Characterization of anti-steatogenic long noncoding RNAs and their epigenetic influence on the development of metabolic fatty liver disease – a systematic review
DOI:
https://doi.org/10.15584/ejcem.2025.3.16Keywords:
anti-steatogenic long noncoding RNAs, epigenetic regulation, metabolically associated fatty liver disease, obesityAbstract
Introduction and aim. Numerous transcriptomic studies have demonstrated that the development of metabolically associated fatty liver disease is accompanied by changes in the expression level of long noncoding RNAs (lncRs). The aim: to present a brief description of the role of anti-steatogenic lncRs in the epigenetic influence on the development of metabolically associated fatty liver disease, analyzing the data of modern scientific literature.
Material and methods. An analysis of 64 reports over the past 10 years was conducted from the databases PubMed; MEDLINE; EMBASE; Cochrane Systematic Reviews Database; BIOSIS which were selected using the indicated keywords. Quality aspects were assessed using the adapted Newcastle–Ottawa Scale, PROSPERO CRD420250652980.
Analysis of the literature. Hypoexpression of AC012668 – increased representation of miR-380-5p, activation of LRP2; B4GALT1- AS1/lncSHGL, MEG3 – activation of lipogenesis, gluconeogenesis in hepatocytes; FLRL2 – inhibition of BMAL1 and SIRT1; Gm16551 – increased expression of ACC1, SCD1; HR1 – activation of SREBP1c. LncLSTR – activation of cytochrome Cyp8b1 transcription; MRAK052686 reduction of FABP7 expression.
Conclusion. The formation of hepatosteatosis is supported by a decrease in the expression level of anti-steatogenic lncRs, such as AC012668, B4GALT1-AS1/lncSHGL, MEG3, FLRL2, Gm16551, lncHR1, lncLSTR, MRAK052686. LncRs overexpression is compensatory in escalating inflammation, hyperglycemia.
Downloads
References
Leti F, DiStefano JK. Long Noncoding RNAs as Diagnostic and Therapeutic Targets in Type 2 Diabetes and Related Complications. Genes (Basel). 2017;8(8):207. doi: 10.3390/ genes8080207
DiStefano JK. The Emerging Role of Long Noncoding RNAs in Human Disease. Methods Mol Biol. 2018;1706:91-110. doi: 10.1007/978-1-4939-7471-9_6
Stacey VM, Kõks S. Genome-Wide Differential Transcrip-tion of Long Noncoding RNAs in Psoriatic Skin. Int J Mol Sci. 2023;24(22):16344. doi: 10.3390/ijms242216344
Shobeiri P, Arabzadeh Bahri R, Khadembashiri MM, et al. Role of long non-coding RNAs in cholangiocarcinoma: A systematic review and meta-analysis. Cancer Rep (Hobo-ken). 2024;7(3):e2029. doi: 10.1002/cnr2.2029
Аbaturov А., Nikulina А. Role of genetic modification of the PNPLA3 gene in predicting metabolically unhealthy obesi-ty and associated fatty liver disease in hildren. Eur J Clin Exp Med. 2023;21(1):5-13. doi: 10.15584/ejcem.2023.1.1
Yang L, Li P, Yang W, et al. Integrative Transcriptome Ana-lyses of Metabolic Responses in Mice Define Pivotal LncR-NA Metabolic Regulators. Cell Metab. 2016;24(4):627-639. doi: 10.1016/j.cmet.2016.08.019
DiStefano JK, Gerhard GS. Long Noncoding RNAs and Human Liver Disease. Annu Rev Pathol. 2022;17:1-21. doi: 10.1146/annurev-pathol-042320-115255
Alipoor B, Nikouei S, Rezaeinejad F, et al. Long non-co-ding RNAs in metabolic disorders: pathogenetic relevance and potential biomarkers and therapeutic targets. J Endo-crinol Invest. 2021;44(10):2015-2041. doi: 10.1007/s40618-021-01559-8
Liu C, Li H, Chu F, et al. Long non‑coding RNAs: Key regulators involved in metabolic reprogramming in can-cer (Review). Oncol Rep. 2021;45(5):54. doi: 10.3892/ or.2021.8005
Zhang Y, Liu Y, Huo W, et al. The Role of miRNA and Long Noncoding RNA in Cholestatic Liver Diseases. Am J Pathol. 2024;194(6):879-893. doi: 10.1016/j.ajpath. 2024.02.006
Ma H, Hong Y, Xu Z, et al. N6-methyladenosine (m6A) modification in hepatocellular carcinoma. Biomed Pharmacother. 2024;173:116365. doi: 10.1016/j.bio-pha.2024.116365
Wu YL, Lin ZJ, Li CC, et al. Adipose exosomal noncoding RNAs: Roles and mechanisms in metabolic diseases. Obes Rev. 2024;25(6):e13740. doi: 10.1111/obr.13740
Iyer MK, Niknafs YS, Malik R, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 2015;47(3):199-208. doi: 10.1038/ng.3192
Hon CC, Ramilowski JA, Harshbarger J, et al. An atlas of human long non-coding RNAs with accurate 5’ ends. Na-ture. 2017;543(7644):199-204. doi: 10.1038/nature21374
Fang S, Zhang L, Guo J, et al. NONCODEV5: a compre-hensive annotation database for long non-coding RNAs. Nucleic Acids Res. 2018;46(D1):D308-D314. doi: 10.1093/ nar/gkx1107
Uszczynska-Ratajczak B, Lagarde J, Frankish A, et al. Towards a complete map of the human long non-coding RNA transcriptome. Nat Rev Genet. 2018;19(9):535-548. doi: 10.1038/s41576-018-0017-y
Frankish A, Diekhans M, Ferreira AM, et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 2019;47(D1):D766-D773. doi: 10.1093/ nar/gky955
Kopp F, Mendell JT. Functional Classification and Expe-rimental Dissection of Long Noncoding RNAs. Cell. 2018;172(3):393-407. doi: 10.1016/j.cell.2018.01.011
Cabili MN, Trapnell C, Goff L, et al. Integrative annota-tion of human large intergenic noncoding RNAs reve-als global properties and specific subclasses. Genes Dev. 2011;25(18):1915-1927. doi: 10.1101/gad.17446611
Melé M, Mattioli K, Mallard W, et al. Chromatin environ-ment, transcriptional regulation, and splicing distinguish lincRNAs and mRNAs. Genome Res. 2017;27(1):27-37. doi: 10.1101/gr.214205.116
Chen X, Sun Z. Novel lincRNA Discovery and Tissue--Specific Gene Expression across 30 Normal Human Tissues. Genes (Basel). 2021;12(5):614. doi: 10.3390/ge-nes12050614
Nojima T, Proudfoot NJ. Mechanisms of lncRNA bioge-nesis as revealed by nascent transcriptomics. Nat Rev Mol Cell Biol. 2022;23(6):389-406. doi: 10.1038/s41580-021-00447-6
Statello L, Guo CJ, Chen LL, et al. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96-118. doi: 10.1038/s41580-020-00315-9
Ali T, Grote P. Beyond the RNA-dependent function of LncRNA genes. Elife. 2020;9:e60583. doi: 10.7554/eLi-fe.60583
Bridges MC, Daulagala AC, Kourtidis A. LNCca-tion: lncRNA localization and function. J Cell Biol. 2021;220(2):e202009045. doi: 10.1083/jcb.202009045
Xiao Y, Hu J, Yin W. Systematic Identification of Non--coding RNAs. Adv Exp Med Biol. 2018;1094:9-18. doi: 10.1007/978-981-13-0719-5_2
Grammatikakis I, Lal A. Significance of lncRNA abundan-ce to function. Mamm Genome. 2022;33(2):271-280. doi: 10.1007/s00335-021-09901-4
Chen Y, Long W, Yang L, et al. Functional Peptides En-coded by Long Non-Coding RNAs in Gastrointesti-nal Cancer. Front Oncol. 2021;11:777374. doi: 10.3389/ fonc.2021.777374
Zhang Y, Wang X, Hu C, et al. Shiny transcriptional junk: lncRNA-derived peptides in cancers and immu-ne responses. Life Sci. 2023;316:121434. doi: 10.1016/j. lfs.2023.121434
Sun C, Liu X, Yi Z, et al. Genome-wide analysis of long noncoding RNA expression profiles in patients with non--alcoholic fatty liver disease. IUBMB Life. 2015;67(11):847-852. doi: 10.1002/iub.1442
Shi N, Sun K, Tang H, et al. The impact and role of iden-tified long noncoding RNAs in nonalcoholic fatty liver disease: A narrative review. J Clin Lab Anal. 2023;37(11-12):e24943. doi: 10.1002/jcla.24943
Zeng Q, Liu CH, Wu D, et al. LncRNA and circRNA in Patients with Non-Alcoholic Fatty Liver Disease: A Syste-matic Review. Biomolecules. 2023;13(3):560. doi: 10.3390/ biom13030560
Morgan RL, Whaley P, Thayer KA, Schünemann HJ. Identifying the PECO: A framework for formulating good questions to explore the association of environ-mental and other exposures with health outcomes. Environ Int. 2018;121(1):1027-1031. doi: 10.1016/j. envint.2018.07.015
Eslam M, Newsome PN, Sarin SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol. 2020;73(1):202-209. doi:10.1016/j.jhep.2020.03.039
Wells GA, Shea B, O’Connell D, et al. The Newcastle-Ot-tawa Scale (NOS) for assessing the quality of nonrando-mised studies in meta-analyses [webpage on the Internet] Ottawa, ON: Ottawa Hospital Research Institute; 2011. http://www.ohri.ca/programs/clinical_epidemiology/ oxford.asp. Accessed February 5, 2025.
Chen X, Ma H, Gao Y, et al. Long non-coding RNA AC012668 suppresses non-alcoholic fatty liver disease by competing for microRNA miR-380-5p with lipoprotein--related protein LRP2. Bioengineered. 2021;12(1):6738-6747. doi: 10.1080/21655979.2021.1960463
Wang J, Yang W, Chen Z, et al. Long Noncoding RNA lnc-SHGL Recruits hnRNPA1 to Suppress Hepatic Glucone-ogenesis and Lipogenesis. Diabetes. 2018;67(4):581-593. doi: 10.2337/db17-0799
Chen Y, Huang H, Xu C, et al. Long Non-Coding RNA Profiling in a Non-Alcoholic Fatty Liver Disease Rodent Model: New Insight into Pathogenesis. Int J Mol Sci. 2017;18(1):21. doi: 10.3390/ijms18010021
Chen Y, Chen X, Gao J, et al. Long noncoding RNA FLRL2 alleviated nonalcoholic fatty liver disease through Arntl--Sirt1 pathway. FASEB J. 2019;33(10):11411-11419. doi: 10.1096/fj.201900643RRR
Di Mauro S, Salomone F, Scamporrino A, et al. Coffee Restores Expression of lncRNAs Involved in Steatosis and Fibrosis in a Mouse Model of NAFLD. Nutrients. 2021;13(9):2952. doi: 10.3390/nu13092952
Li D, Cheng M, Niu Y, et al. Identification of a novel human long non-coding RNA that regulates hepatic li-pid metabolism by inhibiting SREBP-1c. Int J Biol Sci. 2017;13(3):349-357. doi: 10.7150/ijbs.16635
Li D, Guo L, Deng B, et al. Long non‑coding RNA HR1 participates in the expression of SREBP‑1c through pho-sphorylation of the PDK1/AKT/FoxO1 pathway. Mol Med Rep. 2018;18(3):2850-2856. doi: 10.3892/mmr.2018.9278
Li P, Ruan X, Yang L, et al. A liver-enriched long non-co-ding RNA, lncLSTR, regulates systemic lipid metabolism in mice. Cell Metab. 2015;21(3):455-467. doi: 10.1016/j. Cmet.2015.02.004
Zhu X, Bian H, Gao X. The Potential Mechanisms of Ber-berine in the Treatment of Nonalcoholic Fatty Liver Di-sease. Molecules. 2016;21(10):1336. doi: 10.3390/molecu-les21101336
Wang X, Wang J. High-content hydrogen water-induced downregulation of miR-136 alleviates non-alcoholic fatty liver disease by regulating Nrf2 via targeting MEG3. Biol Chem. 2018;399(4):397-406. doi: 10.1515/hsz-2017-0303
Zhu X, Li H, Wu Y, et al. lncRNA MEG3 promotes hepatic insulin resistance by serving as a competing endogenous RNA of miR-214 to regulate ATF4 expression. Int J Mol Med. 2019;43(1):345-357. doi: 10.3892/ijmm.2018.3975
Huang P, Huang FZ, Liu HZ, et al. LncRNA MEG3 func-tions as a ceRNA in regulating hepatic lipogenesis by competitively binding to miR-21 with LRP6. Metabolism. 2019;94:1-8. doi: 10.1016/j.metabol.2019.01.018
Zou D, Liu L, Zeng Y, et al. LncRNA MEG3 up-regulates SIRT6 by ubiquitinating EZH2 and alleviates nonalcoholic fatty liver disease. Cell Death Discov. 2022;8(1):103. doi: 10.1038/s41420-022-00889-7
Erdem MG, Unlu O, Demirci M. Could Long Non-Co-ding RNA MEG3 and PTENP1 Interact with miR-21 in the Pathogenesis of Non-Alcoholic Fatty Liver Disease? Biomedicines. 2023;11(2):574. doi: 10.3390/biomedici-nes11020574
Meng X, Long M, Yue N, et al. LncRNA MEG3 Restrains Hepatic Lipogenesis via the FOXO1 Signaling Pathway in HepG2 Cells. Cell Biochem Biophys. 2024;82(2):1253-1259. doi: 10.1007/s12013-024-01278-w
Yuan X, Wang J, Tang X, et al. Berberine ameliorates no-nalcoholic fatty liver disease by a global modulation of hepatic mRNA and lncRNA expression profiles. J Transl Med. 2015;13:24. doi: 10.1186/s12967-015-0383-6
Ahvaz S, Amini M, Yari A, et al. Downregulation of long noncoding RNA B4GALT1-AS1 is associated with bre-ast cancer development. Sci Rep. 2024;14(1):3114. doi: 10.1038/s41598-023-51124-x
De Vitis C, D’Ascanio M, Sacconi A, et al. B4GALT1 as a New Biomarker of Idiopathic Pulmonary Fibrosis. Int J Mol Sci. 2022;23(23):15040. doi: 10.3390/ijms232315040
Chang HC, Guarente L. SIRT1 and other sirtuins in meta-bolism. Trends Endocrinol Metab. 2014;25(3):138-45. doi: 10.1016/j.tem.2013.12.001
Shen S, Shen M, Kuang L, et al. SIRT1/SREBPs-mediated regulation of lipid metabolism. Pharmacol Res. 2024;199: 107037. doi: 10.1016/j.phrs.2023.107037
Tian C, Huang R, Xiang M. SIRT1: Harnessing multiple pathways to hinder NAFLD. Pharmacol Res. 2024;203: 107155. doi: 10.1016/j.phrs.2024.107155
Sheng L, Ye L, Zhang D, et al. New Insights Into the Long Non-coding RNA SRA: Physiological Functions and Me-chanisms of Action. Front Med (Lausanne). 2018;5:244. doi: 10.3389/fmed.2018.00244
Tello-Flores VA, Beltrán-Anaya FO, Ramírez-Vargas MA, et al. Role of Long Non-Coding RNAs and the Molecular Mechanisms Involved in Insulin Resistance. Int J Mol Sci. 2021;22(14):7256. doi: 10.3390/ijms22147256
Zhang Y, Fu Y, Zheng Y, et al. Identification of differen-tially expressed mRNA and the Hub mRNAs modulated by lncRNA Meg3 as a competing endogenous RNA in brown adipose tissue of mice on a high-fat diet. Adipocyte. 2020;9(1):346-358. doi: 10.1080/21623945.2020.1789283
Li L, Fu J, Liu D, et al. Hepatocyte-specific Nrf2 defi-ciency mitigates high-fat diet-induced hepatic steatosis: Involvement of reduced PPARγ expression. Redox Biol. 2020;30:101412. doi: 10.1016/j.redox.2019.101412
Nasiri-Ansari N, Nikolopoulou C, Papoutsi K, et al. Em-pagliflozin Attenuates Non-Alcoholic Fatty Liver Disease (NAFLD) in High Fat Diet Fed ApoE(-/-) Mice by Activa-ting Autophagy and Reducing ER Stress and Apoptosis. Int J Mol Sci. 2021;22(2):818. doi: 10.3390/ijms22020818
Li CP, Li HJ, Nie J, et al. Mutation of miR-21 targets endo-genous lipoprotein receptor-related protein 6 and nonal-coholic fatty liver disease. Am J Transl Res. 2017;9(2):715-721.
Luo Y, Wang H, Wang L, et al. LncRNA MEG3: Targeting the Molecular Mechanisms and Pathogenic causes of Me-tabolic Diseases. Curr Med Chem. 2024;31(37):6140-6153. doi: 10.2174/0109298673268051231009075027
Wang XM, Wang XY, Huang YM, et al. Role and mecha-nisms of action of microRNA‑21 as regards the regulation of the WNT/β‑catenin signaling pathway in the pathoge-nesis of non‑alcoholic fatty liver disease. Int J Mol Med. 2019;44(6):2201-2212. doi: 10.3892/ijmm.2019.4375
Nikulina A. Genetic variants of the glucagon-like recep-tor-1 in obesity. Eur J Clin Exp Med. 2023;21(4):682-691. doi: 10.15584/ej cem.2023.4.16
Thumser AE, Moore JB, Plant NJ. Fatty acid binding pro-teins: tissue-specific functions in health and disease. Curr Opin Clin Nutr Metab Care. 2014;17(2):124-129. doi: 10.1097/MCO.0000000000000031
Storch J, Corsico B. The Multifunctional Family of Mam-malian Fatty Acid-Binding Proteins. Annu Rev Nutr. 2023;43:25-54. doi: 10.1146/annurev-nutr-062220-112240
Ahn J, Lee H, Jung CH, et al. Lycopene inhibits hepatic steatosis via microRNA-21-induced downregulation of fatty acid-binding protein 7 in mice fed a high-fat diet. Mol Nutr Food Res. 2012;56(11):1665-1674. doi: 10.1002/ mnfr.201200182
Page MJ, Moher D, Bossuyt PM, et al. PRISMA 2020 expla-nation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021;372:n160. doi:10.1136/bmj.n160
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 European Journal of Clinical and Experimental Medicine

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our open access policy is in accordance with the Budapest Open Access Initiative (BOAI) definition: this means that articles have free availability on the public Internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from having access to the Internet itself.
All articles are published with free open access under the CC-BY Creative Commons attribution license (the current version is CC-BY, version 4.0). If you submit your paper for publication by the Eur J Clin Exp Med, you agree to have the CC-BY license applied to your work. Under this Open Access license, you, as the author, agree that anyone may download and read the paper for free. In addition, the article may be reused and quoted provided that the original published version is cited. This facilitates freedom in re-use and also ensures that Eur J Clin Exp Med content can be mined without barriers for the research needs.




