Jacek WoOLOSZYN
Politechnika Radomska, Polska

Trivial file transfer protocol (TFTP)

1. TFTP overview

FTP is the main protocol used for the majority ehgral file transfers in
TCP/IP internetworks. One of the objectives ofdesigners of FTP was to keep
the protocol relatively simple, but that was pokesiimly to a limited extent. To
enable the protocol to be useful in a variety ;fesaand between many kinds of
devices, FTP needed a fairly large set of featareks capabilities. As a result,
while FTP is not as complex as certain other pualgdt is still fairly compli-
cated in a number of respects.

The complexity of FTP [Komar 2000; Karanjit, SiyaRarker 2002] is
partly due to the protocol itself, with its dozesfscommands and reply codes,
and partly due to the need of using TCP for conoestand data transport. The
reliance on TCP means that any device wanting ¢oFd$? needs not only the
FTP program but a full TCP implementation as wielmust handle FTP's need
for simultaneous data and control channel connestamd other requirements.

For a conventional computer, such as a regular NP&gintosh, or UNIX
workstation, none of this is really an issue, emglgcwith today's large hard
disks and fast, cheap memory. But remember thatwdddeveloped more than
threedecades ago, when hardware was slow and memorexpensive. Fur-
thermore, even today, regular computers are nobtihe devices used on net-
works. Some networked devices do not have the déjesbof true computers,
but they still need to be able to perform file stans. For these devices, a full
FTP and TCP implementation is a nontrivial matter.

One of the most notable examples of such devieesliakless workstations
computers that have no permanent storage, so wiegnstart up, they cannot
read a whole TCP/IP implementation from a hard tigk most computers eas-
ily do. They start with only a small amount of il software and must obtain
configuration information from a server and therwdlmad the rest of their
software from another network device. The sameeismises for certain other
hardware devices with no hard disks.

The process of starting up these devices is commualled bootstrapping
and occurs in two phases. First, the workstatioprésvided with an IP address
and other parameters through the use of a hosigewafion protocol such as the
Bootstrap Protocol or the Dynamic Host Control Beot. Second, the client
downloads software, such as an operating systendivets, that let it function

247



on the network like any other device. This requttes the device have the abil-
ity to transfer files quickly and easily. The ingttions to perform this boot-
strapping must fit onto a read-only memory (ROMip¢land this makes the size
of the software an important issue again, espgaiadiny years ago.

The solution to this need was to create a lighsieer of FTP that would
emphasize small program size and simplicity ovacfionality. This new proto-
col, TFTP, was initially developed in the late 19a0d first standardized in
1980. The modern version, TFTP versionws documented in RFC 783 in
1981, which was revised and published as RFC 1866, TFTP Protocol in
1992. This is the current version of the standard.

2. Comparing FTP and TFTP
Probably the best way to understand the relatipnbetween TFTP and

FTP is to compare it to the relationship betweenThansmission Control Pro-

tocol (TCP) and User Datagram Protocol (UDP) attthasport layer. UDP is

a simplified, stripped down alternative to TCP tigtuused when simplicity is

more important than rich functionality. SimilarlyFTP is a greatly simplified

version of FTP that allows only basic operationd Etks some of FTP's fancy
capabilities in order to keep its implementatiosyeand its program size small.

Due to its limitations, TFTP is a complement to FTBt a replacement for
it. TFTP is used only when its simplicity is impamt and its lack of features is
not. Its most common application is bootstrappitingugh it can be used for
other purposes. One specific application that th€F standard describes for the
protocol is the transport of electronic mail (emaiVhile the protocol supports
this explicitly, TFTP is not generally used forghgurpose today.

FTP and TFTP have significant differences in astiéaur significant areas:

— TransportThe comparison to TCP and UDP is apt not only basethe fea-
tures/simplicity trade-off, but because FTP use® T@augdahl Scott 2001]
for transport while TFTP uses UDP. Like TFTP, UDRPsimple, and this
makes the two ideal for embedding together as dwae program set in
a network device.

— Limited Command S&TP includes a rich set of commands to allow fites
be sent, received, renamed, deleted, and so fORRP allows files only to
be sent and received.

— Limited Data RepresentationB=TP does not include some of FTP's fancy
data representation options it allows only simpRCA or binary file trans-
fers.

— Lack of AuthenticatiotDP uses no login mechanism or other means of au-
thentication. This is again a simplification, thbuig means the operators of
TFTP servers must severely restrict the files thmeke available for access.
(It is also part of why TFTP specifically does radibw the client to perform
dangerous file operations such as deletion.)

24¢



3. Overview of TFTP Operation

Communication and messaging in TFTP is very difiefeom FTP because
of the different transport layer protocols usedebgh. FTP makes use of TCP's
rich functionality, including its stream data ortigtion, to allow it to send bytes
of data directly over the FTP data connection. Ta¥® takes care of reliable
delivery of data for FTP, ensuring that files ageaived correctly. In contrast,
since TFTP uses UDP, it must package data intwiohetl messages for both
protocol control and data communication. TFTP nalsb take care of timing
transmissions to detect lost datagrams and thesmsghitting as needed.

TFTP servers allow connections from TFTP clientpaédorm file send and
receive operations. Many hosts that run FTP Sdisportack 2004] will also
run a separate TFTP server module. TFTP useratmitionnections by starting
a TFTP client program, which generally uses a cong+ime interface similar
to that of many FTP clients the main differencéhis much smaller number of
commands in TFTP.

The basic operation of TFTP has not changed sirté€ R350 was pub-
lished, but a new feature was added to the protioctP95. RFC 1782, TFTP
Option Extension, defines a mechanism by which &P Elient and TFTP
server can negotiate certain parameters that wiitrol a file transfer prior to
the transfer commencing. This allows more flexipiin how TFTP is used,
adding a slight amount of complexity to TFTP, bot a great deal.

The option extension is backward-compatible witjutar TFTP and is used
only if both server and client support it. Two sedpsent RFCs define the actual
options that can be negotiated: RFC 1783, TFTP IBlae Option, and RFC
1784, ,TFTP Timeout Interval and Transfer Size Op$’. This set of three
RFCs (1782, 1783, and 1784) was replaced in 199&dwted versions in RFCs
2347, 2348, and 2349.

TFTP communication is client/server based, as dis&di in the overview.
The process of transferring a file consists oféhmain phases:

— Initial Connection The TFTP client establishes the connection by sgndi
an initial request to the server. The server redpdrack to the client, and the
connections effectively opened.

— Data Transfer Once the connection is established, the client sarder
exchange TFTP messages. One device sends datdeaoither sends acknowl-
edgments.

— Connection Termination When the last TFTP message containing data
has been sent and acknowledged, the connectiemménated.

Connection Establishment and | dentification

The matter of a connection is somewhat differenTHTP than it is with
a protocol like FTP that uses TCP. FTP must esfalali connection at the TCP
level before anything can be done by FTP itselfTRFFhowever, uses the con-
nectionless UDP for transport, so there is no cotime in the sense that one

24¢



exists in TCP. In TFTP, the connection is more lngical sense, meaning that
the client and server are participating in the geot and exchanging TFTP mes-
sages.

The TFTP server listens continuously for requestsvell-known UDP port
number 69, which is reserved for TFTP. The clidmiases for its initial com-
munication an ephemeral port number, as is usul#ycase in TCP/IP. This
port number actually identifies the data transfed s called dransfer identifier
(TID).

What's different about TFTP, however, is that thevar also selects a pseu-
dorandom TID that it uses for sending responsek tmathe client it doesn't send
them from port number 69. This is done becausedirygua unique client port
number and source port number, multiple TFTP exgbsrcan be conducted
simultaneously by a server. Each transfer is ifledtiautomatically by the
source and destination port number, so there iseea to identify in data mes-
sages the transfer to which each block data beldras keeps the TFTP header
size down, allowing more of each UDP message ttagoactual data.

For example, suppose the TFTP client selects adfIB145 for its initial
message. It would send a UDP transmission frompats 3145 to the server's
port 69. Say the server selects a TID of 1114.dulv send its reply from its
port 1114 to the client's port 3145. From thentba,client would send messages
back to server port 1114 until the TFTP sessionacuaspleted.

4. Lock-Step Client/Server Messaging

After the initial exchange, the client and servectenge data and acknowl-
edgment messages liock-stepfashion. Each device sends a message for each
message it receives one device sends data messay@gits for acknowledg-
ments the other sends acknowledgments and waitkatarmessages. This form
of rigid communication is less efficient than aliogy the transmitter to fire
away with one data message after another, butimg®rtant because it keeps
TFTP simple when it comes to an important issugansmissions.

Like all protocols using the unreliable UDP, TFT&mo assurances that
any messages sent will actually arrive at theitidaon, so it must use timers
to detect lost transmissions and resend them. \ighdifferent about TFTP is
that both clients and servers perform retransmissitie device that is sending
data messages will resend the data message iésnlaeceive an acknowledg-
ment in a reasonable period of time the device isgnthe acknowledgments
will resend the acknowledgment if it doesn't reeethe next data message
promptly. The lock-step communication greatly siifigd this process, since
each device needs to keep track of only one oulistgmmessage at a time. It
also eliminates the need to deal with complicatismsh as reorganizing blocks
received out of order. Since TFTP uses UDP ratten fTCP, no explicit con-
cept of a connection exists as in FTP. A TFTP sesisistead uses the concept

25C



of a logical connection, which is opened when antlsends a request to a server
to read or write a file. Communication between thent and server is per-
formed in lock-step fashion one device sends daasages and receives ac-
knowledgments so it knows the data messages weeivee; the other sends
acknowledgments and receives data messages sowskhe acknowledgments
were received.

5. Difficulties with TFTP's Simplified Messaging Mehanism

One of the most important drawbacks with this tégie is that while it
simplifies communication, it does so at the cosp@fformance. Since only one
message can be in transit at a time, this limitsuphput to a maximum of 512
bytes for exchange of messages between the clighserver. In contrast, when
using FTP, large amounts of data can be pipelihektis no need to wait for an
acknowledgment for the first piece of data befaeding the second.

Another complication is that if a data or an acklegment message is re-
sent and the original was not lost but rather gledayed, two copies will show
up. The original TFTP rules stated that upon reacafig duplicate datagram, the
device receiving it may resend the current datagiam receipt of a duplicate
block 2 by a client doing a read would result ie ttient sending a duplicate
acknowledgment for block 2. This would result irotacknowledgments being
received by the server, which would in turn sendckl3 twice. Then there
would be two acknowledgments for block 3, and so on

It's also worth emphasizing that TFTP includes hltsty no security, so no
login or authentication process is in place. As tiomed earlier, administrators
must use caution in deciding what files to makeilalbbe via TFTP and in al-
lowing write access to TFTP servers. You saw aatfiat TFTP operation con-
sists of three general steps initial connectiona dieansfer, and connection ter-
mination. All operations are performed through #éxehange of specific TFTP
messages. Let's take a more detailed look noweaetthree phases of operation
and the specifics of TFTP messaging. The first agssent by the client to
initiate TFTP is either a read request (RRQ) meassaa write request (WRQ)
message. This message serves implicitly to esktatitis logical TFTP connec-
tion and to indicate whether the file is to be skeom the server to the client
(read request) or the client to the server (wetguest). The message also speci-
fies the type of file transfer to be performed. P-3upports two transfer modes
netasciimode (ASCII text files as used by the Telnet Profjpandoctetmode.
Originally, a third file type option existed, callenail mode, but TFTP was
never really designed for transmitting mail and thption is now obsolete. As-
suming no problem occurred with the request (ssch server problem, inability
to find the file, and so on), the server will resdowith a positive reply. In the
case of a read request, the server will immediadehd the first data message
back to the client. In the case of a write requibst server will send an acknowl-

251



edgment message to the client, telling it thataymproceed to send the first data
message.

After the initial exchange, the client and servectenge data and acknowl-
edgment messages in lock-step fashion as descebsdir. For a read, the
server sends one data message and waits for aoveleklgment from the client
before sending the next one. For a write, the themds one data message and
the server sends an acknowledgment for it, befegeclient sends the next data
message.

Each data message contains a block of between Bldhdytes of data. The
blocks are numbered sequentially, starting witfflie humber of each block is
placed in the header of the data message cartyaidtock and then used in the
acknowledgment for that block so the original seha®ws it was received. The
device sending the data will always send 512 bgtetata at a time for as long
as it has enough data to fill the message. Whgat# to the end of the file and
has fewer than 512 bytes to send, it will send aslynany bytes as remain.

The receipt of a data message with between 0 ahd@ks of data signals
that this is the last data message. Once thisksoadedged, it automatically
signals the end of the data transfer. There isesal o terminate the connection
explicidy, just as it was not necessary to estabtisxplicitly.

TFTP Read Process Steps

Let's look at an example that shows how TFTP mésgagorks. Suppose
the client wants to read a particular file that200 bytes long:
1. The client sends a read request to the serverifgpgahe name of the file.
2. The server sends back a data message containiclg blcarrying 512 bytes
of data.
The client receives the data and sends back amatéagment for block 1.
The server sends block 2, with 512 bytes of data.
The client receives block 2 and sends back an adkagment for it.
The server sends block 3, containing 176 bytesatd.dt waits for an ac-
knowledgment before terminating the logical conioect
The client receives the data and sends an ackngmieat for block 3. Since
this data message had fewer than 512 bytes, it &tioavfile is complete.
8. The server receives the acknowledgment and knoedilidh was received

successfully.

S

N

TFTP Write Process Steps
Here are the steps in the same process, but wieeoliént is writing the file:
The client sends a write request to the servecifypeg the name of the file.
2. The server sends back an acknowledgment. Sincadkimwledgment is prior
to the receipt of any data, it uses block 0 inatienowledgment.
3. The client sends a data message containing blogitl512 bytes of data.

=

252



The server receives the data and sends back aovaeklyment for block 1.

The client sends block 2, containing 512 bytesaté.d

The server receives the data and sends back aovaeklyment for block 2.

The client sends block 3, containing 176 bytesavédit waits for an acknowl-

edgment before terminating the logical connection.

8. The server receives block 3 and sends an acknomleagfor it. Since this
data message had fewer than 512 bytes, the trasiskene.

9. The client receives the acknowledgment for blockn8 knows the file write
was completed successfully.

A TFTPread operatiorbegins with the client sending a read request agess
to the TFTP server the server then sends thenfildl i2-byte data messages, wait-
ing after each one for the client to acknowledgmipg before sending the next.
A TFTP writeoperationstarts with a write request sent by the clierthoserver,
which the server acknowledges. The client then se¢hd file in 512-byte data
blocks, waiting after each for the server to ackedge receipt. In both cases,
there is no explicit means by which the end ofagfer is marked the device re-
ceiving the file simply knows the transfer is cogtplwhen it receives a data mes-
sage containing fewer than 512 bytes.

If a problem is encountered at any stage of thenexion establishment or
transfer process, a device may reply with an emessage instead of a data or ac-
knowledgment message, as appropriate. An erroragessormally results in the
failure of the data transfer this is one of thegsipaid for the simplicity of TFTP.

Each TFTP file transfer proceeds using the prodessribed, which transfers
a single file. If another file needs to be sentemeived, a new logical communica-
tion is established, in a manner analogous to b ¢feates data connections. The
main difference is that TFTP has no persistentrobobnnection, as FTP does.

One of the difficulties that designers of simpletpcols and applications seem
to have is keeping them simple. Many protocold stair small, but over time well-
intentioned users suggest improvements that aedalowly but surely.

The reason for adding this capability is that thigioal TFTP provided no
way at all for the client and server to exchangeartant control information prior
to sending a file. This limited the flexibility dhe protocol to deal with special
cases, such as the transfer of data over unustvebnketypes. The TFTP option
negotiation feature allows additional parameterdd¢oexchanged between the
client and server that govern how data is tranasfierit does this without signifi-
cantly complicating the protocol and is backwardipatible with normal TFTP.
It is used only if both client and server suppgrand one device trying to use the
feature will not cause problems if the other ddesrpport it.

The client begins the negotiation by sending a fresliTFTP read request or
write request message. In addition to the nornfakimation that appears in this
message, list of options may also be included. Eadpecified with an option
code and an option value. The names and valuesxaressed as ASCII strings,

No oA

25¢



terminated by a null character (0 byte). Multipjgtions may be specified in the
request message.

The server receives the request containing th@mgtiand if it supports the
option extension, it processes them. It then retarspecial option acknowledg-
ment(OACK) message to the client, where it lists all the oithat the client
specified that the server recognizes and acceptg.ofptions that the client re-
guested but the server rejects are not includeéderOACK. The client may use
only the options that the server accepts. If thentkejects the server's response, it
may send back an error message (with error coded) receipt of the unaccept-
able OACK message.

The server may specify an alternative value ineisponse for certain options,
if it recognizes the option but doesn't like thier's suggested value. Obviously,
if the server doesn't support options at all, It ighore the client's option requests
and respond with a data message (for a read) egwdar acknowledgment (for
a write) as in normal TFTP.

If the server did send an OACK, the client procetedsend messages using
the regular messaging exchange described in thiopsesection. In the case of
a write, the OACK replaces the regular acknowledgnrethe message dialog. In
the case of a read, the OACK is the server'siiestsage instead of the first data
block that it would normally send. TFTP doesn'oallthe same device to send
two datagrams in a row, so a reply from the clienist be received before that
first block can be sent. The client does this bydéey a regular acknowledgment
with a block nhumber of 0 in it the same form of makledgment a server nor-
mally sends for a write.

TFTP is supposed to be a small and simple protscoit include few extra
| features. One that it does supporbfdion negotiationwhere a TFTP client and
server attempt to come to agreement on additicaranpeters that they will use in
transferring a file. The TFTP client includes omenmre options in its read request
or write request message, the TFTP server thersssendption acknowledgment
(OACK) message listing each option the server agieaise. The use of options
when reading a file means that an extra acknowledgmust be sent by the cli-
ent to acknowledge the OACK before the server stradfirst block of the file.

For review, let's take a look at each of the fapsgible cases: read and write,
with and without options.

The initial message exchange for a normal readowitbption negotiation is
as follows:

1. Client sends read request.
2. Server sends data block 1.
3. Client acknowledges data block 1. Andsoon. ..

With option negotiation, a read is as follows:
1. Client sends read request with options.

254



. Server sends OACK.

Client sends regular acknowledgment for block @t th, it acknowledges the
OACK.

Server sends data block 1.

. Client acknowledges data block 1. And soon. ..

w N

o

The initial message exchange for a normal writéh@uit option negotiation)
is as follows:
1. Client sends write request.
2. Server sends acknowledgment.
3. Client sends data block 1.
4. Server acknowledges data block 1. And soon . ..

And here's a write with option negotiation:
Client sends write request with options.
Server sends option acknowledgment (instead oflaegeknowledgment).
Client sends data block 1.
Server acknowledges data block 1. And so on ...

bR

Conclusions

For situations in which the full FTP is either uoessary or impractical, the
simpler Trivial File Transfer Protocol (TFTP) wasveloped. TFTP is like FTP in
that it is used for general file transfer betweatlient and server device, but it is
stripped down in its capabilities. Rather thanudahg a full command set and
using TCP for communication, like FTP, TFTP canuked only for reading or
writing a single file, and it uses the fast butaliable UDP for transport. It is often
preferred in situations where small files must lamdferred quickly and simply,
such as for bootstrapping diskless workstations.

Literatura

Haugdahl Scott J. (2001pjagnozowanie i utrzymanie sieci. Kga ekspertaGliwice.
Karanjit S., Siyan, Parker T. (2002)CP/IP Kskga ekspertaWydanie Il, Gliwice.
Komar B. (2000)Administracja sieci TCP/IP dla kdegq Gliwice.

Sportack M. (2004)Sieci komputerowe. Kgja ekspertaWydanie 11, Gliwice 2004.

Abstract

This article provides a description of the operatd TFTP, beginning with
an overview description of the protocol, its higtand motivation, and the rele-
vant standards that describe it. | discuss itsatjper in general terms, cover how
TFTP clients and servers communicate, and expl&fPTmessaging in detail.

25¢



I then discuss TFTP options and the TFTP optioroti@ipn mechanism. The
article concludes by showing the various TFTP nesdarmats. File Transfer
Protocol (FTP) implements a full set of commandd eeply functionalities that
enables a user to perform a wide range of file mmrg and manipulation tasks.
Although FTP is ideal as a general-purpose protéaolfile transfer between
computers, on certain types of hardware, it isctlmmplex to implement easily and
provides more capabilities than are really neetfed¢ases where only the most
basic file transfer functions are required whilaglicity and small program size is
of paramount importance, a companion to FTP caledTrivial File Transfer
Protocol(TFTP) can be used.

Key words: file transfer protocol, TFTP, informatyka.

Podstawy technologii TFTP

Streszczenie

W artykule tym przedstawiono opis protokotu TFTRilédy go uwaat za
dopetnienie protokotu FTP izywa¢ w przypadku, kiedy istotnrole odgrywa
jego mata zteonas¢. Ze wzgkdu na jego ,lekké&” idealne wydaje siby¢ zasto-
sowanie go w systemach o matych mocach obliczembw@®pisano mechanizm
dziatania protokotu oraz gtéwneardice pomedzy protokotami TFTP oraz FTP.

Stowa kluczowe protokoét transferu plikow, TFTP, informatyka.

25¢€



