the GPU kernel with

VecAdd<<blocksPerGrid, threadsPerBlock>>, the results stored in the C array

must be moved back to the system RAM so that they become available to the CPU

again. The cuda-Memcpy command is executed, where the data is now moved

from the CUDA device to the host. Once completed, the allocated device memory

is freed by calling cudaFree for all GPU-side variables. We also free the memory

on the host using the built-in free() function, after which the application is termi-

nated (Fatica, 2008; Tullsen, Eggers, Levy, 1995).

Gaussian blur

The Gaussian function, also known as the Gaussian curve or bell curve, was

developed by German mathematician Carl Friedrich Gauss in the early 19th cen-

tury. Gauss introduced the concept of a normal distribution, which is a continuous

probability distribution characterised by a symmetrical bell-shaped graph. This

distribution is often used to model real-world phenomena in which there is a ten-

dency towards a central value, with decreasing probability of extreme deviations

from this value (Ibrahim, ElFarag,Kadry, 2021).

The Gaussian blurring technique involves calculating a weighted average of

the pixel intensities around each target pixel in the input image. These weights are

determined according to their position along the Gaussian curve, meaning that

more weight is given to pixels closer to the centre than those at the edges. As

a result, the output image appears softer and less noisy compared to the input,

making Gaussian blur a popular choice for postprocessing tasks such as noise re-

duction, edge smoothing, and antialiasing. The formula for the two-dimensional

Gaussian blur function has the following form:

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2
 𝑒

−
𝑥2+𝑦2

2𝜎2

Gaussian blurring is a widely used technique in various fields due to its effec-

tiveness in reducing high-frequency noise. Thus, the algorithm reduces the noise

output, which is the reason for its variety of applications. One of these is data

animation, where Gaussian blurring gets rid of elements that can be subjected to

an identification process. For example, a blurred face, together with other covered

data on an ID card, will make it significantly more difficult to trace a person.

190

Another application is the simulation of motion blur. Animations created with

computer programmes require the closest possible reproduction of reality in order

to accurately reproduce the situations occurring in it. Gaussian blur allows the

simulation of motion blur, so that animators are able to convincingly reflect the

movement of an object over time.

Performance testing of sequential and parallel processing

The performance test to be carried out was the application of a Gaussian blur

to images. The Gaussian blur will be applied through an application that can run

in CPU calculation mode and using CUDA technology. The application also

measures the time during which the calculations will be performed. It allows

a time comparison to be made between the two calculation methods.

Measurements were made on a dataset of selected images with different reso-

lutions. These files have the following resolutions: 512 x 512, 1280 x 720, 1920

x 1080, 2560 x 1440, 3840 x 2160, and 7680 x 4320, respectively (Figure 1).

Several images with different dimensions were selected to see if there was an

effect on the execution time of the programme from the number of pixels pro-

cessed. For each case, the test was performed 10 times, with their output value

being their average. The data was automatically collected by an automation

script, which at the end of the run saves the results in CSV format for analysis.

The Gaussian blur overlay programme was run in a minimum system load

situation to allow it to use as many system resources as possible to ensure con-

sistent and maximum performance.

Figure 1. Images on which tests were conducted

Implementation of the Gaussian blur algorithm

The entire programme fits into approximately 420 lines of code, written

in C++, specifically in the C++17 standard (https://gcc.gnu.org/onlinedocs/

gcc/Optimize-Options.html; https://en.cppreference.com/w/cpp/thread/thread;

https://en.cppreference.com/w/cpp/chrono). The programme is divided into an

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://en.cppreference.com/w/cpp/thread/thread
https://en.cppreference.com/w/cpp/chrono

191

initialisation part, a computation part, and a finalisation part (Figure 2). It imple-

ments the Gaussian fuzzy algorithm in two ways: sequential computation and

parallel computation. The supported image format is PNG only.

Figure 2. Block diagram of the designed Gaussian blur application

The first task of the program after it has started (the initialisation part) is to

parse the arguments that determine its operation. The path to the input image is

then checked for correctness. Once the programme has started, a timer is started

to measure the length of the segment. The application allocates the appropriate

amount of memory for storing the image data to RAM or in the memory of the

graphics card, depending on the device performing the calculation. The next step

is to allocate sub-tasks to the number of threads specified in the arguments to

the program, and to call the function that will start the calculation. A subtask is

a fragment of the whole task – applying a Gaussian blur. When the calculation

is complete, we copy the results to the output variable and stop the timer. We

then save the processed image with the superimposed Gaussian blur in the speci-

fied path, after which we write out the status of the timer, which will show us

how long it took to complete the task. Finally, we release the reserved memory

to avoid situations where the memory would not release automatically. At this

point, the programme is terminated (https://docs.nvidia.com/cuda/cuda-c-pro-

gramming-guide/index.html; https://docs.nvidia.com/cuda/cuda-runtime-api/

index.html).

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html

192

Analysis of measurement results

The first test carried out was to check the effect of the Gaussian blur radius

on execution time. The comparison was done on a "Leaves" image with a resolu-

tion of 7680 x 4320 with different numbers of allocated CPU threads, and blur

radii with the following values: r = 2, r = 4, r = 6, r = 8, and r = 10. The figure

shows six distinctive trends, each allocated to one of the test cases. The X-axis

shows the number of threads allocated to the task, from 1 thread to the maximum

number of threads available on the processor – 12, while the Y-axis shows the

Gaussian blur processing time in milliseconds.

Figure 3. Gaussian blur processing time based on tested blur radius for a 7680 x 4320

image using 12 CPU threads

With a larger value of the Gaussian blur radius, the processing time of the

programme increases. The reason for this phenomenon is the increase in the num-

ber of pixels required to determine the blur factor for a single point in a given

region, which translates into a greater number of operations needed to be per-

formed. The second highlighted element is the correlation of processing time to

the number of threads dedicated to the task. As the number of threads increases, the

computation time decreases. The rationale for this relationship is the process of

allocating subtasks to the processor. The programme allocates an equal number of

pixels to be processed for each thread, so that the computational performance will

increase with the number of allocated threads. Upon closer observation, it can be

seen that there is an anomaly. When a computation is allocated to several threads

greater than the number of physical CPU cores, the task execution time does not

decrease. When a task is allocated to 7 threads, the process takes noticeably longer

to execute than with 6 threads (Figure 3).

193

Another element investigated was the effect of the number of threads allo-

cated to apply Gaussian blur and image resolution, i.e., the number of pixels com-

puted, on processing time.

Figure 4 shows six distinctive trends, analogous to the previous graph, each

assigned to one of the test images. The X-axis shows the number of threads allo-

cated to the task, from 1 thread to 12, while the Y-axis represents the Gaussian

blur processing time in milliseconds. Analysing the graph, we can see a relation-

ship. The resolution of the image has a proportional effect on the processing time

of the Gaussian blur algorithm. The trend for the ‘Leaves’ image significantly di-

verges from the rest, where, for it, the time spent on calculation was 15.8 seconds at

best. This is due to the fact that as the pixels required for processing increase, we

will see the running time of the algorithm increase.

Figure 4. Gaussian blur processing time based on image resolution and allocated

thread count

Figure 5 shows six different cases of CPU thread configuration and one GPU

(CUDA) configuration, where each case has a trend. The X-axis represents the

number of pixels of the processed image on a logarithmic scale, and the Y-axis

represents the time taken by the programme to complete the task, also placed on

a logarithmic scale. The logarithmic scale has been used for data clarity. CPU

trends are tested in 1, 2, 4, 6, 8, and 12 thread situations, where CUDA was allo-

cated the maximum number of cores available – 4864. After examining the graph

shown, it becomes clear that there is a direct proportional relationship between the

number of pixels computed and processing time in each configuration tested. This

relationship is somewhat less pronounced in the case of CUDA.

194

Figure 5. Gaussian blur processing time based on image resolution and allocated thread

count on different devices

Table 1. Collection of results from Gaussian blur application on CPU and CUDA device

Pixel count
Processing time for

12 CPU threads [ms]

Processing time for

4864 CUDA threads [ms]
% Difference

262 144 163.46 91.88 77.91

921 600 478.80 150.71 217.70

2 073 600 1044.23 235.68 343.07

3 686 400 1923.91 392.26 390.47

8 294 400 3827.68 816.49 368.80

33 177 600 15830.40 3161.32 400.75

Optimization

Optimisation methods were used in the development and compilation of the

application. As a result, the programme is able to perform the task faster while

maintaining the structure of the algorithm. Two methods were used that allowed

a significant reduction in the execution time of the calculations. The first optimi-

zation method used is the so-called loop boring. This involves replicating the con-

tents of the for loop to create N copies together with the original, thus reducing

the number of iterations needed. The second optimization method used lies in the

NVCC compiler (NVIDIA CUDA Compiler, NVCC). The compiler has a number

of flags that optimise the programme at the compilation stage. One of these is the

-O3 flag, which imposes more than 80 different optimisation methods. With this

flag, the compiler improves the performance of the application at the expense of

compile time and debuggability. However, this method has one disadvantage: The

functioning of the application may be subtly altered. Taking this into account,

the hashes of the resulting images were checked in both situations. It turned out

that the hashes are identical, which means that the resulting images are identical.

195

The consistency of the programme’s performance is maintained, which means that

this optimisation method can be applied to the rest of the tests performed.

The test was performed with different numbers of allocated CPU threads on

the ‘Leaves’ image, assuming a Gaussian blur radius of r = 8. The highest resolu-

tion image was chosen to make the possible discrepancy as large as possible.

Table 2. Collection of results from Gaussian blur application on CPU

with and without applying optimizations during compilation

Pixel count Processing time without opti-

mizations [ms]

Processing time with optimi-

zations [ms]

% Difference

262 144 917.75 163.46 461.45

921 600 2897.84 478.80 505.22

2 073 600 6663.05 1044.23 538.08

3 686 400 10368.00 1923.91 438.90

8 294 400 23891.70 3827.68 524.18

33 177 600 97657.00 15830.40 516.89

Figure 6 shows two situations: a program compiled with optimisations and

without optimisations. By analysing the graph, we are able to conclude that the

execution time of the program compiled with optimisations is significantly less

than without optimisations, regardless of the number of pixels. The difference in

performance is clear and significant. The processing time of the programme com-

piled with the aforementioned optimisations is faster by an average of 497%, and

by 538% in the best case. The optimisations applied had a very positive effect on

the execution speed.

Figure 6. Performance comparison on the CPU without optimizations and with optimizations

on an image with a resolution of 7680 x 4320 and a Gaussian blur radius of r = 8

196

Conclusion

This paper analyses and compares the computational performance between

central processing units (CPUs) and graphics processing units (GPUs) using

NVIDIA Compute Unified Device Architecture (CUDA) technology. In this case,

a Gaussian blur overlay operation was applied to the images. A wide range of

resolutions, up to 8K (7680x4320), were used for the test to highlight the impact

of task size on execution time. Optimisation strategies such as loop boring and the

use of built-in optimisation methods in the NVCC compiler were applied.

Analysis of the resulting data shows a significant speed-up in the execution

of Gaussian fuzzing operations on the GPU compared to the CPU. Specifically,

the performance difference ranged from 77% up to 400% advantage for the GPU,

depending on the resolution of the image under test. The conclusions obtained

from the practical part of the work indicate the performance potential of the GPU

to accelerate complex tasks typically performed on traditional CPUs.

Studies have confirmed the performance advantage of GPUs using CUDA

technology over conventional CPU-based computing. More precisely, this ad-

vantage exists for several problems, such as the manipulation of large arrays and

intensive numerical calculations. Further developments in the field of algorithms

will make it possible to use them on the GPU, allowing an increase in computing

power for more problems.

The article serves as a highly effective educational resource for teaching

modern computing concepts, particularly in the fields of parallel programming,

high-performance computing, and system optimization. By comparing CPU and

GPU performance through a practical implementation of the Gaussian blur algo-

rithm using NVIDIA CUDA technology, students gain hands-on experience in

understanding the impact of data size, task distribution, and hardware architecture

on computational efficiency. The use of high-resolution image processing, up to

8K, allows learners to grasp scalability challenges and appreciate the performance

potential of GPUs. Innovative techniques such as loop unrolling and NVCC com-

piler optimizations demonstrate real-world strategies for improving code execu-

tion, fostering critical skills in performance tuning. The originality of applying

traditional algorithms to cutting-edge GPU architectures highlights how estab-

lished methods can evolve through hardware advancements. This educational ap-

proach not only deepens students’ understanding of architecture-level differences

but also equips them with key competencies in parallel and heterogeneous pro-

gramming–skills that are increasingly essential in AI, data science, and modern

software engineering. Moreover, analyzing real performance data enhances stu-

dents’ analytical thinking and problem-solving abilities, while exposing them to

the innovations of GPU computing and the transformative role of NVIDIA tech-

nologies in accelerating complex computations.

197

Acknowledgments

We are grateful to Michał Kluz, a graduate student at Rzeszów University of Tech-

nology, for supporting us in collecting useful information.

References
Andersch, M., Palmer, G., Krashinsky, R., Stam, N., Mehta, V., Brito, G., Ramaswamy, S. (2022).

NVIDIA Hopper Architecture In-Depth. Retrieved from: https://developer.nvidia.com/blog/

nvidia-hopper-architecture-in-depth (1.07.2025).

Bakyo, J. (2003). Great Microprocessors of the Past and Present. Retrieved from: https://web.ar-

chive.org/web/20120415121639/http://jbayko.sasktelwebsite.net/cpu.html (1.07.2025).

Choquette, J., Lee, E., Krashinsky, R., Balan, V., Khailany, B. (2021). 3.2 The A100 Datacenter

GPU and Ampere Architecture. IEEE International Solid-State Circuits Conference (ISSCC).

2021. DOI: 10.1109/ISSCC42613.2021.9365803.

Dehal, R.S., Munjal, C., Ansari, A.A., Kushwaha, A.S. (2018). GPU Computing Revolution: CUDA.

2018 International Conference on Advances in Computing, Communication Control and Net-

working (ICACCCN), Greater Noida, India. DOI: 10.1109/ICACCCN.2018. 8748495.

Fatica, M. (2008). CUDA toolkit and libraries. 2008 IEEE Hot Chips 20 Symposium (HCS), Stan-

ford, CA, USA. DOI: 1109/HOTCHIPS.2008.7476520.

Ghorpade, J., Parande, J., Kulkarni, M., Bawaskar, A. GPGPU Processing in CUDA Architecture.

arXiv:1202.434.

Gwizdała, P. (2016). Generations of the computer processors. Retrieved from: https://www.slide-

share.net/ArshadQureshi5/generation-of-computer-processors-52195241 (8.07.2025).

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html (11.07.2025).

https://docs.nvidia.com/cuda/cuda-runtime-api/index.html (11.07.2025).

https://en.cppreference.com/w/cpp/chrono (11.07.2025).

https://en.cppreference.com/w/cpp/thread/thread (11.07.2025).

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html (11.07.2025).

Ibrahim, N.M., ElFarag, A.A., Kadry, R. (2021). Gaussian Blur through Parallel Computing. Pro-

ceedings of the International Conference on Image Processing and Vision Engineering IM-

PROVE, 1, 175–179. DOI: 10.5220/0010513301750179.

Intel’s First Microprocessor. Retrieved from: https://www.intel.com/content/www/us/en/history/

museum-story-of-intel-4004.html (11.07.2025).

Kirk, D., Hwu, W. (2009). A Simple Example, Tools, and CUDA Threads. Retrieved from: online:

https://nanohub.org/resources/7234/download/lecture3_cuda_threads_tools_examples.pdf

(8.07.2025).

Polsson, K. (2012). Chronology of Personal Computers. Retrieved from: https://web.archive.org/

web/20120415044730/http://www.islandnet.com/%7Ekpolsson/comphist/ (8.07.2025).

Tullsen, D.M., Eggers, S.J., Levy, H.M. (1995). Simultaneous multithreading: Maximizing on-chip

parallelism. Proceedings 22nd Annual International Symposium on Computer Architecture

(pp. 392–403). Santa Margherita Ligure, Italy.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/thread/thread
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://www.intel.com/content/www/us/en/history/museum-story-of-intel-4004.html
https://www.intel.com/content/www/us/en/history/museum-story-of-intel-4004.html
https://nanohub.org/resources/7234/download/lecture3_cuda_threads_tools_examples.pdf

