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Abstract

The renowned Russian mathematician, mathematics education methodologist, scientist, science
popularizer, author of geometry textbooks, and lecturer at Moscow State University, Igor
F. Sharygin, believed that geometry should primarily be geometric, rather than analytical or algebraic.
The central character in this story should be the figure, with the triangle and circle dominating its
surface, and the main means of learning should be the drawing and the image. Textbooks that focus
on geometric content should not be limited to the development of geometric theories. The learning
process of such content involves a wide variety of work formats, primarily through problem solving.
A problem is not merely a skill exercise, but a component of knowledge. Students should become
familiar with a sequence of sufficiently challenging geometric problems, following well-known
models. Incidentally, this essentially constitutes the process of learning algebra as well.

Keywords: geometry, polyformism, geometric polyformisms in teaching

Introduction

We present students with methods and convey algorithms that are difficult, if
not impossible, to discover independently. In geometry, unlike algebra, such al-
gorithms are scarce or almost non-existent. Nearly every geometric problem is
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non-standard. Therefore, in teaching, the importance of key problems increases —
those that explain useful facts or illustrate a method (Sharygin, 2004). Drawing is
the first step toward abstraction — essential properties are condensed, and non-
essential ones are disregarded (Sharygin, 2004). When Rudolf Arnheim, one of
the founders of the Gestalt school in psychology, wrote his seminal work Visual
Thinking (the unity of image and concept) in the early 1930s, he based all his
claims on geometric interpretations. In his article “Does Geometry Belong in 21
Century Schools?”, Igor F. Sharygin emphasizes that we create geometric images
in order to stabilize our internal representations. Visual thinking — thinking in
images — has the property of comprehensiveness and is not easily transferable.
Images, or icons, are carriers of information. That is why Sharygin (1937-2004),
when speaking about “good geometry,” puts a good problem — presented with
a beautiful image and vivid language — at the center of the story. This “vivid lan-
guage” makes visual thinking more transferable. The interpretation of a mathe-
matical problem through geometric polyformism allows for a dynamic approach
to the problem or phenomenon itself, resulting in comprehensive and profound un-
derstanding (Nikoli¢, 2021; Hil¢enko, Nikoli¢, 2023, 2024).

When we say that mathematics teaching should be dominated by geometric
polyformisms, we refer to instruction where mathematical problems are primarily
solved and teaching phenomena are explained through various schematic repre-
sentations—that is, through geometric reinterpretations of the same problem in
multiple ways (Nikoli¢, Hilcenko, 2024).

Polyformism

The fundamental principles of polyformism are based on the dual or multiple
applications of the law of the negation of the negation to the same phenomena—
i.e., to initial problems or established theories. The interpretation of a mathemati-
cal problem that allows for polyformal geometric analysis enables a dynamic ap-
proach to the problem or the phenomenon itself, resulting in its comprehensive
and profound understanding. The diversity dominated by geometric polyformisms
represents the principle of polyformism, which is grounded in a finite number of
logical conjunctions or principles (e.g., the laws of the negation of the negation,
modus ponens, the principles of obviousness, permanence, etc.) (Markovié, 2012).
This diversity, when combined with arithmetic, algebraic, and methodological
variation, constitutes a didactic principle of polyformism. At its core, this princi-
ple lies in the constant insistence on an integrative view of various evident — es-
pecially geometric — approaches to the understanding and conceptualization of
taught mathematical notions (Nikoli¢, Hil¢enko, 2024). In practice, this demands
that the teacher possesses a deep knowledge of and the ability to apply a wide
array of professional, didactic, and methodological strategies. At the same time, it

123



stimulates students’ intensive intellectual activity, expressed through high-quality,
self-directed work and enhanced motivation. Instruction, when viewed through
the lens of such principled foundations, presupposes new, polyformal methodo-
logical approaches. Learning through self-cognitive polyformal heuristics — as
a dominant method within the framework of polyformal principles of interactive
teaching — implies that the content to be acquired by students is not presented in
a ready-made form, but must instead be discovered, preferably in multiple ways
(Nikoli¢, boki¢, Hil¢enko, 2022). This significantly enhances students’ intellec-
tual capacity, motivation, and learning engagement, accompanied by a sense of
satisfaction from the accomplished work. Learning through the method of self-
-cognitive polyformal heuristics yields greater outcomes in terms of acquiring
conceptual knowledge, and especially procedural (i.e., applicable) knowledge, in
accordance with modern taxonomies of knowledge. This occurs because the stu-
dent invests individual effort to organize newly acquired information within their
own cognitive system and to find the full range of necessary information. As
a result, the student’s ability to organize and structure data improves, through
deductive and analytical-synthetic approaches and their application to various
problem-solving and even real-life contexts. According to numerous researchers,
modern education — which represents a fusion of principled and methodological
“weaving,” aided by the use of computers (often unrecognized or unacknowledged
by traditionalist approaches) — introduces new qualities of diverse instructional
practices. These enhance student engagement in the learning process, increase
motivation, curiosity, initiative, creativity, and the applicability of acquired
knowledge in everyday life, which are the core goals of contemporary mathe-
matics education (Nikoli¢, 2021).

The Didactic Principle of Polyformism

The effectiveness of the polyformism principle is based on an evident psy-
chological fact: change and variety in instructional work refresh the teaching pro-
cess, whereas monotony typically induces a decline in interest and results in pas-
sivity and boredom. Therefore, in mathematics education, the principle of
polyformism should play a general role — one that is manifested through the
enrichment of instruction by means of diverse content, tools, procedures, and
methods. With regard to content, this refers to the selection of tasks that allow for
multiple, varied approaches to problem-solving, including the use of visual and
concrete teaching aids. However, organizing such lessons requires the appropriate
application of diverse methodological forms and instructional variations within
a single lesson. The methodological forms and specific teaching strategies planned
and implemented by the teacher during instruction are grounded in the timely ac-
tivation of didactic principles. This manifests as their simultaneous polyformal-
-cohesive effect —that is, their integral dialectical unity (Nikoli¢, Markovi¢, 2016).
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Development (Analysis of Research Results): Examples of Geometric
Polyformism in Primary School Teaching

In primary and secondary school textbooks, as well as in various problem
collections and mathematical handbooks, there is typically only one, or at most
two to three, approaches to deriving a given formula. These proofs are generally
based on theorems concerning decomposable or complementary equality of po-
lygonal areas.

Proof 1

Let ABCD be a trapezoid with bases AB and CD of lengths a and b, respec-
tively, and height h. By drawing the diagonal AC, the trapezoid is divided into
two triangles: AABC and AACD The area of the trapezoid can thus be calculated
as the sum of the areas of these two triangles, using the aforementioned theorem
on decomposable equality of polygonal areas:

D b C

h

B

A 5 E B

Slika 17a

Figure 1
a-h b-h (a+b)-h
Piscp = Pucp + Pupe = 5 + 5 = 5 >

which is the required result (see Figure 1).

Proof 2

Let GF be the midline (median) of trapezoid. Let point E denote the intersec-
tion of lines DF and AB, as shown in Figure 2. It is easy to demonstrate the con-
gruence of triangles ADGF and AAFE based on the well-known SAS (side—
angle—side) triangle congruence criterion. Consequently, their areas are equal:

PADFC = PAEFB-

According to the theorems on decomposable and complementary equality of
polygonal areas, the area of trapezoid ABCD is equal to the area of triangle
AAED, i.e.,

(a+b)-h
PABCDZPABFD+PADFC:P +PAEFB:PAAED=Ta

ABFD
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Which was to be demonstrated.

Slika 17b

Figure 2

Proof 3

Let the measures of the lengths of the bases of the trapezoid AB and DC be
a and b, respectively, where, as in the previous cases, a > b, see Figure 3. Through
vertex C, construct a line CE|IDA. It is easy to observe that the length of segment
AE=b,asis EB=a-b.

The area of the trapezoid can then be decomposed into the sum of the area of
the parallelogram AECD and the area of triangle AEBC, i.e.,

(a—b)-h _(a+b)-h
2 2

P

ABCD —

PAECD+PAEBC:b'h+

During supplementary mathematics classes for upper elementary school stu-
dents, we assigned a task in which the students were encouraged to independently
discover additional algorithms for deriving the formula for the area of a trapezoid.
We instructed them that they could use the stated theorems on decomposable and
supplementary equality of polygonal areas, as well as other geometric principles
— such as congruence, homothety, and similarity of geometric figures. With the
help of semi-guided and independent heuristic approaches, the students arrived at
the following polyform procedures.

D =} C

b FI
A E a-b B
Slika 17¢

Figure 3
Proof 4
If we modify Figure 3 by removing the line segment CE and instead construct
anew line CE perpendicular to AB, we obtain Figure 4. In this configuration, we have:
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DE=CF=x,AE=x,FB=y,EF=b,AB=x+b+y=a.

The area of trapezoid ABCD can be decomposed into the sum of the areas of
triangles AAED, AFBC, and the rectangle EFCD, that is:

X -
PABCD:PAAED+PAFCD+PAFBC:T+b'h+T:
_Gtbty)h boh_{atb)h

h 2 2 2

D b C

m
0

Slika 17d

Figure 4

Proof 5
Let FG be the midline of the trapezoid, and let the line FL be parallel to AD,
such that point E is the intersection of lines AB and FL. It is easy to observe that
the area of trapezoid ABCD is equal to the area of parallelogram AELD, which,
based on the theorem of equidecomposability of polygonal areas, can be expressed
as the sum of the areas of the pentagon AEFCD and triangle AFLC (see Figure
5), that is:
(a+b)-h
Papcp = Paercp + Paepr = Pagrep + Parcr = PapLp = —

Slika 17e

Figure 5
since, by the SAS congruence criterion (side—angle—aide), the triangles are con-
gruent. AEBF = ALCF'. Now, let us examine two dynamic proofs.
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A x E a-x B
Slika 171

Figure 6

Proof 6

Let us choose an arbitrary point E on the base AB of trapezoid ABCD, and
construct the segments accordingly (see Figure 6). Let h denote the height of the
trapezoid. It is easy to observe that, based on the theorem of equidecomposability
of polygonal areas, the area of trapezoid ABCD is equal to the sum of the areas of
triangles AAED, ADCE and AEBC that is:
_p 4P o p x-h+b-h+(a—x)-h:(a+b)-h'

AAED ADCE AEBC — 5 5 5 5

P

ABCD

Proof 7

If point E is chosen on the line AB such that the order of points is either A—
B-E or E-A-B, two similar proofs can be constructed. Here is one of them, cor-
responding to the case where the order is A—B-E, as shown in Figure 7.

The area of the larger trapezoid AECD can be calculated in two different

ways:
D b C

A a B X E
Slika 17g

Figure 7

(1) Py =Ppep + Pipge and

@ Picp = Pup + Povce,

from equations (1) and (2), it follows that
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PABCD +PABEC = PAAED +PADCE > Le.

(a+x)-h b-h x-h (a+b)-h
P = + - = .
ABCD 2 2 2 2

Proof 8

Through vertex B in the plane of trapezoid ABCD, construct a line parallel to
AD, i.e., let BE be such that BE||AD. This line intersects the line containing the
base DC at point E (see Figure 8).

The area of parallelogram ABED can be decomposed into the sum of the areas
of trapezoid ABCD and triangle AECB, that is: Area

PABED = PABCD + PAECB

from which it follows:

(] b [ a-b E

A a B
Sifika 17h

Figure 8
(a—b)-h _(a+b)-h
2 2

Piscp = Pigpp = Pages =a-h—
which was to be proven.

Proof 9

Here is another proof similar to Proof 2 (see Figure 9).

Let trapezoid ABCD be given. Construct its midline GF and the segments DF
and AF, where AB = a and DC = b are the bases, and h is the height of the trape-
zoid. Using the theorem of equidecomposability of polygonal areas, the area of
the trapezoid can be expressed as the sum of the areas of triangles AABF, AGFA,
AGFD and ADCEF, that is:

]; a;b'g by a+byh
:>PABCD= 5 +2- 5 + 5 = > ,

h
a - —
2
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/ a+b
G 2 F

Slika 17i

e

Figure 9
which completes the proof.

Proof 10

Now, here is an interesting proof in which we calculate the area of a parallel-
ogram that is twice the area of the required trapezoid. Construct trapezoid CFEB
congruent to trapezoid ABCD, such that.

D =} C a F
|
h
Ja )
A a B ] E
Slika 17j
Figure 10

Which is obtained by rotating trapezoid ABCD around the midpoint of leg
BC by 180 degrees, as shown in Figure 10. It is easy to observe that the area of
parallelogram ADEF is decomposable into the sum of the areas of the congruent

trapezoids, that is: P AEFD — 2-P 4pcp therefore, it is

p _PAEFD_(a+b)'h
apcp =T ’

which was to be proven.

Proof 11

This derivation, in addition to previously exploited theorems, is also based on
the application of the properties of homothety, i.e., similarity. Let S denote the
intersection of the lines containing the legs AD and BC of trapezoid ABCD, and
let SE = h; denote the height of triangle ADCS, and the height of the trapezoid
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EF = h, with AB = a and DC = b being its bases, where a > b. Then, from the
similarity of triangles (see Figure 11), it follows that:

hy h+h ,
| :>h1=hb,
b a a->b

therefore, it is easy to observe the following relation:

h-b h-b
(ha+h)-a hb (=p+h)-a Z—%b
Pupcp = Paaps — Papcs = 2 + > = 5 _ 5

_h brat+a*—a-b-b*> h-(a®*-b?) (a+b)-h
S 2 a—b>b B a—b>b B 2

Slika 17k

Figure 11

which completes the proof. Such polymorphic approaches to solving geometric
problems enrich mathematics education, inducing greater activity and dynamism
in students' work, as well as a more complete understanding of the given problems.

Advantages of Learning Through the Method of Self-Discovery Polyform
Heuristics

The diversity dominated by geometric polyformism, in combination with
arithmetic, algebraic, and methodological variability, represents a didactic princi-
ple of polyformity. This principle is grounded in a finite number of logical con-
junctions or laws and principles (such as the law of double negation, modus po-
nens, the principles of obviousness, permanence, etc.).

The essence of this important instructional principle lies in a permanent in-
sistence on an integral consideration of diverse, especially geometric, approaches
to understanding and conceptualizing educational content. In practice, this requires
teachers to possess thorough knowledge and skill in applying a wide range of
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professional, didactic, and methodological strategies. It also stimulates intensive
cognitive engagement among students, expressed through high-quality, self-directed
work and increased motivation.

Instruction, when viewed through the lens of these principled foundations,
necessarily entails new polyform methodological approaches. Within such an in-
teractive teaching model, the method of self-discovery polyform heuristics be-
comes dominant. Here, the learning content is not presented in its final form; in-
stead, it must be uncovered — preferably through various pathways (Nikoli¢,
2022). This process enhances students’ intellectual capacities, motivation, and en-
gagement, and it fosters a sense of satisfaction through accomplishment. Learning
through the self-discovery polyform heuristic method produces stronger effects in
acquiring not only substantive knowledge but especially procedural and applica-
ble knowledge, as outlined in modern taxonomies of learning. In this process, stu-
dents invest their own effort to organize newly acquired information within their
personal cognitive frameworks and to seek out the entire spectrum of necessary
knowledge. This, in turn, improves their ability to structure and manage data using
deductive, analytic-synthetic approaches and to apply such methods in solving
various academic and real-life problems. According to numerous researchers,
modern teaching — conceived as a synthesis of principled and methodological
“weaving”, often supported by computer technology and unrecognized by tradi-
tionalist pedagogies — offers new qualities in diverse teaching practices. It en-
hances student engagement, improves knowledge acquisition, and fosters greater
motivation, curiosity, initiative, creativity, and applicability of acquired
knowledge in everyday life. These are among the fundamental goals of contem-
porary mathematics education (Markovi¢, Velji¢, 2015). Although such research
is still rare in our region, it is increasingly relevant worldwide. The self-discovery
heuristic method is precisely the approach that modern education needs — one that
the school of the 21% century is bound to “discover” and affirm. We are convinced
that, through its practical revelations and educational “resurrections”, it will ulti-
mately earn the status of universality.

Conclusion

The essence of this important didactic principle lies in the continual emphasis
on an integrated view of diverse approaches to understanding and conceptualizing
educational phenomena. Its application in practice requires teachers to possess
a high level of expertise and skill in employing a wide range of professional, di-
dactic, and methodological strategies. At the same time, it stimulates intensive
cognitive engagement from students, expressed through quality self-directed
effort and increased motivation. The effectiveness of the principle of polyformity
is grounded in a well-established psychological fact: variation and change in in-
structional practice refresh the learning process, while monotony typically leads
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to diminished interest, passivity, and boredom. For this reason, the principle of
polyformity should play a universal role in mathematics education — enriching the
learning process through diverse content, tools, techniques, and methods. Due to
these characteristics, the principle of polyformity represents not only a didactic-
-methodological principle but also one whose epistemological foundation aligns
with that of the principle of permanence and the law of the negation of negation.
In this way, the principle of polyformity assumes the features of a dialectical law.
As the principle of polyformity encompasses all existing didactic principles, it is
elevated to the status of a universal principle in education.
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