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Abstract 

The renowned Russian mathematician, mathematics education methodologist, scientist, science 

popularizer, author of geometry textbooks, and lecturer at Moscow State University, Igor 

F. Sharygin, believed that geometry should primarily be geometric, rather than analytical or algebraic. 

The central character in this story should be the figure, with the triangle and circle dominating its 

surface, and the main means of learning should be the drawing and the image. Textbooks that focus 

on geometric content should not be limited to the development of geometric theories. The learning 

process of such content involves a wide variety of work formats, primarily through problem solving. 

A problem is not merely a skill exercise, but a component of knowledge. Students should become 

familiar with a sequence of sufficiently challenging geometric problems, following well-known 

models. Incidentally, this essentially constitutes the process of learning algebra as well. 

Keywords: geometry, polyformism, geometric polyformisms in teaching 
 

Introduction 

We present students with methods and convey algorithms that are difficult, if 

not impossible, to discover independently. In geometry, unlike algebra, such al-

gorithms are scarce or almost non-existent. Nearly every geometric problem is 
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non-standard. Therefore, in teaching, the importance of key problems increases – 

those that explain useful facts or illustrate a method (Sharygin, 2004). Drawing is 

the first step toward abstraction – essential properties are condensed, and non-

essential ones are disregarded (Sharygin, 2004). When Rudolf Arnheim, one of 

the founders of the Gestalt school in psychology, wrote his seminal work Visual 

Thinking (the unity of image and concept) in the early 1930s, he based all his 

claims on geometric interpretations. In his article “Does Geometry Belong in 21st 

Century Schools?”, Igor F. Sharygin emphasizes that we create geometric images 

in order to stabilize our internal representations. Visual thinking – thinking in 

images – has the property of comprehensiveness and is not easily transferable. 

Images, or icons, are carriers of information. That is why Sharygin (1937–2004), 

when speaking about “good geometry,” puts a good problem – presented with 

a beautiful image and vivid language – at the center of the story. This “vivid lan-

guage” makes visual thinking more transferable. The interpretation of a mathe-

matical problem through geometric polyformism allows for a dynamic approach 

to the problem or phenomenon itself, resulting in comprehensive and profound un-

derstanding (Nikolić, 2021; Hilčenko, Nikolić, 2023, 2024). 

When we say that mathematics teaching should be dominated by geometric 

polyformisms, we refer to instruction where mathematical problems are primarily 

solved and teaching phenomena are explained through various schematic repre-

sentations–that is, through geometric reinterpretations of the same problem in 

multiple ways (Nikolić, Hilčenko, 2024). 

Polyformism 

The fundamental principles of polyformism are based on the dual or multiple 

applications of the law of the negation of the negation to the same phenomena–

i.e., to initial problems or established theories. The interpretation of a mathemati-

cal problem that allows for polyformal geometric analysis enables a dynamic ap-

proach to the problem or the phenomenon itself, resulting in its comprehensive 

and profound understanding. The diversity dominated by geometric polyformisms 

represents the principle of polyformism, which is grounded in a finite number of 

logical conjunctions or principles (e.g., the laws of the negation of the negation, 

modus ponens, the principles of obviousness, permanence, etc.) (Marković, 2012). 

This diversity, when combined with arithmetic, algebraic, and methodological 

variation, constitutes a didactic principle of polyformism. At its core, this princi-

ple lies in the constant insistence on an integrative view of various evident – es-

pecially geometric – approaches to the understanding and conceptualization of 

taught mathematical notions (Nikolić, Hilčenko, 2024). In practice, this demands 

that the teacher possesses a deep knowledge of and the ability to apply a wide 

array of professional, didactic, and methodological strategies. At the same time, it 
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stimulates students’ intensive intellectual activity, expressed through high-quality, 

self-directed work and enhanced motivation. Instruction, when viewed through 

the lens of such principled foundations, presupposes new, polyformal methodo-

logical approaches. Learning through self-cognitive polyformal heuristics – as 

a dominant method within the framework of polyformal principles of interactive 

teaching – implies that the content to be acquired by students is not presented in 

a ready-made form, but must instead be discovered, preferably in multiple ways 

(Nikolić, Đokić, Hilčenko, 2022). This significantly enhances students’ intellec-

tual capacity, motivation, and learning engagement, accompanied by a sense of 

satisfaction from the accomplished work. Learning through the method of self- 

-cognitive polyformal heuristics yields greater outcomes in terms of acquiring 

conceptual knowledge, and especially procedural (i.e., applicable) knowledge, in 

accordance with modern taxonomies of knowledge. This occurs because the stu-

dent invests individual effort to organize newly acquired information within their 

own cognitive system and to find the full range of necessary information. As 

a result, the student’s ability to organize and structure data improves, through 

deductive and analytical-synthetic approaches and their application to various 

problem-solving and even real-life contexts. According to numerous researchers, 

modern education – which represents a fusion of principled and methodological 

“weaving,” aided by the use of computers (often unrecognized or unacknowledged 

by traditionalist approaches) – introduces new qualities of diverse instructional 

practices. These enhance student engagement in the learning process, increase 

motivation, curiosity, initiative, creativity, and the applicability of acquired 

knowledge in everyday life, which are the core goals of contemporary mathe-

matics education (Nikolić, 2021). 

The Didactic Principle of Polyformism 

The effectiveness of the polyformism principle is based on an evident psy-

chological fact: change and variety in instructional work refresh the teaching pro-

cess, whereas monotony typically induces a decline in interest and results in pas-

sivity and boredom. Therefore, in mathematics education, the principle of 

polyformism should play a general role – one that is manifested through the 

enrichment of instruction by means of diverse content, tools, procedures, and 

methods. With regard to content, this refers to the selection of tasks that allow for 

multiple, varied approaches to problem-solving, including the use of visual and 

concrete teaching aids. However, organizing such lessons requires the appropriate 

application of diverse methodological forms and instructional variations within 

a single lesson. The methodological forms and specific teaching strategies planned 

and implemented by the teacher during instruction are grounded in the timely ac-

tivation of didactic principles. This manifests as their simultaneous polyformal- 

-cohesive effect – that is, their integral dialectical unity (Nikolić, Marković, 2016).  
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Development (Analysis of Research Results): Examples of Geometric 

Polyformism in Primary School Teaching 

In primary and secondary school textbooks, as well as in various problem 

collections and mathematical handbooks, there is typically only one, or at most 

two to three, approaches to deriving a given formula. These proofs are generally 

based on theorems concerning decomposable or complementary equality of po-

lygonal areas. 

Proof 1 

Let ABCD be a trapezoid with bases AB and CD of lengths a and b, respec-

tively, and height h. By drawing the diagonal AC, the trapezoid is divided into 

two triangles: △ABC and △ACD The area of the trapezoid can thus be calculated 

as the sum of the areas of these two triangles, using the aforementioned theorem 

on decomposable equality of polygonal areas: 

 

 

Figure 1 
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which is the required result (see Figure 1).  

 

Proof 2 

Let GF be the midline (median) of trapezoid. Let point E denote the intersec-

tion of lines DF and AB, as shown in Figure 2. It is easy to demonstrate the con-

gruence of triangles △DGF and △AFE based on the well-known SAS (side–

angle–side) triangle congruence criterion. Consequently, their areas are equal:  

EFBDFC PP  = . 

According to the theorems on decomposable and complementary equality of 

polygonal areas, the area of trapezoid ABCD is equal to the area of triangle 

△AED, i.e.,  
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Which was to be demonstrated. 

 

 

Figure 2 

 

Proof 3 

Let the measures of the lengths of the bases of the trapezoid AB and DC be 

a and b, respectively, where, as in the previous cases, a > b, see Figure 3. Through 

vertex C, construct a line CE∥DA. It is easy to observe that the length of segment 

AЕ = b, as is EB = a – b. 

The area of the trapezoid can then be decomposed into the sum of the area of 

the parallelogram AECD and the area of triangle △EBC, i.e.,  
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During supplementary mathematics classes for upper elementary school stu-

dents, we assigned a task in which the students were encouraged to independently 

discover additional algorithms for deriving the formula for the area of a trapezoid. 

We instructed them that they could use the stated theorems on decomposable and 

supplementary equality of polygonal areas, as well as other geometric principles 

– such as congruence, homothety, and similarity of geometric figures. With the 

help of semi-guided and independent heuristic approaches, the students arrived at 

the following polyform procedures. 

 

 

Figure 3 

Proof 4 

If we modify Figure 3 by removing the line segment CE and instead construct 

a new line CE perpendicular to AB, we obtain Figure 4. In this configuration, we have: 
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DE = CF = x, AE = x, FB = y, EF = b, AB = x + b + y = a. 

The area of trapezoid ABCD can be decomposed into the sum of the areas of 

triangles △AED, △FBC, and the rectangle EFCD, that is:  

 

𝑃𝐴𝐵𝐶𝐷 = 𝑃∆𝐴𝐸𝐷 + 𝑃𝐴𝐹𝐶𝐷 + 𝑃∆𝐹𝐵𝐶 =
𝑥 ∙ ℎ

2
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2
= 

=
(𝑥 + 𝑏 + 𝑦) ∙ ℎ

2
+

𝑏 ∙ ℎ

2
=

(𝑎 + 𝑏) ∙ ℎ

2
 

 

 

Figure 4 

 

Proof 5 

Let FG be the midline of the trapezoid, and let the line FL be parallel to AD, 

such that point E is the intersection of lines AB and FL. It is easy to observe that 

the area of trapezoid ABCD is equal to the area of parallelogram AELD, which, 

based on the theorem of equidecomposability of polygonal areas, can be expressed 

as the sum of the areas of the pentagon AEFCD and triangle △FLC (see Figure 

5), that is:  

𝑃𝐴𝐵𝐶𝐷 = 𝑃𝐴𝐸𝐹𝐶𝐷 + 𝑃∆𝐸𝐵𝐹 = 𝑃𝐴𝐸𝐹𝐶𝐷 + 𝑃∆𝐿𝐶𝐹 = 𝑃𝐴𝐸𝐿𝐷 =
(𝑎 + 𝑏) ∙ ℎ

2
 

 

 

Figure 5 

since, by the SAS congruence criterion (side–angle–aide), the triangles are con-

gruent. .LCFEBF   Now, let us examine two dynamic proofs. 
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Figure 6 

 

Proof 6 

Let us choose an arbitrary point E on the base AB of trapezoid ABCD, and 

construct the segments accordingly (see Figure 6). Let h denote the height of the 

trapezoid. It is easy to observe that, based on the theorem of equidecomposability 

of polygonal areas, the area of trapezoid ABCD is equal to the sum of the areas of 

triangles △AED, △DCE and △EBC that is: 
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Proof 7 

If point E is chosen on the line AB such that the order of points is either A–

B–E or E–A–B, two similar proofs can be constructed. Here is one of them, cor-

responding to the case where the order is A–B–E, as shown in Figure 7. 

The area of the larger trapezoid AECD can be calculated in two different 

ways: 

 

Figure 7 

(1)     BECABCDAECD PPP +=   and 

(2)     DCEAEDAECD PPP  += , 

from equations (1) and (2), it follows that 
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DCEAEDBECABCD PPPP  +=+ , i.e. 
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Proof 8 

Through vertex B in the plane of trapezoid ABCD, construct a line parallel to 

AD, i.e., let BE be such that BE∥AD. This line intersects the line containing the 

base DC at point E (see Figure 8). 

The area of parallelogram ABED can be decomposed into the sum of the areas 

of trapezoid ABCD and triangle △ECB, that is: Area  

ECBABCDABED PPP +=  

from which it follows: 

 

 

Figure 8 
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which was to be proven. 

 

Proof 9 

Here is another proof similar to Proof 2 (see Figure 9). 

Let trapezoid ABCD be given. Construct its midline GF and the segments DF 

and AF, where AB = a and DC = b are the bases, and h is the height of the trape-

zoid. Using the theorem of equidecomposability of polygonal areas, the area of 

the trapezoid can be expressed as the sum of the areas of triangles △ABF, △GFA, 

△GFD and △DCF, that is: 
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Figure 9 

which completes the proof. 

 

Proof 10 

Now, here is an interesting proof in which we calculate the area of a parallel-

ogram that is twice the area of the required trapezoid. Construct trapezoid CFEB 

congruent to trapezoid ABCD, such that.  

 

 

Figure 10 

 

Which is obtained by rotating trapezoid ABCD around the midpoint of leg 

BC by 180 degrees, as shown in Figure 10. It is easy to observe that the area of 

parallelogram ADEF is decomposable into the sum of the areas of the congruent 

trapezoids, that is: ABCDAEFD PP = 2  therefore, it is 
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which was to be proven. 

 

Proof 11 

This derivation, in addition to previously exploited theorems, is also based on 

the application of the properties of homothety, i.e., similarity. Let S denote the 

intersection of the lines containing the legs AD and BC of trapezoid ABCD, and 

let SE = h1 denote the height of triangle △DCS, and the height of the trapezoid 
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EF = h, with AB = a and DC = b being its bases, where a > b. Then, from the 

similarity of triangles (see Figure 11), it follows that: 

a

hh
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therefore, it is easy to observe the following relation: 
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Figure 11 

 

which completes the proof. Such polymorphic approaches to solving geometric 

problems enrich mathematics education, inducing greater activity and dynamism 

in students' work, as well as a more complete understanding of the given problems. 

Advantages of Learning Through the Method of Self-Discovery Polyform 

Heuristics 

The diversity dominated by geometric polyformism, in combination with 

arithmetic, algebraic, and methodological variability, represents a didactic princi-

ple of polyformity. This principle is grounded in a finite number of logical con-

junctions or laws and principles (such as the law of double negation, modus po-

nens, the principles of obviousness, permanence, etc.).  

The essence of this important instructional principle lies in a permanent in-

sistence on an integral consideration of diverse, especially geometric, approaches 

to understanding and conceptualizing educational content. In practice, this requires 

teachers to possess thorough knowledge and skill in applying a wide range of 
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professional, didactic, and methodological strategies. It also stimulates intensive 

cognitive engagement among students, expressed through high-quality, self-directed 

work and increased motivation. 

Instruction, when viewed through the lens of these principled foundations, 

necessarily entails new polyform methodological approaches. Within such an in-

teractive teaching model, the method of self-discovery polyform heuristics be-

comes dominant. Here, the learning content is not presented in its final form; in-

stead, it must be uncovered – preferably through various pathways (Nikolić, 

2022). This process enhances students’ intellectual capacities, motivation, and en-

gagement, and it fosters a sense of satisfaction through accomplishment. Learning 

through the self-discovery polyform heuristic method produces stronger effects in 

acquiring not only substantive knowledge but especially procedural and applica-

ble knowledge, as outlined in modern taxonomies of learning. In this process, stu-

dents invest their own effort to organize newly acquired information within their 

personal cognitive frameworks and to seek out the entire spectrum of necessary 

knowledge. This, in turn, improves their ability to structure and manage data using 

deductive, analytic-synthetic approaches and to apply such methods in solving 

various academic and real-life problems. According to numerous researchers, 

modern teaching – conceived as a synthesis of principled and methodological 

“weaving”, often supported by computer technology and unrecognized by tradi-

tionalist pedagogies – offers new qualities in diverse teaching practices. It en-

hances student engagement, improves knowledge acquisition, and fosters greater 

motivation, curiosity, initiative, creativity, and applicability of acquired 

knowledge in everyday life. These are among the fundamental goals of contem-

porary mathematics education (Marković, Veljić, 2015). Although such research 

is still rare in our region, it is increasingly relevant worldwide. The self-discovery 

heuristic method is precisely the approach that modern education needs – one that 

the school of the 21st century is bound to “discover” and affirm. We are convinced 

that, through its practical revelations and educational “resurrections”, it will ulti-

mately earn the status of universality. 

Conclusion 

The essence of this important didactic principle lies in the continual emphasis 

on an integrated view of diverse approaches to understanding and conceptualizing 

educational phenomena. Its application in practice requires teachers to possess 

a high level of expertise and skill in employing a wide range of professional, di-

dactic, and methodological strategies. At the same time, it stimulates intensive 

cognitive engagement from students, expressed through quality self-directed 

effort and increased motivation. The effectiveness of the principle of polyformity 

is grounded in a well-established psychological fact: variation and change in in-

structional practice refresh the learning process, while monotony typically leads 
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to diminished interest, passivity, and boredom. For this reason, the principle of 

polyformity should play a universal role in mathematics education – enriching the 

learning process through diverse content, tools, techniques, and methods. Due to 

these characteristics, the principle of polyformity represents not only a didactic- 

-methodological principle but also one whose epistemological foundation aligns 

with that of the principle of permanence and the law of the negation of negation. 

In this way, the principle of polyformity assumes the features of a dialectical law. 

As the principle of polyformity encompasses all existing didactic principles, it is 

elevated to the status of a universal principle in education. 
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