© Rzeszow University Press “Journal of Education, Technology and Computer Science”

ISSN 2719-6550 No. 6(36)/2025

e-ISSN 2719-7417 https://journals.ur.edu.pl/jetacomps
Received: 3.08.2025 DOI: 10.15584/jetacomps.2025.6.16
Accepted for printing: 24.11.2025 Scientific

Published: 31.12.2025
License: CC BY-NC-ND 4.0

PAWEL DYMORA""'!, MIROSEAW MAZUREK""?

Performance Evaluation of Selected Containerization Methods
in Web Services Applications

1 ORCID: 0000-0002-4473-823X, Ph.D. Eng., University of Technology, Faculty of Electrical and
Computer Engineering, Poland; email: pawel.dymora@prz.edu.p

2 ORCID: 0000-0002-4366-1701, Ph.D. Eng., University of Technology, Faculty of Electrical and
Computer Engineering, Poland; email: mirekmaz@prz.edu.pl

Abstract

This paper evaluates the performance of selected containerization methods. As part of the re-
search, infrastructure was created using Google Cloud public cloud, and then load tests were con-
ducted for each containerization method using Apache JMeter. The study has shown that choosing
the right containerization method depends on the service to be implemented. It was demonstrated
that the highest performance was achieved by combining Podman with Docker. An example imple-
mentation and performance of Kubernetes technology, together with Docker and autoscaling using
Google Cloud, was demonstrated. The project demonstrates high educational value by combining
theory with practice through cloud-based infrastructure testing using Google Cloud and Apache
JMeter. It helps learners understand container behavior under load, resource usage, and orchestration
techniques. Additionally, the study emphasizes critical decision-making in selecting appropriate
technologies based on specific service requirements. It serves as a practical teaching tool for IT and
computer science education, offering insights into real-world DevOps workflows, scalability strate-
gies, and performance optimization.

Keywords: Kubernetes, Docker, Podman, Google Cloud, Apache JMeter

Introduction

Nowadays, web services play a key role in the operation and dynamic growth
of many organizations, from small start-ups to multinational corporations. With
each passing day, the role of IT infrastructure continues to grow in ensuring the
scalability, reliability, and performance of the services in question. Before the ad-
vent of containerization, virtualization dominated the market as the main technology
enabling efficient management of IT resources. Virtualization allowed the creation
of multiple virtual machines (VMs) on a single physical server, which significantly

173

http://dx.doi.org/10.15584/jetacomps.2025.6.16
https://orcid.org/0000-0002-4473-823X
https://orcid.org/0000-0002-4366-1701

increased the efficiency of using available resources. Each VM ran in an isolated
environment, which provided security and the ability to run different operating sys-
tems on the same hardware. This technology revolutionized the way companies
managed their data centers, enabling server consolidation, reducing operating costs,
and increasing flexibility in IT infrastructure management.

This work has significant educational value as it introduces students and pro-
fessionals to the practical application of containerization technologies in modern
IT infrastructures. By comparing Docker, Podman, LXC, and Kata Containers
through real-world performance testing in a cloud-based environment, the project
provides a hands-on framework for understanding key concepts such as resource
allocation, container orchestration, and load balancing. The detailed deployment
process using Google Cloud, the use of Apache JMeter for testing, and the com-
parative analysis of metrics allow learners to gain insights into how different con-
tainer engines behave under various workloads. This experiential learning ap-
proach deepens theoretical understanding and equips learners with essential skills
needed in cloud computing, DevOps, and systems engineering.

From a didactic perspective, the study also highlights critical thinking in
selecting the right technology for a given use case, emphasizing that there is no
one-size-fits-all solution in containerization. The evaluation encourages learners
to assess trade-offs between performance, security, scalability, and usability.
Furthermore, the integration of tools like Kubernetes and CI/CD pipelines intro-
duces students to industry-standard practices, helping bridge the gap between
academic knowledge and real-world implementation. As a teaching aid, the project
can be used in advanced IT and computer science courses to demonstrate infrastruc-
ture planning, container deployment strategies, and performance benchmarking in
a controlled, replicable environment.

Containerization

However, over time, containerization has started to gain popularity, offering
even greater efficiency and flexibility. Containerization has made it possible to
isolate applications so that only the elements necessary for a service to function
properly are stored in containers. What is more, if you send a person from your
team a ready-made container image, for example, one is 100 percent sure that the
person will have an identical environment once it is up and running, which makes
teamwork much easier. Containerization, due to its lightness, reliability, simpli-
city, and speed, quickly found a huge number of followers and instantly conquered
the market. Hosting one's applications on servers or virtual machines was quickly
replaced by containerization, which now dominates the production environments
of most companies, combined with tools for orchestrating them, such as Kuber-
netes or Docker Swarm (Fava et al., 2024).

Containerization offers lower resource consumption, faster application start-up,
and better scalability compared to traditional virtual machines, making it the

174

preferred solution in modern IT infrastructures. Virtualization has been central to
the development of IT, enabling efficient management of resources through vir-
tual machines. However, containerization has introduced a breakthrough, offering
application isolation, lightness, reliability, and speed. With tools such as Kuber-
netes, containerization has replaced traditional servers and virtual machines, provi-
ding better scalability and performance in modern IT infrastructures.

Virtualization involves creating a virtual computer environment that is oppo-
site to the physical environment. This allows organizations to divide the resources
of a host machine into several different, separate, completely virtual, isolated ma-
chines. These machines can interact independently and embed different operating
systems and applications. Type one virtualization, also known as bare metal vir-
tualization, involves the installation of virtualization software directly on a phys-
ical server that acts as a virtualization host. No or minimal host operating system
is required, and the virtualization layer runs directly on the hardware. Type two
virtualization, also known as hosted virtualization, involves installing virtualiza-
tion software on an existing operating system (host) that is already running on
a physical server. The virtualization software runs as an application on this opera-
ting system (Zordevic, Timcenko, Lazic, Davidovic, 2022). Examples of such solu-
tions are VMware Workstation (for Windows and Linux), Oracle VirtualBox, and
Parallels Desktop (for macOS) (https://azure.microsoft.com/pl-pl/resources/cloud-
-computing-dictionary/what-is-virtualization; https://kubernetes.io/blog/2020/12/
08/kubernetes-1-20-release-announcement/).

Containerization is a technology that has conquered the IT market in a very
short time. A container is a defined environment that contains everything needed
to run an application, including code, execution environment, libraries, tools, and
system configuration, which ultimately results in the lightness and speed of run-
ning such a container. Containers are isolated from each other and from the host
on which they are run, which allows the application to run consistently and inde-
pendently of the surrounding environment, however, if necessary, it is also possi-
ble to create a special network, which is created inside the host machine and in
which it is possible to create individual working environments and ensure com-
munication between individual units. Another very important aspect is that con-
tainerization enables developers and system administrators to easily deploy, run,
and manage applications in different environments, which contributes to faster
software delivery, improved infrastructure performance and flexibility, and in-
creased application security. Containerization also enables easier deployment of
microservices-based architectures and the use of continuous integration and de-
livery (CI/CD) techniques (Fava et al., 2024; Zeng, Wang, Deng, Zhan, 2017,
https://cloud.google.com/logging/docs/agent/ops-agent).

There are several different container engines in the IT market, each with its
own unique features and advantages. Until recently, the dominant position was

175

held by Docker Runtime, which was widely popular among organizations.
However, in recent years, Kubernetes, as one of the leading container management
platforms, has expressed a preference for containerd as the standard runtime for
containers. While this announcement has not made containerd the only choice, it
has certainly increased its popularity in the Kubernetes ecosystem. In addition to
Docker Runtime and containerd, there are other container engines on the market,
such as Podman, CRI-O, Linux Containers (LXC), and Kata Containers. Each of
these engines has its place and use, depending on the users' needs and preferences.
It is also worth noting that Docker currently uses containerd as its default runtime
for containers.

Docker was initially a private project, continuously developed by a company
located in South Africa, specifically by Solomon Hykes and Sebastien Pahl. The
first Docker container was launched in 2011 before being released to the public in
2013. Since Docker was made public, it has become increasingly popular. It is an
open platform for creating, delivering, and running applications. With this con-
tainerization technology, one can isolate applications from the infrastructure so
that we can quickly deliver new versions of a given software. Docker uses a client-
-server architecture, which means that the Docker client communicates directly
with the Docker daemon, which takes care of building, running, and distributing
containers. The client and daemon can run on a single system, or it is possible to
connect the Docker client to a remote daemon. The Docker client and daemon
communicate using the REST API, UNIX sockets or the web interface. Another
Docker client is Docker Compose, which directly enables working with applica-
tions that include multiple containers (Fava et al., 2024; Zeng et al., 2017;
https://www.docker.com/resources/what-container/; https://www.geeksforgeeks.org/
architecture-of-docker/).

Podman, unlike other containerization methods, does not have daemons, i.e.
it does not require any continuously running processes in the background to
manage the container. Instead, it uses system calls, which are made directly via the
command line. With this rather non-standard solution, containers are run in the
context of the current user, which is beneficial for security and isolation. It was
created to facilitate the entire process of running, sharing, and deploying applica-
tions through containers and OCI (Open Container Initiative) container images. It
relies on an OCI-compliant container execution environment to connect to the op-
erating system and create running containers. It provides both a CLI command line
and applications along with a graphical user interface (Similar to Docker Desktop).
A very important point is that containers in a sub-master can be created and run
by both an administrator and a normal user (in Docker, by default, Docker com-
mands can be executed either from root or by assigning a user to a Docker group)
(Zordevic et al., 2022).

Its history is closely linked to the evolution of container technologies and the
need for more secure and flexible container management tools. It all started with

176

the development of Docker, which was introduced in 2013 and quickly revolu-
tionized the way applications are created, deployed, and managed through con-
tainerization. Docker became the standard for container management, but it ran
with a central daemon (dockerd), which raised some issues around security, sta-
bility, and permissions management. As production environments and the open-
source community began to recognize these limitations, there was a need for a tool
that could manage containers without a central daemon, offering greater security
and flexibility. Red Hat, a company actively developing open-source technolo-
gies, took on this task. Thus was born the Podman project, which was created as
part of a larger ecosystem of tools called libpod for managing containers without
a central daemon. The first versions of Kata Containers Kata Containers is a con-
tainer technology that combines the features of virtual machines and containers,
providing isolation and security at the virtual machine level while retaining the
lightness and flexibility of containers. It uses hypervisor-level virtualization to run
each container in an isolated, dedicated virtual machine. Creating such dedicated
container spaces provides a much higher level of security and isolation from the rest
of the system. It is Open Container Initiative (OCI) compliant, which enables inte-
gration with other existing tools such as Kubernetes, for example. It runs on both
Linux and Windows-based applications as well as various cloud environments
(Poojara et al., 2018; Gamess, Parajuli, 2024).

Kata Containers is a solution that is ideal for deployments requiring a high
level of security and isolation. Kata containers consist of several components that,
working together, ensure that containers run securely inside nested VMs. The first
component is the agent, which runs exactly inside the VM and is responsible for
communicating with the container running in that VM. It is also responsible for
container management, process start-up, network, and file system management.
The second component is the Runtime. Runtime manages the lifecycle of contain-
ers running in the VM. There is integration with popular container orchestrators
such as Docker Swarm and Kubernetes. The third component is the Hypervisor,
which provides the virtualization layer on which lightweight VMs are run. An-
other is Shim, which acts as an intermediary between the runtime and the agent in
the VM. It is responsible for passing signals and data between the processes run-
ning on the host machine and the agent in the VM. The last component is the
Proxy. It can be used to manage communication between multiple containers run-
ning in a single VM (Gamess, Parajuli, 2024; Randazzo, ITinnirello, 2019;
https://katacontainers.io/docs/; https://github.com/ kata-containers/kata-contain-
ers/blob/main/docs/Limitations.md).

LXC (Linux Containers) is a tool for creating and managing containers on
Linux systems that offers lightness and isolation similar to virtual machines but
with less resource overhead. Containers in LXC, thanks to the use of namespaces
and cgroups, are fully isolated from each other and the host system, ensuring se-
cure and stable operation. The namespaces mechanism isolates processes,

177

networks, the file system, and other resources, while cgroups control the consump-
tion of resources such as CPU, memory, and I/O. This allows users to run multiple
containers on a single host while retaining full control over the allocated resources.
LXC is often used as a core technology in cloud and virtualization environments,
enabling organizations to manage computing resources flexibly and efficiently.
Through its architecture, LXC enables developers, administrators, and organiza-
tions to run applications in isolated containers, helping to increase the security and
efficiency of software deployments (Poojara et al., 2018; https://kubernetes.io/
pl/docs/concepts/overview/; https://kubernetes.io/docs/concepts/architecture/).

Docker Swarm was originally introduced by Docker, Inc. in response to the
need to manage and orchestrate Docker containers in production environments.
The first versions were developed as part of the Docker Engine project, allowing
users to run and manage applications in containers on multiple nodes. As the
Docker ecosystem evolved, Docker Swarm became more popular, offering a tool
to scale and manage applications in an automated and efficient manner. Since
Docker Engine 1.12, Swarm Mode has been integrated directly into Docker En-
gine, simplifying the process of running and managing Swarm clusters. Docker
Swarm is popular among organizations that use Docker containers to deploy their
applications in cloud and on-premises environments. With its ease of use, integra-
tion with Docker tools, and ability to scalability, Docker Swarm remains an es-
sential tool in the container ecosystem, although competition in the container or-
chestration market has increased in recent years, with Kubernetes becoming the
dominant platform in the field (https://azure.microsoft.com/pl-pl/resources/cloud-
computing-dictionary/what-is-virtualization; https://www.docker.com/ resources/
what-container/; https://kubernetes.io/pl/docs/concepts/overview/).

Kubernetes is a flexible open-source platform that enables control and man-
agement of applications and services running in containers. It allows configuration
and automation of tasks in a declarative manner. Kubernetes is constantly evolving,
offering a wide range of services, support, and tools. It was patented, developed,
and made public by Google in 2014. Kubernetes supports application scaling,
failure handling, and various deployment strategies. For example, with Kubernetes,
it is easy to manage the roll-out of new software versions according to canary
deployments, rolling updates, or blue/green deployments. With the creation of
a cluster using the public cloud, one can very quickly create a workload ready for
traffic from all over the world. Kubernetes is currently the most widely used tool
for creating such environments and has a very good reputation. Kubernetes is
a complex platform consisting of many components that help orchestrate con-
tainers and allow flexible container management, i.e., for example, maintaining
a specific number of pods, or scaling them horizontally and vertically (https://ku-
bernetes.io/pl/docs/concepts/overview/; https://kubernetes.io/docs/ concepts/ar-
chitecture/).

178

Development of a test environment for examining individual containerization
methods

In order to deploy the application, the Google Cloud public cloud was used,
more specifically, the Compute Engine service. For this purpose, a Virtual Private
Cloud was created, i.e., a network in the space of a given project in the cloud, and
at the network level, a firewall was configured to allow the HTTP requests neces-
sary to test the performance of the application, which will be generated using
Apache JMeter. To carry out a meaningful experiment for the project, virtual ma-
chines with identical configurations (4 vCPUs and 16 GB of RAM) were created,
and a WordPress deployment with a MySQL database was carried out on them on
the various containerization methods. Each test using different containerization
methods will use the same infrastructure shown in Figure 1. Only the containeri-
zation engine will be changed, i.e., Docker, Podman, LXC, and Kata Containers,
respectively, for each test.

) Google Cloud Platform

¥

=== d =
% - | V]

Actor Firewall docker

Figure 1. Implementation diagram of the test infrastructure

v
T

The Compute Engine service's built-in monitoring was used to verify the be-
havior of a given containerization method at times of increased traffic. To access
more advanced metrics, an agent (Ops Agent) was additionally installed on the
VM, which was responsible for collecting and sending metrics to Google Cloud.
Google Cloud provides very good monitoring. In real-time, it shows a number of
graphs responsible for the individual resources of individual virtual machines,
such as, for example, CPU utilization level, RAM utilization, disk metrics, or net-
work utilization metrics. Some examples of [%] metrics for Docker are shown in
Figure 2 and Figure 3.

179

CPU Utilization @

50%
T T //\‘_J\ T 7 L] 0
UTC+2 9:50 AM 10:00 AM 10:10 AM 10:20 AM 10:30 AM
® CFU
Network Traffic @
10MiB/s
T T T T o
UTC+2 50 AM 10:00 AM 10:10 AM 10:20 AM 10:30 AM
® Received @ Sent
New Connections with VMs/External/Google @
s
.
u_ o

uTC+2 e50AM 10.00 AM 10:10 AM 10:20AM 10:30 AM

® External (or VMs Different Project) ® Google Services

Figure 2. CPU utilization [%] and network traffic metrics for Docker

Memory Utilization @

10%
/—-\/\-/—l 5%
—_—
T T T T 0
UTC+2 @50 AM 10:00 AM 10:10 AM 10:20 AM 10:30 AM
® Memory Utilization
Disk Space Utilization @
100%

P 0%

o
uTC+2 PSC‘AV 10 :I;]A\’ 10:10 AM |E2‘C AM 10 3(‘};’-?.'
® /dev/sdal m /dev/sdal5
Disk Throughput @
S0MiS/s
m A .
T r

T
UTC#2 ©:50 AM 10:00 AM 10:10 AM 10:20 AM 10:30 AM

® Read ® Write

Figure 3. Memory and disk space utilization [%], disk throughput metrics for Docker

180

Comparative analysis of selected containerization methods

Load tests were carried out to evaluate the methods described. A machine with
a 4vCPU and 16 GB RAM configuration was chosen. Any ‘larger’ machine would
have coped better with the traffic simulated in this project, but the configuration
most commonly used in real-world conditions was chosen. The simulations started
by assuming extremely low parameters. A duration of one second and a traffic
volume of 1,000 requests for 10 repetitions is unrealistic for infrastructures that base
their production environment on single VMs in such a configuration, and CPU con-
sumption values can reach almost 100%. In tests, the duration increases. The test
results for each containerisation type in turn are summarised in Table 1-4. The
results can be used as a reference for further simulations.

Table 1. Docker performance results

Number of requests Test duration [s] CPU usage [%] Memory usage [%]
100x 5 1 14.01 6.20
100 x 10 1 28.01 6.63
1000 x 5 1 63.14 9.58
1000 x 10 1 93.62 10.17
1000 x 10 5 95.29 11.27
1000 x 15 5 99.62 13.11

Table 2. Kata Containers performance results

Number of requests Test duration [s] CPU usage [%] Memory usage [%]
100x 5 1 21.52 23.12
100 x 10 1 25.62 25.62
1000 x 5 1 87.32 31.25
1000 x 10 1 98.14 30.52
1000 x 10 5 99.48 32.96
1000 x 15 5 99.99 34.67

Table 3. Podman performance results

Number of requests Test duration [s] CPU usage [%] Memory usage [%]
100x 5 1 12.05 3.95
100 x 10 1 27.95 4.07
1000 x 5 1 61.57 6.23
1000 x 10 1 91.61 7.38
1000 x 10 5 97.46 9.18
1000 x 15 5 99.38 11.59

Table 4. LXC performance results

Number of requests Test duration [s] CPU usage [%] Memory usage [%]
100 x 5 1 3.74 15

100 x 10 1 4.59 15.23

1000 x 5 1 78.77 20.2

1000 x 10 1 99.27 22.43

1000 x 10 5 99.99 26.49

1000 x 15 5 99.99 30.21

181

In the containerization methods used, significant differences can be seen be-
tween both container start-up and stopping speeds, server resource consumption,
and container security. Comparative results for performance tests of CPU con-
sumption and RAM consumption are shown in Figure 4 and Figure 5.

98,14 99,27 99,48 99,99 99,62 99,38
100 95,39

90
80

70
60
50

40 25,62
28,01 27,95

30

20

10 -

0 -

100x 5 100x 10 1000 x 5 1000 x 10 1000 x 10 1000 x 15

B Docker mKata containers = Podman = LXC

Figure 4. Performance test results for CPU consumption [%]

100
90

80

70

60

50

40 3125 32,96

30,52

100x 5 100x 10 1000 x 5 1000 x 10 1000 x 10 1000 x 15

M Docker M Kata containers ®Podman 1 LXC

Figure 5. Performance test results for RAM consumption [%]

182

Analysis of the performance tests showed that the containerization method
that used the fewest resources to handle the given amount of server load was Pod-
man, followed by Docker, LXC, and Kata. When it comes to the speed of starting
and stopping containers, Docker comes first, followed by Podman, LXC, and
Kata. It is worth noting that Kata used by far the most resources of the host ma-
chine and, with the increasing number of containers, could, despite its highest
level of security, prove to be a poor solution when it comes to, for example,
hosting a web service. LXC has a very high RAM load, but with fewer requests
per publicized service, it was by far the best performer in terms of CPU usage.
With more requests, the CPU usage increased significantly, which may mean that
LXC is not as well-optimized for high traffic (like Docker or Podman). It may
find use, for example, in internal organizational services. The big disadvantage of
LXC is that it is not possible to use ready-made images from the public Docker
Hub repository. When creating a service using LXC, you have to base it on
a Linux operating system image and prepare the entire configuration yourself
inside an empty container. LXC is also the least user-friendly for new and novice
users due to its complex networking solution; the user themselves has to ensure
that the service is properly publicized through appropriate forwarding rules,
whereas with other containerization methods, the whole thing is done automati-
cally. Both Docker and Podman, on the other hand, are well suited for the deploy-
ment of publicized services, due to their fast creation and setup times for new
containers. They are suitable for horizontal scaling and vertical scaling and are
great at preparing an organization's infrastructure for sudden increases in traffic
and server load. For this reason, they are probably the most commonly used con-
tainerization method, together with Kubernetes, for the deployment of services
that are prepared for global, regional, or general public traffic.

Both Docker and Podman have several integrated tools that can greatly facili-
tate the work of all users using these containerization methods. Performance tests
aside, it should also be noted that they performed best with incoming traffic. The
key point, however, is that despite their long list of advantages, both of these con-
tainerization methods are nowhere near Kata Containers in terms of security. All
of these containerization methods have their advantages as well as their disad-
vantages, and their implementation in an actual project should be determined by
the respective requirements for the service to be implemented.

Conclusion

The research presented here has shown that choosing the right containeriza-
tion method depends on the service to be implemented. All the methods described
have both advantages and disadvantages. If you want to deploy a public service
that is prepared for heavy traffic, then Docker or Podman would be the best choice.
However, focusing on providing a high level of security at the expense of

183

performance and overall resource consumption, Kata Containers is the best solu-
tion. For internal organizational services based on the Linux operating system,
LXC containers are worth considering.

All of these methods work very well, sticking to their priorities. However, it
is worth emphasizing that all containerization methods by themselves may not be
sufficient for all organizations. If a company starts to grow dynamically and would
like to exploit the full potential of containers and prepare its infrastructure for
a potentially sudden large surge in service load, it would need to focus its attention
on a container orchestrator. Containers combined with Kubernetes (or Docker
Swarm) and the public cloud can significantly improve the performance of any
infrastructure, both in terms of security, performance, and overall cost per infra-
structure, while providing dynamic vertical scaling of servers (Worker Nodes) and
application instances (Pods). Introducing such a concept will allow a given infra-
structure to be prepared for massive traffic (even global) while maintaining a very
good level of service availability and reliability, and customer satisfaction.

The tests carried out allow recommendations to be made for the use of the
methods described. The Docker and Podman platforms are worth using for web
applications, containers containing applications, and all dependencies that can be
easily deployed through the CI/CD process. They can work well for creating iso-
lated test environments.

LXC is the ideal choice when the user needs to create a fully isolated operating
system and HPC (High-Performance Computing) environment. For high-
-performance computing, LXC can provide low virtualization overhead, which is
crucial in HPC.

Kata Containers will find its use in the deployment of sensitive applications
by creating containers in virtual machines (nested virtualization). It provides great
security, so it can find its use in applications where isolation and security are the
highest priority.

The conducted research provides a valuable educational foundation for stu-
dents and professionals aiming to deepen their understanding of containerization
technologies. By working with real-world tools such as Docker, Podman, LXC,
and Kata Containers in a cloud-based testing environment, learners gain practical
experience in deploying, configuring, and benchmarking web services. The use of
Apache JMeter for load testing and the analysis of system metrics through Google
Cloud monitoring equips participants with essential skills in performance evalua-
tion, infrastructure planning, and decision-making in IT systems. This hands-on
approach encourages active learning and bridges the gap between theoretical
knowledge and professional practice.

From a didactic perspective, the project fosters critical thinking and problem-
-solving by presenting real implementation scenarios with measurable outcomes.
It highlights the importance of selecting the right containerization method based

184

on specific service requirements such as performance, scalability, or security. Fur-
thermore, it introduces learners to modern DevOps practices, CI/CD pipelines,
and container orchestration tools like Kubernetes, which are essential in today’s
IT landscape. As such, this work can be effectively integrated into university
courses, workshops, or training programs focused on cloud computing, system
administration, and application deployment strategies.

Acknowledgments
We are grateful to Mikolaj Piatek, a graduate student at Rzeszow University of Tech-
nology, for supporting us in collecting useful information.

References

Fava, F.B. et al. 92024). Assessing the Performance of Docker in Docker Containers for Micro-
service-based Architectures. Euromicro Conference on Parallel, Distributed and Network-
-Based Processing.

Gamess, E., Parajuli, M. (2024). Containers Unleashed: A Raspberry Pi Showdown Between
Docker, Podman, and LXC/LXD. IEEE SoutheastCon Conference on Engineering the Future.

https://azure.microsoft.com/pl-pl/resources/cloud-computing-dictionary/what-is-virtualization
(11.06.2025).

https://cloud.google.com/logging/docs/agent/ops-agent (11.06.2025).

https://github.com/kata-containers/kata-containers/blob/main/docs/Limitations.md (11.06.2025).

https://github.com/kata-containers/kata-containers/tree/main/docs/design/architecture (11.06.2025).

https://katacontainers.io/docs/ (11.06.2025).

https://kubernetes.io/blog/2020/12/08/kubernetes-1-20-release-announcement/ (11.06.2025).

https://kubernetes.io/docs/concepts/architecture/ (11.06.2025).

https://kubernetes.io/pl/docs/concepts/overview/ (11.06.2025).

https://www.docker.com/resources/what-container/ (11.06.2025).

https://www.geeksforgeeks.org/architecture-of-docker/ (11.06.2025).

Poojara, S.R., Ghule, V.B., Birje, M.N. et al. (2018). Performance Analysis of Linux Container and
Hypervisor for Application Deployment on Clouds. 1st International Conference on Computa-
tional Techniques, Electronics and Mechanical Systems (CTEMS).

Randazzo, A., Tinnirello, 1. (2019). Kata Containers: An Emerging Architecture for Enabling MEC
Services in Fast and Secure Way. 6th International Conference on Internet of Things — Systems,
Management and Security (IOTSMS).

Zeng, H., Wang, B.S., Deng, W.P., Zhang, W.Q. (2017). Measurement and Evaluation for Docker
Container Networking. International Conference on Cyber-Enabled Distributed Computing
and Knowledge Discovery (CyberC).

Zordevic, B., Timcenko, V., Lazic, M., Davidovic, N. (2022). Performance comparison of Docker
and Podman container-based virtualization. 21st International Symposium on INFOTEH-
-JAHORINA (INFOTEH).

