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Introduction

The impact of agriculture on carbon dioxide emissions (CO2) is a significant 
subject of scientific research and public debate amidst current environmental and 
climate change challenges. Climate change poses an urgent problem with far-
reaching consequences for society, ranging from the economy and agriculture 
to health and cultural diversity. The relationship between natural sciences and 
socio-economic knowledge is fundamental in investigating climate change and its 
socio-economic outcomes (Danilov-Danil’yan et al., 2020).

The impact of climate change on productivity varies across economic sectors, 
with global warming and weather instability having a significant impact on 
agricultural productivity (Nath, 2020). Changes in atmospheric greenhouse gas 
concentrations, and changes in land structure that lead to climate change affect 
agricultural crops (Jones et al., 2022). Climate warming also directly and indirectly 
affects human health, leading to diseases, accidents, and negative psychological 
effects (Bunz, Mücke, 2017). Overall, tackling climate change is crucial for the 
sustainable long-term development and well-being of societies.

Excessive CO2 emissions can cause an increase in temperature, which can 
lead to reduced plant and animal production, and increased social inequalities 
(Prandecki, Sadowski, 2010). Additionally, global warming may negatively 
impact the natural environment by reducing milk production, conception rates 
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in animals, appetite, and even increasing mortality (Cho et al., 2011). Changing 
rainfall patterns and growing seasons can lead to unequal production rates among 
farmers from different countries. According to Prandecki et al. (2020), global 
temperature increase negatively affects farmers’ lives by causing water scarcity, 
reducing pasture availability, increasing feed costs, and raising expenses for 
maintaining appropriate building temperatures.

Agriculture is a significant contributor to greenhouse gas (GHG) emissions. 
The main sources of GHG emissions in agriculture are agricultural soil 
management, fertiliser application, livestock management, fossil fuel combustion 
and land use change (Zaman et al., 2021). In the European Union, the structure 
of agricultural GHG emissions in 2021 was dominated by enteric fermentation, 
agricultural soils, and manure management (Mielcarek-Bocheńska, Rzeźnik, 
2021). Livestock farming is the largest sector of greenhouse gas emissions in EU 
agriculture, responsible for 70% of total emissions (Panchasara et al., 2021). The 
remaining 30% is generated by the fuel consumption of machinery, and the use of 
electricity in agricultural production, fertiliser use and soil exploitation (Caldwell, 
Smukler, 2020). Crop cultivation, land use change, and post-harvest residue 
burning are additional sources of agricultural GHG emissions (Jaiswal, Agrawal, 
2020). To mitigate these emissions, climate-smart agricultural practices such 
as conservation tillage, use of cover crops and strategic use of fertilisers can be 
implemented (Fall et al., 2021). Efforts to reduce GHG emissions from agriculture 
are crucial to address climate change and ensure sustainable food production.

Agriculture plays an important role in the economies of the Visegrad Group 
(V4) countries3, which consists of Poland, the Czech Republic, Slovakia and 
Hungary. These are diverse regions with a rich agricultural tradition, but agriculture 
has a significant impact on CO2 emissions in these countries. At the same time, 
the V4 countries are striving to reduce greenhouse gas emissions by implementing 
international climate agreements, such as the Paris Agreement, or the EU’s Green 
Transition Plan (Fit for 55)4. 

There are, however, challenges to achieving the targets set for reducing CO2 
emissions. Due to the constant economic transformation, low-carbon development 
is still an important issue in the V4 countries and efforts are being made to improve 
the quality of life while protecting the environment. These efforts include, 
among others, assessing the eco-efficiency of energy resources and technologies, 
promoting renewable energy sources and developing distributed energy systems 
(Dzikuć et al., 2021). The V4 countries also have different approaches and levels of 
energy transition, with Poland facing the greatest challenges due to its dependence 

3 The Visegrad Group, also known as the Visegrad Four or the V4, is a cultural, economic, and 
political alliance of four Central European countries: the Czech Republic, Hungary, Poland, and Slovakia.

4 Fit for 55 is a legislative package of legislation that is intended to be applied to greenhouse 
gas emissions by 55% by 2030 to the full extent set in 1990.
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on coal production (Kochanek, 2021). Among the V4 countries, Poland has not 
even met its existing commitments to reduce greenhouse gas emissions (Tucki et 
al., 2021). In general, V4 countries are working on energy transition and GHG 
emission reductions, but there are different levels of progress and challenges 
within the group (Gostkowski et al., 2021).

Given the challenges of the energy transition facing the V4 countries, the study 
aims to answer the question: how do agricultural production, energy consumption, 
fertiliser usage, and cultivated land area collectively contribute to carbon emissions 
from agriculture in the Visegrad group countries?

With this research question in mind, this study aims to investigate the factors 
that contribute to carbon emissions in agriculture, with a focus on the Visegrad 
countries. Achieving the stated objective required investigating how agricultural 
production, energy and fertiliser use, and cropland area affect CO2 emissions from 
agriculture. The study used empirical econometric modelling methods for panel 
data such as fully modified ordinary least squares (FMOLS), dynamic ordinary 
least squares estimator (DOLS) and Granger causality analysis based on the 
Juodis, Karavias and Sarafidis estimator. 

An additional aim of the study is to provide information for policy makers in 
the formulation of zero-emission policies in agriculture and the adaptation of the 
economy to the Fit for 55 package. 

Literature review

Most studies looking for a relationship between environmental pollution and 
economic development are based on the concept of the Environmental Kuznets 
Curve (EKC). It illustrates a hypothetical relationship between environmental 
quality, and the level of economic development (Selden, Song, 1994). According 
to the hypothesis underlying the EKC, various indicators of environmental 
degradation worsen with economic growth until per capita income reaches 
a certain point during development. Many studies consider in EKC model factors 
such as the economy’s structure, energy consumption, environmental policy, or 
technological change in various countries and regions (Shahbaz, Sinha, 2019). 

European and global CO2 emissions are largely the responsibility of 
agriculture, which is also highly sensitive to climate change (Naseem et al., 
2020). Econometric studies, to date, have shown that food crop production 
and livestock farming contribute to CO2 (Caldwell, Smukler, 2020). The use of 
machinery, electricity and fossil fuels in agricultural practices such as ploughing, 
cultivation, and irrigation results in significant carbon dioxide emissions (Shakoor 
et al., 2022). In addition, the cultivation of certain crops contributes to increased 
greenhouse gas emissions.
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Agricultural value added has been found to have a significant impact on CO2 
emissions in several studies. Some studies suggest a negative association between 
agriculture value added and CO2 emissions, indicating that increased agricultural 
activities can reduce emissions due to the environmentally improving effect of 
the sector (Doğan, 2018). Research in China using the ARDL method also shows 
a negative relationship between industrial, agriculture, and services sector value-
added and CO2 emissions in both the short and long run (Huan et al., 2022).

In Pakistan, it was observed that in the long run, agriculture value added is 
negatively related to CO2 emissions, indicating that the agricultural sector has 
the potential to mitigate it (Khurshid et al., 2022). Similarly, in a sample of 
middle-income countries, it was found that agriculture value added is negatively 
associated with per capita CO2 emissions (Majewski et al., 2022). Additionally, 
in a panel of five North African countries, it was observed that an increase in 
agricultural value-added leads to a reduction in CO2 emissions (Adedoyin et al., 
2020). Similar observations were also obtained in Bangladesh (Rahman et al., 
2020). These findings suggest that promoting sustainable agricultural practices 
and increasing agricultural value added can contribute to the reduction of CO2 
emissions in underdeveloped countries.

However, some studies conducted in developed countries have found 
different relationships. The increase in value added from agriculture to GDP 
has been identified as a driver of CO2 emissions in developing and transition 
economies (Adedoyin et al., 2021). Long and Tang (2021) analysed the 
relationship between economic growth and agricultural carbon emissions in 
China using the EKC model. They found that economic growth and production 
growth are the main drivers of agricultural carbon emissions. Khan (2020) 
examined the determinants of environmental degradation and CO2 emissions in 
developing and developed countries. He found that agricultural production has 
a positive impact on CO2 emissions from liquid sources and a negative impact 
on the total CO2 emissions. 

Land use change, including deforestation and conversion of natural ecosystems 
to agricultural land, also generates increases in carbon emissions (Khan, 2020). 
Conversion of land for agricultural use, such as deforestation and peatland drainage, 
is a major contributor to CO2 emissions (Tubiello et al., 2021).

Agricultural land use plays a significant role in CO2 emissions and mitigation 
strategies. Studies have shown that the global technical mitigation potential 
from agriculture by 2030 is estimated to be around 5500–6000 Mt CO2-eq, 
excluding fossil fuel offsets from biomass (Panchasara et al., 2021). The effects 
of forests and agricultural land on CO2 emissions have been quantified using the 
Environmental Kuznets Curve framework, indicating a relationship between land 
use and emissions (Parajuli et al., 2019). Additionally, the FAOSTAT database 
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highlights that agriculture, forestry, and land use changes contribute up to 30% of 
anthropogenic greenhouse gas emissions (Tubiello et al., 2013). 

The use of fertilisers in agriculture is another factor that contributes to 
CO2 emissions. Some studies have shown that increasing atmospheric CO2 
concentrations can lead to a fertilisation effect, enhancing biomass productivity 
in non-agricultural areas (Amann, Hartmann, 2018). In addition, inappropriate 
fertilisation and intensive tillage practices can lead to loss of soil carbon and 
increased CO2 emissions to the atmosphere (Li et al., 2014). Also, econometric 
studies indicate that the use of fertilisers to increase agricultural production can 
contribute to greenhouse gas (GHG) emissions, which have a significant impact 
on the environment (Wu et al., 2021).

The results of short-run study described that fertilisers usage in agriculture 
revealed a negative linkage to CO2 emission in Bhutan (Rehman et al., 2022). 
The long-term evidence shows that fertiliser usage is positively and significantly 
associated with carbon dioxide emissions in Pakistan (Rehman et al., 2019). 
However, according to research by Khan et al. (2022), the consumption of 
chemical fertilisers in China does not show a significant association in the short 
or long term.

The relationship between energy, agriculture, and CO2 emissions is intricate 
and influenced by various factors such as income levels, governance quality, 
and technological advancements. Studies have shown that there is a significant 
interplay between these factors in different regions (Ben Jebli, Ben Youssef, 2017). 
Saidmamatov et al. (2023) suggest that economic growth, water production, 
energy consumption, and electricity production are factors that tend to increase 
CO2 emissions from agriculture. Qiao et al. (2019) examined the impact between 
agriculture and economic growth, and renewable energy and CO2 emissions in G20 
countries. They found that agriculture increases CO2 emissions, while renewable 
energy use decreases them. Gokmenoglu and Taspinar (2018) tested the EKC 
hypothesis for agriculture in Pakistan and found that energy has a positive impact 
on CO2 emissions. Ali et al. (2021) modelled the impact of income, agricultural 
innovation, energy use, and environmental degradation on CO2 emissions in 
Nigeria. The study confirmed the significant impact of energy use on emissions 
from agriculture.

To date, a wide range of models have been used to investigate the relationship 
between CO2 emissions and agriculture. To date, the Auto Regressive Distributed 
Lag model has been used (Zahoor, 2018), the VAR model (Gurbuz et al., 2021), 
quantile panel regression techniques (Nwaka et al., 2020), non-linear least squares 
estimation (Murad, Ratnatunga, 2013), vector error correction model, and Granger 
causality tests. Some studies have also used FMOLS and DOLS methods (Koshta 
et al., 2020; Chandio et al., 2020; Dogan, 2019).
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In the global literature, the relationship between agriculture, broadly defined, 
and CO2 emissions has been investigated using panel data analyses for different 
groups of countries and regions. The results show that income, economic 
integration, agricultural value added, and energy consumption are the main drivers 
of agricultural emissions in both the short and long term (Nguyen et al., 2021; 
Nwaka et al., 2020; Khan, 2020; Naseem, Guang Ji, 2021).

Several studies have also analysed models that assess the relationship 
between agricultural CO2 emissions in the Visegrad countries. The analysis of 
GHG emissions in these countries showed that the agricultural sector plays an 
important role in contributing to CO2 emissions (Wawrzyniak, 2020). Factors 
such as agricultural exports, cultivated area, agricultural production, agricultural 
imports, value added in agricultural production and fertiliser use have also been 
shown to influence CO2 emissions in the agricultural sector (Simionescu, 2021). 
At the same time, no study examining the indicated factors, and using modern 
estimation methods such as panel data analysis or causality tests for the V4 
countries, has appeared to date. The analysis aims to fill a gap in the research on 
this topic, as studies of this nature are infrequent even in European countries.

Methodology

The empirical study was based on the statistics from the World Bank (WDI) 
and the United Nations Framework Convention on Climate Change (UNFCCC). 
Time series for the Visegrad countries were examined for the period 1995–2020, 
covering the maximum available data range for the variables. The variables 
included in the study were: agricultural carbon emissions (ACO2), fertiliser 
consumption (F), agricultural energy consumption (AEC), agricultural value 
added per capita (AGDP), and agricultural land as a share of total land (ALS). 
Detailed characteristics of the studied variables are presented in Table 1.

Table 1. Variables and description of measurement

Variables Full name Unit Source
lnACO2 Agricultural carbon emissions tonnes per capita UNFCCC GHG Data

lnAEC Agricultural energy consumption tonnes of oil equivalent 
per capita UNFCCC GHG Data

lnAGDP Agriculture value added constant 2015 USD  
per capita WDI World Bank

lnALS Agricultural land % of land area WDI World Bank

lnF Fertiliser consumption kilogrammes per  
hectare of arable land WDI World Bank

Source: author’s calculation.
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The empirical study used panel methods. Due to the relatively small number 
of cross-sectional units (number of cross-sectional units) of 4, the FMOLS and 
DOLS model estimation methods were used (Granger, 1988). The model used 
in the study is a modification of the models previously used by Dogan and Seker 
(2016), Saboori and Sulaiman (2013) and Zwane et. al (2023). However, the 
variables used in the current study differ from those used in the studies cited. The 
general form of the model is as follows:
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test considers cross-sectional dependence and cross-sectional heteroskedasticity in 
the errors, resulting in more resilient results compared to typical Granger causality 
tests. Eviews and Stata software, along with the xtgranger package, were used for 
the computations.

Results

Table 2 presents the fundamental characteristics of the study variables, 
including the mean, median, standard deviation, maximum, minimum, kurtosis, 
and skewness measures. The majority of examined variables demonstrate 
a skewness value close to zero, indicating normality. The kurtosis values, an 
except lnAGDP are below 3, suggesting the normality of variables. In the case 
of the variable in question, data distribution that is more pointed (sharper) than 
a normal distribution.

Table 2. Descriptive statistics

Parameter lnACO2 lnAEC lnAGDP lnALS lnF

Mean -3.979 -1.350 5.782 3.931 4.742

Median -3.873 -1.269 5.863 3.927 4.716

Maximum -2.908 -0.37 6.355 4.234 5.280

Minimum -5.356 -2.441 4.509 3.666 4.058

Std. Dev. 0.613 0.512 0.386 0.165 0.289

Skewness -0.168 -0.306 -1.489 0.116 0.126

Kurtosis 2.082 2.351 5.037 2.020 2.111

Observations 104 104 104 104 104

Source: author’s calculation.

Table 3 displays the findings of the panel unit root tests. The results 
demonstrate that all variables are stationary at the first difference. With the 
exception of the lnAGDP variables, the study variables are non-stationary in 
I(0). The results from the stationarity test suggest that the FMOLS and DOLS 
estimator can be applied.

(5)
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Table 3. Panel unit root test (IPS)

Variables Level 1st difference

lnACO2 0.753 -4.619***

lnAEC -0.680 -4.946***

lnAGDP -1.315* -6.675***

lnALS 0.836 -3.828***

lnF 1.664 -5.601***

Note: ***, **, * indicate significance at the 1%, 5%, and 10% levels, respectively.
Source: author’s calculation.

After confirming that the variables were not stationary, a cointegration test 
was performed to determine the link between CO2 emissions in agriculture and the 
consumption of fertiliser, energy, value added through agriculture, and the area 
of agricultural land. The Pedroni cointegration test results are presented in Table 
4. Since most of the tests were statistically significant, the null hypothesis of no 
cointegration was rejected.

Table 4. Pedroni residual cointegration test

Test Statistic Statistic Prob. Weighted 
Statistic Prob.

v-Statistic panel -0.046 0.519 0.190 0.425

rho-Statistic panel 0.392 0.652 -0.388 0.349

PP-Statistic panel -1.335 0.091 -2.957 0.002

ADF-Statistic Panel -1.456 0.073 -3.336 0.000

Test Statistic Statistic Prob.

Group rho-Statistic 0.141 0.556

Group PP-Statistic -3.825 0.000

Group ADF-Statistic -3.949 0.000

Note: Alternative hypothesis: common AR coefs. (within-dimension) and alternative hypothesis: 
individual AR coefs. (between-dimension).
Source: author’s calculation.

To reinforce the reliability of the outcomes, a Kao cointegration examination 
was executed and shown in Table 5. The null hypothesis of no cointegration was 
rejected since the test statistic is significant at the 1% level. Thus, the results 
ratified a long-term correlation’s presence among the variables investigated.
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Table 5: The Result of Kao’s cointegration test

Kao Residual Cointegration Test t-Statistic Prob.
ADF -4.324 0,000
Residual variance 0.006
HAC variance 0.005

Source: author’s calculation.

After confirming that the variables are co-integrated, a FMOLS model was 
estimated to investigate the relationship between the variables. The results are 
presented in Table 6. The choice of the optimal model parameters was based on 
the values of the R and R2 parameters. All coefficients are statistically significant 
at the 1% level, indicating their significant impact on CO2 emissions in Visegrad 
country agriculture. It is important to note that these results should be interpreted 
in a long-term perspective:
 – �a 1% increase in energy consumption in agriculture leads to an increase in CO2 
emissions of 0.73% in the long term,
 – �a 1% increase in added value from agricultural production leads to an increase 
in CO2 emissions of 0.43% in the long term,
 – �a 1% increase in fertiliser use leads to a 0.29% increase in CO2 emissions over 
the long term,
 – �an increase in the share of agricultural land of 1% leads to an increase in CO2 
of 0.95%. 

Table 6. Results from the panel fully modified ordinary least square approach (FMOLS)

Variable Coefficient Std. Error t-Statistic Prob.
lnAEC 0.733 0.072 10.207 0.000
lnAGDP 0.426 0.066   6.435 0.000
lnALS 0.945 0.042 22.549 0.000
lnF 0.288 0.077   3.720 0.000
R-squared 0.947
Adjusted R-squared 0.943
S.E. of regression 0.147
Long run variance 0.015

Source: author’s calculation.

The DOLS model was estimated to confirm the findings from the FMOLS 
model (Table 7). Both models yielded consistent results in terms of coefficient 
signs and significance, bolstering the robustness of the study’s conclusions. The 
DOLS model provided a higher level of fitness, as evidenced by the R and R2 
values. The estimation further validates the robustness of the results.
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Table 7. Results from the panel dynamic least square approach (DOLS)

Variable Coefficient Std. Error t-Statistic Prob.
lnAEC 0.548 0.064 8.589 0.000
lnAGDP 0.503 0.114 4.416 0.000
lnALS 1.325 0.377 3.516 0.001
lnF 0.644 0.138 4.674 0.000
R-squared 0.985
Adjusted R-squared 0.963
S.E. of regression 0.119
Long run variance 0.007

Source: author’s calculation.

Causality tests

The study’s final stage entailed examining the causal relations amongst CO2 
emissions, fertiliser consumption, agricultural energy consumption, agricultural 
value added per capita, and agricultural land area as a proportion of total land. 
The aim of this approach is to validate the long-term relationship between the 
time series under consideration, and to determine its direction. At this stage of 
the research, we employed the estimator for Granger non-causality tests for panel 
data, which was developed by Juodis, Karavias, and Sarafidis (JKS). Table 8 
presents the z-statistic and statistical values indicating the cause-effect relationship 
between the variables.

Table 8. Panel Approach to Granger’s causality test

Causality → effect Z-statistics p-value
lnAGDP → lnACO2 2.79 0.005
lnACO2 → lnAGDP -1.47 0.141
lnAEC → lnACO2 2.57 0.010
lnACO2 → lnAEC -0.97 0.332
lnALS → lnACO2 2.00 0.046
lnACO2 → lnALS 0.02 0.988
lnF → lnACO2 2.69 0.007
lnACO2 → lnF 5.9 0.000
Half-Panel Jackknife Wald test statistic 17.44 0.002

Note: The null hypothesis in the procedure in question is defined as “variable X does not cause 
causality of variable Y”.
Source: author’s calculation.
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The BIC information criterion determined the lag length. A test statistic of 
17.438 and a p-value of 0.002 demonstrate solid evidence of rejecting the null 
hypothesis of Granger non-causality. This implies that the observed results are 
highly probable. The z-statistic values for the individual variables indicate both 
unidirectional and bidirectional causality. Bidirectional causality exists between 
fertiliser consumption and CO2 emissions (lnFßàlnACO2). 

Increased carbon dioxide emissions from agriculture can reduce the worth 
added by agriculture. This occurs due to the impact on climate change, making 
crop growth and livestock rearing more challenging. Moreover, ascertaining 
reduced CO2 emissions also impacts agricultural profitability. Increased added 
value in agriculture can result in higher CO2 emissions due to the greenhouse 
gases released by more efficient and extensive cultivation and breeding methods. 
Similarly, increased fertiliser usage can lead to higher CO2 emissions as soil 
amendments release more greenhouse gases into the atmosphere. Additionally, 
increased CO2 emissions can result in more fertiliser usage due to the detrimental 
effects of climate change, such as reduced soil fertility caused by droughts.

Unidirectional causality was instead confirmed between farm area and CO2 
emissions (lnALSà lnACO2) and agricultural energy consumption and CO2 
emissions (lnECà CO2). 

Farm area emerges as the key driver of agricultural CO2 emissions, with larger 
farms contributing more. That causality highlights the need for strategies that 
address area-related emissions in agricultural practices. In the second case, on the 
other hand, the result indicates that energy consumption in agriculture is also the 
main factor influencing CO2 emissions from agriculture. The greater the energy 
consumption in agriculture, the greater the CO2 emissions from agriculture. All 
relationships are illustrated in Figure 1. 13 

 
 

Figure 1. Relationships between study variables established by the 
causality test 

Note: AGDP – added production by agriculture, ALS – agricultural area, F –fertiliser 
consumption, AEC – energy consumption by agriculture. 
Source: author’s calculation. 
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The results obtained from the model estimations for the Visegrad countries 

confirm that CO2 emissions are influenced by an increase in the volume of 
production in agriculture expressed in terms of value added. These results are in 
line with previous studies, which indicated that there is a relationship between 
economic growth and agricultural output growth and CO2 emissions from 
agricultural production (Adedoyin et al., 2021). However, it is worth noting that 
in developing countries, an increase in agricultural production has been observed 
to lead to a reduction in CO2 emissions, which is in contrast to what is typically 
observed in developed countries (Doğan, 2018; Huan et al., 2022). 

Another observation obtained, indicating that increasing the area of 
agricultural land increases CO2 emissions, corresponds with these results. Such 
results were previously confirmed by Zhang et al. (2018) and Yerli et al. (2019). 
Therefore, it should be noted that a rise in agricultural production volume has an 
adverse effect on the environment, as it leads to higher consumption and 
utilisation of natural resources. 
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Figure 1. Relationships between study variables established by the causality test
Note: AGDP – added production by agriculture, ALS – agricultural area, F –fertiliser consumption, 
AEC – energy consumption by agriculture.
Source: author’s calculation.
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Conclusions and discussion

The results obtained from the model estimations for the Visegrad countries 
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economic growth and agricultural output growth and CO2 emissions from 
agricultural production (Adedoyin et al., 2021). However, it is worth noting that 
in developing countries, an increase in agricultural production has been observed 
to lead to a reduction in CO2 emissions, which is in contrast to what is typically 
observed in developed countries (Doğan, 2018; Huan et al., 2022).

Another observation obtained, indicating that increasing the area of agricultural 
land increases CO2 emissions, corresponds with these results. Such results were 
previously confirmed by Zhang et al. (2018) and Yerli et al. (2019). Therefore, it 
should be noted that a rise in agricultural production volume has an adverse effect 
on the environment, as it leads to higher consumption and utilisation of natural 
resources.

The results also indicate that increasing energy consumption by agriculture 
increases CO2. Previously, similar relationships were indicated by Appiah et 
al. (2018) and Flammini et al. (2021). However, it is important to note that an 
increase in energy consumption in agriculture does not always have a negative 
impact on the environment. Numerous studies show that increasing the use of 
renewable energy has a positive impact on the environment by reducing CO2 
emissions from agriculture (Ben Jebli, Youssef, 2017). Studies have shown that it 
has a one-way causal impact on both agriculture and emissions, highlighting its 
potential for positive environmental impact (Appiah et al., 2018). Furthermore, the 
use of renewable energy has been shown to significantly reduce CO2 emissions, 
especially in countries with lower incomes (Naseem, Guang Ji, 2021). 

Also, the results of the study indicate negative environmental impacts of 
fertilisers used by the agricultural sector in the V4 countries, which corresponds to 
the findings of Zwane et al. (2023). The results confirm that CO2 emissions in the 
Visegrad countries are increased by agricultural production, energy and fertiliser 
consumption, and the area of cultivated land.

Summary and implications

The study analysed the correlation between agricultural growth, fertiliser 
consumption, energy consumption, agricultural land expansion and agricultural 
carbon dioxide emissions in the Visegrad countries from 1995 to 2020. Cointegration 
was used to establish long-term associations between variables and both FMOLS 
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and DOLS models were estimated. Finally, to establish the links between variables 
and to highlight potential future research avenues, a cointegration analysis was 
conducted using the seminal JKS estimator.

The results suggest that the agricultural sector is positively related to CO2 
emissions from agricultural activities in the V4 countries. As a result, policies 
aimed at reducing these emissions should centre on lowering energy consumption 
in agriculture and enhancing the agricultural production efficiency with limited 
resources. Additionally, the results indicate that reducing CO2 emissions should 
involve decreasing the amount of land devoted to agriculture and lowering fertil-
iser usage. However, such activities of the Fit for 55 package and the “From Farm 
to Fork” strategy for the accessible have access to users who use external resourc-
es and may impact productivity. Farmers must require support from the Member 
State to ensure emissions levels with reduced greenhouse licensing. Without ap-
plying the procedure that followed, the agriculture of the V4 countries will suffer 
due to the issuance of the Green Deal.

It is therefore worthwhile for the right measures to be implemented at the 
time of the energy transition. Firstly, it should focus on promoting new, greener 
agricultural practices. Over the past decade, the share of EU agricultural land un-
der organic farming has increased by more than 50%, with an annual growth rate 
of 5.7%. Small-scale ecological farming can lead to equity and efficiency gains, 
while land redistribution toward smaller farms can promote economic growth. 
In V4 countries, ecological farming has share of on average 15% of farmland 
(Wrzaszcz, 2023). However, it should be borne in mind that due to the lower 
efficiency of organic crops, small farms will not be able to replace the reduction 
in production resulting from the implementation of climate goals (Chiarella et 
al., 2023). Secondly, it is required to improve energy efficiency in agriculture by 
investing in new technologies and machinery, low and zero carbon. The imple-
mentation of individual RES on farms may also be a solution.

Thirdly, increasing the added value from agricultural production should be 
done by promoting smaller farms and organic production methods, while at the 
same time using more efficient farming methods. Fourthly, with alternative methods 
such as composting and biopesticides, V4 countries should aim to reduce the use of 
fertilisers. Furthermore, it will be necessary to decrease the amount of agricultural 
land by reclaiming it and repurposing it for other uses, such as forests and parks.

In contemplating the future, the integration of renewable energy sources emerges 
as a pivotal consideration for agriculture. Embracing energy derived from renewables 
such as solar, wind, and biomass offers farmers the prospect of diminishing reliance 
on conventional, frequently pollutant-laden, energy outlets. This not only fosters 
the advancement of sustainable practices but also yields positive ramifications for 
the environment by mitigating the greenhouse gas emissions linked to traditional 
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energy sources. Future-oriented initiatives might encompass the implementation of 
photovoltaic panels, the adoption of wind turbines, or the extraction of biogas from 
agricultural waste. Envisioned in this manner, agriculture charts a course toward 
heightened environmental sustainability, concurrently playing a substantive role in 
advancing global objectives for reducing CO2 emissions. 

Implementation of the proposed solutions will also require  a significant in-
vestment in research and development (R&D), as well as in agricultural subsidies. 
Increased investment in R&D directed towards sustainable agricultural practices, 
precision farming technologies, and climate-resilient crop varieties can lead to 
innovative solutions that enhance productivity while minimising environmen-
tal impact. By fostering advancements in agroecology, water management, and 
energy-efficient farming techniques, R&D contributes to a more sustainable and 
low-carbon agricultural sector.

Simultaneously, agricultural subsidies can be strategically employed to in-
centivise practices that reduce CO2 emissions. Redirecting subsidies towards 
eco-friendly practices, such as organic farming, agroforestry, or the adoption of 
renewable energy in agriculture, can stimulate a transition to more sustainable and 
environmentally conscious approaches. This financial support serves as a lever for 
steering agricultural activities towards practices that align with climate mitigation 
goals. It will also require the organisation of educational and awareness-raising 
initiatives on the matter.
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Summary

The primary aspiration of this paper is to learn about the effects of agricultural energy 
consumption, agriculture value added, agricultural land and fertiliser consumption on environmental 
pollution in Visegrad countries. The research employs panel data from long-run models FMOLS 
and DOLS, covering the period from 1995 to 2020. The study suggests that there is a positive and 
statistically significant correlation between CO2 emissions from agriculture in Central and Eastern 
European countries, and factors such as higher energy consumption, increased value from agricultural 
production, greater fertiliser consumption, and larger arable land areas. The FMOLS and DOLS 
models’ long-term coefficients suggest that energy consumption in agriculture and crop area are the 
main factors contributing to the increase in CO2 emissions from agriculture in the studied countries. 
The study recommends a sustainable energy transformation of agriculture by limiting the use of fossil 
fuels in agricultural production and reducing share of arable land.

Keywords: agriculture, CO2 emissions, Visegrad Group, panel methods, energy.

Wpływ rolnictwa krajów Grupy Wyszehradzkiej na emisję CO2.  
Dowody z badania empirycznego danych panelowych  

przy wykorzystaniu metody FMOLS i DOLS

Streszczenie

Głównym celem niniejszego artykułu jest poznanie wpływu zużycia energii w rolnictwie, war-
tości dodanej w rolnictwie, zużycia gruntów rolnych i nawozów na zanieczyszczenie środowiska 
w krajach Grupy Wyszehradzkiej. W badaniu wykorzystano długookresowe modele danych pane-
lowych FMOLS i DOLS, obejmujące okres od 1995 do 2020 roku. Wyniki badania wskazują, że 
istnieje pozytywna i statystycznie istotna korelacja między emisjami CO2 z rolnictwa w krajach 
Europy Środkowej i Wschodniej a czynnikami takimi jak wyższe zużycie energii, zwiększona war-
tość produkcji rolnej, większe zużycie nawozów i większe obszary gruntów ornych. Długotermi-
nowe współczynniki modelu FMOLS potwierdzają, że zużycie energii w rolnictwie i powierzchnia 
upraw są głównymi czynnikami przyczyniającymi się do wzrostu emisji CO2 z rolnictwa w bada-
nych krajach. W oparciu o wyniki badania, zaleca się zrównoważoną transformację energetyczną 
rolnictwa poprzez ograniczenie wykorzystania paliw kopalnych w produkcji rolnej i rekultywację 
części gruntów.

Słowa kluczowe: rolnictwo, emisja CO2, Grupa Wyszehradzka, metody panelowe, energia.

JEL: Q15, Q32, Q43, Q50, B23.


