Genetic variants of the glucagon-like receptor-1 in obesity
DOI:
https://doi.org/10.15584/ejcem.2023.4.16Keywords:
analysis of single nucleotide gene variants, children, glucagon-like peptide-1 receptor, metabolically healthy obe- sity, metabolically unhealthy obesityAbstract
Introduction and aim. Dysfunction of the glucagon-like peptide 1 (GLP-1)/GLP-1 receptor (GLP-1R) axis promotes obesity and metabolic disorders. The aim was to study the associations of the single nucleotide variants (SNV) GLP1R gene with proinflammatory cytokines and metabolic disorders in children with various obesity phenotypes.
Material and methods. 252 children with obesity aged 6-18 years were examined. The first group (n=152) was represented by children with metabolically unhealthy obesity (MUO). The second group (n=100) consolidated of children with metabolically healthy obesity (MHO). Whole genome sequencing (CeGat, Germany) was performed in 52 children.
Results. An association with the development of obesity was noted for T alleles rs61754624 (t=3.33) and rs10305457 (t=2.06); with MUO – for C alleles rs1042044 (t=2.23), rs1126476 (t=2.63), rs2235868 (t=2.82); T alleles rs61754624 (t=3.33), rs10305457 (t=2.06) GLP1R, p<0.05. In the MHO group, a correlation was found with the levels of pro-inflammatory markers IL-1β, IL-6 in the presence of the GA genotype SNV rs3765468; with hyperglycemia - GA genotype SNV rs6923761, CC genotype SNV rs1042044, AA rs6918287; hyperinsulinemia - GA genotype SNV rs3765468, GG rs10305421; triglyceridemia - AA rs6918287 of GLP1R.
Conclusion. SNV rs1042044, rs3765468, rs6923761, s6918287, and rs rs10305421 GLP1R are associated with the development of MUO in individuals with MHO.
Downloads
References
Ben-Sefer E, Ben-Natan M, Ehrenfeld M. Childhood obesity: current literature, policy and implications for practice. Int Nurs Rev. 2009;56(2):166-173. doi: 10.1111/j.1466-7657.2008.00708.x
Kumar S, Kelly AS. Review of Childhood Obesity: From Epidemiology, Etiology, and Comorbidities to Clinical Assessment and Treatment. Mayo Clin Proc. 2017;92(2):251-265. doi: 10.1016/j.mayocp.2016.09.017
Abaturov A, Nikulina A. Role of genetic modification of the PNPLA3 gene in predicting metabolically unhealthy obesity and metabolic associated fatty liver disease in children. Eur J Clin Exp Med. 2023;21(1):5–13. doi: 10.15584/ejcem.2023.1.1
Malik VS, Willet WC, Hu FB. Nearly a decade on - trends, risk factors and policy implications in global obesity. Nat Rev Endocrinol. 2020;16(11):615-616. doi: 10.1038/s41574-020-00411-y
Thomas-Eapen N. Childhood Obesity. Prim Care. 2021;48(3):505-515. doi: 10.1016/j.pop.2021.04.002
Kachur S, Lavie CJ, de Schutter A, et al. Obesity and cardiovascular diseases. Minerva Med. 2017;108(3):212-228. doi: 10.23736/S0026-4806.17.05022-4
Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15(5):288-298. doi: 10.1038/s41574-019-0176-8
Weihrauch-Blüher S, Schwarz P, Klusmann JH. Childhood obesity: increased risk for cardiometabolic disease and cancer in adulthood. Metabolism. 2019;92:147-152. doi: 10.1016/j.metabol.2018.12.001
Drucker DJ, Habener JF, Holst JJ. Discovery, characterization, and clinical development of the glucagon-like peptides. J Clin Invest. 2017;127(12):4217-4227. doi: 10.1172/JCI97233
Grill HJ. A Role for GLP-1 in Treating Hyperphagia and Obesity. Endocrinology. 2020;161(8):bqaa093. doi: 10.1210/endocr/bqaa093
Baggio LL, Drucker DJ. Glucagon-like peptide-1 receptor co-agonists for treating metabolic disease. Mol Metab. 2021;46:101090. doi: 10.1016/j.molmet.2020.101090
de Luis DA, Ballesteros M, Lopez Guzman A, et al. rs6923761 gene variant in glucagon-like peptide 1 receptor: Allelic frequencies and influence on cardiovascular risk factors in a multicenter study of Castilla-Leon. Clin Nutr. 2018;37(6 Pt A):2144-2148. doi: 10.1016/j.clnu.2017.10.013
Perez-Montes DE, Oca A, Pellitero S, Puig-Domingo M. Obesity and GLP-1. Minerva Endocrinol (Torino). 2021;46(2):168-176. doi: 10.23736/S2724-6507.20.03369-6
Mayendraraj A, Rosenkilde MM, Gasbjerg LS. GLP-1 and GIP receptor signaling in beta cells - A review of receptor interactions and co-stimulation. Peptides. 2022;151:170749. doi: 10.1016/j.peptides.2022.170749
Wang JY, Wang QW, Yang XY, et al. GLP-1 receptor agonists for the treatment of obesity: Role as a promising approach. Front Endocrinol (Lausanne). 2023;14:1085799. doi: 10.3389/fendo.2023.1085799
Abaturov AE, Nikulina AA. Role of the main effector cells of the innate immune system in the development of meta-inflammation of adipose tissue in obesity. Child's Health. 2020;15(5):367-381. doi: 10.22141/2224-0551.15.5.2020.211448
Chen J, Mei A, Wei Y, et al. GLP-1 receptor agonist as a modulator of innate immunity. Front Immunol. 2022;13:997578. doi: 10.3389/fimmu.2022.997578
Wan S, Sun H. Glucagon-like peptide-1 modulates RAW264.7 macrophage polarization by interfering with the JNK/STAT3 signaling pathway. Exp Ther Med. 2019;17(5):3573-3579. doi: 10.3892/etm.2019.7347
Hadjiyanni I, Siminovitch KA, Danska JS, Drucker DJ. Glucagon-like peptide-1 receptor signaling selectively regulates murine lymphocyte proliferation and maintenance of peripheral regulatory T cells. Diabetologia. 2010; 53(4):730-740. doi: 10.1007/s00125-009-1643-x
Shiraishi D, Fujiwara Y, Komohara Y, et al. Glucagon-like peptide-1 (GLP-1) induces M2 polarization of human macrophages via STAT3 activation. Biochem Biophys Res Commun. 2012;425(2):304-348. doi: 10.1016/j.bbrc.2012.07.086
Zhao YY, Chen LH, Huang L, et al. Cardiovascular protective effects of GLP-1: a focus on the MAPK signaling pathway. Biochem Cell Biol = Biochim Biol Cellulaire. 2021;100(1):9-16. doi: 10.1139/bcb-2021-0365
Zhou Y, Li Z, Cao X, et al. Exendin-4 improves behaviorial deficits via GLP-1/GLP-1R signaling following partial hepatectomy. Brain Res. 2019;1706:116-124. doi: 10.1016/j.brainres.2018.11.007
Wang X, Chen J, Rong C, et al. GLP- 1RA promotes brown adipogenesis of C3H10T1/2 mesenchymal stem cells via the PI3K-AKT-mTOR signaling pathway. Biochem Biophys Res Commun. 2018;506(4):976-982. doi: 10.1016/j.bbrc.2018.10.197
Li CL, Zhao LJ, Zhou XL, Wu HX, Zhao JJ. Review on the effect of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors for the treatment of non-alcoholic fatty liver disease. J Huazhong Univ Sci Technolog Med Sci. 2015;35(3):333-336. doi: 10.1007/s11596-015-1433-2
Drucker DJ. Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metab. 2018;27(4):740-756. doi: 10.1016/j.cmet.2018.03.001
Xiang S, Qi L, Zhao F, et al. Glucagon-like peptide-1 receptor gene polymorphism is associated with fat mass in Chinese nuclear families with male offspring. Acta Biochim Biophys Sin (Shanghai). 2019;51(5):545-547. doi: 10.1093/abbs/gmz025
Drucker DJ. GLP-1 physiology informs the pharmacotherapy of obesity. Mol Metab. 2022;57:101351. doi: 10.1016/j.molmet.2021.101351
Klen J, Dolžan V. Glucagon-like Peptide-1 Receptor Agonists in the Management of Type 2 Diabetes Mellitus and Obesity: The Impact of Pharmacological Properties and Genetic Factors. Int J Mol Sci. 2022;23(7):3451. doi: 10.3390/ijms23073451
Xu T, Liu M, Liu Q, Wang B, Wang M, Qu M, Chen X, Wu J. Associations of TCF7L2 rs11196218 (A/G) and GLP-1R rs761386 (C/T) Gene Polymorphisms with Obesity in Chinese Population. Diabetes Metab Syndr Obes. 2021;14:2465-2472. doi: 10.2147/DMSO.S310069
Draznin B. Aroda VR, Bakris G, et al. American Diabetes Association Professional Practice Committee. 6. Glycemic targets: Standards of Medical Care in Diabetes—2022. Diabetes Care. 2022;45(1):83-96. doi: 10.2337/dc22-S006
Peplies J, Börnhorst C, Günther K, et al. IDEFICS consortium. Longitudinal associations of lifestyle factors and weight status with insulin resistance (HOMA-IR) in preadolescent children: the large prospective cohort study IDEFICS. Int J Behav Nutr Phys Act. 2016;13(1):97. doi: 10.1186/s12966-016-0424-4
Elkins C, Fruh Sh, Jones L, et al. Clinical Practice Recommendations for Pediatric Dyslipidemia. Journal of Pediatric Health Care. 2019;33(4):494-504. doi.org/10.1016/j.pedhc.2019.02.009
Flynn JT, Kaelber DC, Baker-Smith CM, et al. Subcommittee on screening and management of high blood pressure in children. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics. 2017;140(3):e20171904. doi: 10.1542/peds.2017–1904
Alberti KG, Zimmet P, Kaufman F, et al. The IDF consensus definition of the metabolic syndrome in children and adolescents. International Diabetes Federation. 2017: 17-19. https://www.idf.org/e-library/consensus-statements/61-idf-consensus-definition-of-metabolic-syndrome-in-children-and-adolescents. Accessed May 2, 2023.
Lim CY, In J. Randomization in clinical studies [published correction appears in Korean J Anesthesiol. 2019;72(4):396. Korean J Anesthesiol. 2019;72(3):221-232. doi:10.4097/kja.19049
Hongshan J, Rong L, Shou-Wei D et al. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. In BMC Bioinformatics. 2014;15:182. doi: 10.1186/1471-2105-15-182
Li H, Durbin R. Fast and accurate short read alignment with Burrows‐Wheeler transform. Bioinformatics. 2009;25(14):1754-1760. doi: 10.1093/bioinformatics/btp324
Mose LE, Wilkerson MD, Hayes DN, et al. ABRA: improved coding indel detection via assembly-based realignment. Bioinformatics. 2014;30(19):2813-2815. doi: 10.1093/bioinformatics/btu376
Deelen P, Bonder MJ, van der Velde KJ, et al. Genotype harmonizer: automatic strand alignment and format conversion for genotype data integration. BMC Res Notes. 2014;7:901. doi: 10.1186/1756-0500-7-901
Landrum MJ, Lee JM, Benson M, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46(D1):D1062-D1067. doi: 10.1093/nar/gkx1153
Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434-443. doi: 10.1038/s41586-020-2308-7
Liu X, Wu C, Li C, et al. dbNSFP v3.0: A one-stop database of functional predictions and annotations for human nonsynonymous and splice-site SNVs. Hum Mutat. 2016;37(3):235-241. doi: 10.1002/humu.22932
Buniello A, MacArthur JAL, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47(D1):D1005-D1012. doi: 10.1093/nar/gky1120.
RefSeq: NCBI Reference Sequence Database. https:www.ncbi.nlm.nih.govrefseq. Accessed May 2, 2023.
den Dunnen JT, Dalgleish R, Maglott DR, et al. HGVS Recommendations for the Description of Sequence Variants: 2016 Update. Hum Mutat. 2016;37(6):564-569. doi:10.1002/humu.22981
Richards S, Aziz N, Bale S et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424. doi: 10.1038/gim.2015.30
Bendotti G, Montefusco L, Lunati ME, et al. The anti-inflammatory and immunological properties of GLP-1 Receptor Agonists. Pharmacol Res. 2022;182:106320. doi: 10.1016/j.phrs.2022.106320
Michałowska J, Miller-Kasprzak E, Seraszek-Jaros A, et al. Association of GLP1R variants rs2268641 and rs6923761 with obesity and other metabolic parameters in a Polish cohort. Front Endocrinol (Lausanne). 2022;13:1000185. doi: 10.3389/fendo.2022.1000185
Sathananthan A, Man CD, Micheletto F, et al. Common genetic variation in GLP1R and insulin secretion in response to exogenous GLP-1 in nondiabetic subjects: a pilot study. Diabetes Care. 2010;33(9):2074-2076. doi: 10.2337/dc10-0200
de Luis DA, Aller R, Izaola O, et al. Role of rs6923761 gene variant in glucagon-like peptide 1 receptor in basal GLP-1 levels, cardiovascular risk factor and serum adipokine levels in naïve type 2 diabetic patients. J Endocrinol Invest. 2015;38(2):143-147. doi: 10.1007/s40618-014-0161-y
de Luis DA, Pacheco D, Aller R, et al. Papel del polimorfismo rs 6923761 del receptor glucagon-like peptide 1 receptor sobre el peso, riesgo cardiovascular y niveles de adipocitoquinas en pacientes con obesidad mórbida [Roles of rs 6923761 gene variant in glucagon-like peptide 1 receptor on weight, cardiovascular risk factor and serum adipokine levels in morbid obese patients]. Nutr Hosp. 2014;29(4):889-893. doi: 10.3305/nh.2014.29.4.7218
Jensterle M, Pirš B, Goričar K, et al. Genetic variability in GLP-1 receptor is associated with inter-individual differences in weight lowering potential of liraglutide in obese women with PCOS: a pilot study. Eur J Clin Pharmacol. 2015;71(7):817-824. doi: 10.1007/s00228-015-1868-1
Tokuyama Y, Matsui K, Egashira T, et al. Five missense mutations in glucagon-like peptide 1 receptor gene in Japanese population. Diabetes Res Clin Pract. 2004;66(1):63-69. doi: 10.1016/j.diabres.2004.02.004
Sheikh HI, Dougherty LR, Hayden EP, et al. Glucagon-like peptide-1 receptor gene polymorphism (Leu260Phe) is associated with morning cortisol in preschoolers. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(6):980-983. doi: 10.1016/j.pnpbp.2010.05.007
Anderson B, Carlson P, Laurenti M, et al. Association between allelic variants in the glucagon-like peptide 1 and cholecystokinin receptor genes with gastric emptying and glucose tolerance. Neurogastroenterol Motil. 2020;32(1):e13724. doi: 10.1111/nmo.13724
Li W, Li P, Li R, et al. GLP1R Single-Nucleotide Polymorphisms rs3765467 and rs10305492 Affect β Cell Insulin Secretory Capacity and Apoptosis Through GLP-1. DNA Cell Biol. 2020;39(9):1700-1710. doi: 10.1089/dna.2020.5424
Wessel J и соавт. Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nat Commun. 2015;6:5897. doi: 10.1038/ncomms6897
Luo P, Fan Y, Xiong Y, et al. Genetic variants of the GLP-1R gene affect the susceptibility and glucose metabolism of gestational diabetes mellitus: a two-center nested case‒control study. Diabetol Metab Syndr. 2022;14(1):190. doi: 10.1186/s13098-022-00963-1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 European Journal of Clinical and Experimental Medicine

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our open access policy is in accordance with the Budapest Open Access Initiative (BOAI) definition: this means that articles have free availability on the public Internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from having access to the Internet itself.
All articles are published with free open access under the CC-BY Creative Commons attribution license (the current version is CC-BY, version 4.0). If you submit your paper for publication by the Eur J Clin Exp Med, you agree to have the CC-BY license applied to your work. Under this Open Access license, you, as the author, agree that anyone may download and read the paper for free. In addition, the article may be reused and quoted provided that the original published version is cited. This facilitates freedom in re-use and also ensures that Eur J Clin Exp Med content can be mined without barriers for the research needs.




