Harnessing therapeutic potential of vitamins and microelements to mitigate testicular damage caused by drugs or chemical toxins ‒ a review

Authors

DOI:

https://doi.org/10.15584/ejcem.2025.4.18

Keywords:

drugs and chemical toxins, testicular damage, vitamins and microelements

Abstract

Introduction and aim. Exposure to drugs and chemical toxins has been a common cause of structural and functional impairment of the male gonad (or testis), often leading to male reproductive disorder and infertility. Health concerns due to drugs or chemical-induced testicular damage have increased the exploration of potential therapeutic agents including vitamins and microelements. This review summarizes therapeutic role of vitamins and microelements against drugs or chemical toxins in preclinical studies.

Material and methods. Relevant articles published on scientific databases like PubMed, Google Scholar, Scopus, and Web of Science were retrieved and critically reviewed for this study.

Analysis of the literature. The mitigating effect of essential vitamins (such as vitamin B2, vitamin B9, vitamin B12, vitamin B17, vitamin C, vitamin E) and microelements (such as zinc and selenium) has been demonstrated on testicular damage caused by exposure to drugs and chemical toxins in preclinical studies and associated with their antioxidant, anti-inflammatory and anti-apoptotic properties. This was further characterized with reparation of testicular histopathology, suppression of testicular oxidative damage, improved sperm parameters, elevated testicular antioxidants and testosterone level, upregulation of steroidogenic gene, inhibition of sperm DNA damage.

Conclusion. Vitamins and microelements exert therapeutic effect against drugs and chemical-induced testicular damage.

Downloads

Download data is not yet available.

References

Sembulingam K, Sembulingam P. Male reproductive system. In: Essential of Medical Physiology. 6th ed. Jaypee Brothers Medical Publishers ed. New Delhi; 2012:456-458. DOI: https://doi.org/10.5005/jp/books/11696_152

Das PK, Mukherjee J, Banerjee D. Functional morphology of the male reproductive system. In: Textbook of Veterinary Physiology. Berlin, Germany: Springer; 2023:441-476. doi: 10.1007/978-981-19-9410-4_19 DOI: https://doi.org/10.1007/978-981-19-9410-4_19

Kryger JV. Acute and chronic scrotal swelling. In: Nelson Pediatric Symptom-Based Diagnosis. Philadelphia, PA: Elsevier; 2018:330-338. doi: 10.1016/B978-0-323-39956-2.00021-2 DOI: https://doi.org/10.1016/B978-0-323-39956-2.00021-2

Li L, Lin W, Wang Z. Hormone regulation in testicular development and function. Int J Mol Sci. 2024;25(11):5805. doi: 10.3390/ijms25115805 DOI: https://doi.org/10.3390/ijms25115805

Abdel-Latif R, Fathy M, Anwar HA, Naseem M, Dandekar T, Othman EM. Cisplatin-induced reproductive toxicity and oxidative stress: ameliorative effect of kinetin. Antioxidants. 2022;11(5):863. doi: 10.3390/antiox11050863 DOI: https://doi.org/10.3390/antiox11050863

Guo R, Lv J, Xu H, Bai Y, Lu B, Han Y. A systems toxicology approach to explore toxicological mechanisms of fluoroquinolones-induced testis injury. Ecotoxicol Environ Saf. 2021;228:113002. doi: 10.1016/j.ecoenv.2021.113002 DOI: https://doi.org/10.1016/j.ecoenv.2021.113002

Omotoso DR, Akinola AO, Ehiemere WP. Assessment of histo-reparative effect of methanolic extract of Camellia sinensis in a rat model of lead-induced testicular damage. J Drug Deliv Ther. 2020;10(4-s):46-52. doi: 10.22270/jddt.v10i4-s.4007 DOI: https://doi.org/10.22270/jddt.v10i4-s.4007

Lin H. Novel testicular injury biomarkers. In: Dragunow M, ed. Drug Discovery Toxicology. Hoboken, NJ: Wiley; 2016:471-474. doi: 10.1002/9781119053248.ch39 DOI: https://doi.org/10.1002/9781119053248.ch39

Taha SHN, Zaghloul HS, Ali AAER, Rashed LA, Sabry RM, Gaballah IF. Molecular and hormonal changes caused by long-term use of high dose pregabalin on testicular tissue: the role of p38 MAPK, oxidative stress and apoptosis. Mol Biol Rep. 2020:47(11):8523-8533. doi: 10.1007/s11033-020-05894-6 DOI: https://doi.org/10.1007/s11033-020-05894-6

Dutta S, Sengupta, P, Slama P, Roychoudhury S. Oxidative Stress, Testicular Inflammatory Pathways, and Male Reproduction. Int J Mol Sci. 2021;22(18):10043. doi: 10.3390/ijms221810043 DOI: https://doi.org/10.3390/ijms221810043

Gabrielsen JS, Tanrikut C. Chronic exposures and male fertility: the impacts of environment, diet, and drug use on spermatogenesis. Andrology. 2016;4(4):6480-661. doi: 10.1111/andr.12198 DOI: https://doi.org/10.1111/andr.12198

Abarikwu SO, Mgbudom-Okah CJ, Onuah CL. The protective effect of rutin against busulfan-induced testicular damage in adult rats. Drug Chem Toxicol. 2022;45(3):1035-1043. doi: 10.1080/01480545.2020.1803905 DOI: https://doi.org/10.1080/01480545.2020.1803905

Abarikwu SO, Mgbudom-Okah CJ, Njoku R-CC, Okonkwo CJ, Onuoha CC, Wokoma AFS. Gallic acid ameliorates busulfan-induced testicular toxicity and damage in mature rats. Drug Chem Toxicol. 2022;45(4):1881-1890. doi: 10.1080/01480545.2021.1892949 DOI: https://doi.org/10.1080/01480545.2021.1892949

Ezim OO, Abarikwu SO. Exogenous ascorbate administration elevates testicular oxidative damage and histological injuries in rats after busulfan treatment. Andrologia. 2023;1:5209480. doi: 10.1155/2023/5209480 DOI: https://doi.org/10.1155/2023/5209480

Abd El-Hay RI, Hamed WHE, Mostafa Omar N, Refat El-Bassouny D, Gawish SA. The impact of busulfan on the testicular structure in prepubertal rats: A histological, ultrastructural and immunohistochemical study. Ultrastruct Pathol. 2023;47(5):424-450. doi: 10.1080/01913123.2023.2234470 DOI: https://doi.org/10.1080/01913123.2023.2234470

Moghadam MT, Dadfar R, Khorsandi L. The effects of ozone and melatonin on busulfan-induced testicular damage in mice. JBRA Assist Repr. 2021;25(2):176-184. doi: 10.5935/1518-0557.20200081 DOI: https://doi.org/10.5935/1518-0557.20200081

Abarikwu SO, Njoku RCC, John IG, Amadi BA, Mgbudom-Okah CJ, Onuah CL. Antioxidant and anti-inflammatory protective effects of rutin and kolaviron against busulfan-induced testicular injuries in rats. Syst Biol Reprod Med. 2022;68(2):151-161. doi: 10.1080/19396368.2021.1989727 DOI: https://doi.org/10.1080/19396368.2021.1989727

Soni KK, Kim HK, Choi BR, et al. Dose-dependent effects of cisplatin on the severity of testicular injury in Sprague Dawley rats: reactive oxygen species and endoplasmic reticulum stress. Drug Des Dev Therap. 2016;10:3959-3968. doi: 10.2147/DDDT.S120014 DOI: https://doi.org/10.2147/DDDT.S120014

Elsayed A, Elkomy A, Alkafafy M, et al. Testicular toxicity of cisplatin in rats: ameliorative effect of lycopene and N-acetylcysteine. Environ Sci Poll Res Int. 2022;29(16):24077–24084. doi: 10.1007/s11356-021-17736-4 DOI: https://doi.org/10.1007/s11356-021-17736-4

Nofal AE, Okdah YA, Rady MI, Hassaan HZ. Gum Acacia attenuates cisplatin toxic effect spermatogenesis dysfunction and infertility in rats. Int J Biol Macromolec. 2023;240:124292. doi: 10.1016/j.ijbiomac.2023.124292 DOI: https://doi.org/10.1016/j.ijbiomac.2023.124292

Othman EM, Habib HA, Zahran ME, Amin A, Heeba GH. Mechanistic protective effect of cilostazol in cisplatin-induced testicular damage via regulation of oxidative stress and TNF-α/NF-κB/caspase-3 pathways. Int J Mol Sci. 2023;24(16):12651. doi: 10.3390/ijms241612651 DOI: https://doi.org/10.3390/ijms241612651

Kraai EP, Seifert SA. Citalopram Overdose: A Fatal Case. J Med Toxicol. 2015;11(2):232-236. doi: 10.1007/s13181-014-0441-0 DOI: https://doi.org/10.1007/s13181-014-0441-0

Moradi M, Hashemian MA, Douhandeh E, Peysokhan M, Hashemian AH, Faramarzi A. The protective role of melatonin in citalopram-induced reproductive toxicity via modulating nitro-oxidative stress and apoptosis in male mice. Reprod Toxicol. 2023;118:108368. doi: 10.1016/j.reprotox.2023.108368 DOI: https://doi.org/10.1016/j.reprotox.2023.108368

Ilgin, S, Kilic, G, Baysal, M, et al. Citalopram induces reproductive toxicity in male rats. Birth Defects Res. 2017;109(7):475-485. doi: 10.1002/bdr2.1010 DOI: https://doi.org/10.1002/bdr2.1010

Moradi M, Hashemian MA, Fathi M, et al. Utility of vitamin C in ameliorating citalopram-induced testicular toxicity via modulating nitro-oxidative stress and apoptosis in mice. J Biochem Mol Toxicol. 2024;38(1):e23543. doi: 10.1002/jbt.23543 DOI: https://doi.org/10.1002/jbt.23543

Ahlmann M, Hempel G. The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy. Cancer Chemother Pharmacol. 2016;78(4):661-671. doi: 10.1007/s00280-016-3152-1 DOI: https://doi.org/10.1007/s00280-016-3152-1

Ghobadi E, Moloudizargari M, Asghari MH, Abdollahi M. The mechanisms of cyclophosphamide-induced testicular toxicity and the protective agents. Exp Opin Drug Metab Toxicol. 2017;13(5):525-536. doi: 10.1080/17425255.2017.1277205 DOI: https://doi.org/10.1080/17425255.2017.1277205

Shaker Kordedeh Z, Ghorbani S, Ahmadi S, Soleimani Mehranjani M. Silymarin mitigates toxic effects of cyclophosphamide on testicular tissue and sperm parameters in mice. Reprod Biol. 2024;24(4):100946. doi: 10.1016/j.repbio.2024.100946 DOI: https://doi.org/10.1016/j.repbio.2024.100946

Adana MY, Imam A, Bello AA, et al. Oral thymoquinone modulates cyclophosphamide‐induced testicular toxicity in adolescent Wistar rats. Andrologia. 2022;54(4):e14368. doi: 10.1111/and.14368 DOI: https://doi.org/10.1111/and.14368

Kciuk M, Gielecińska A, Mujwar S, et al. Doxorubicin—an agent with multiple mechanisms of anticancer activity. Cells. 2023;12(4):659. doi: 10.3390/cells12040659 DOI: https://doi.org/10.3390/cells12040659

Levi M, Tzabari M, Savion N, Stemmer SM, Shalgi R, Ben-Aharon I. Dexrazoxane exacerbates doxorubicin-induced testicular toxicity. Reprod. 2015;150(4):357-366. doi: 10.1530/REP-15-0129 DOI: https://doi.org/10.1530/REP-15-0129

Mohan UP, Pichiah T, Iqbal STA, Arunachalam S. Mechanisms of doxorubicin-mediated reproductive toxicity – A review. Reproductive Toxicology. 2021;102:80-89. doi: 10.1016/j.reprotox.2021.04.003 DOI: https://doi.org/10.1016/j.reprotox.2021.04.003

Alafifi S, Wahdan S, Elsherbiny D, Azab S. Doxorubicin-induced testicular toxicity: possible underlying mechanisms and promising pharmacological treatments in experimental models. Arch Pharmaceut Sci Ain Shams Univ. 2022;6(2):196-207. doi: 10.21608/aps.2022.155127.1098 DOI: https://doi.org/10.21608/aps.2022.155127.1098

Sarman E, Koca HB. Effect of grape seed extract on doxorubicin-induced testicular and epididymal damage in rats. Human Exp Toxicol. 2025;44:1-9. doi: 10.1177/09603271251319787 DOI: https://doi.org/10.1177/09603271251319787

Tektemur A, Tektemur NK, Güzel EE. The therapeutic effect of hesperetin on doxorubicin-induced testicular toxicity: Potential roles of the mechanistic target of rapamycin kinase (mTOR) and dynamin-related protein 1 (DRP1). Toxicol Appl Pharmacol. 2022;435:115833. doi: 10.1016/j.taap.2021.115833 DOI: https://doi.org/10.1016/j.taap.2021.115833

Ijaz MU, Yaqoob S, Hamza A. Apigetrin ameliorates doxorubicin prompted testicular damage: biochemical, spermatological and histological based study. Sci Rep. 2024;14(1):9049. doi: 10.1038/s41598-024-59392-x DOI: https://doi.org/10.1038/s41598-024-59392-x

Koźmiński P, Halik PK, Chesori R, Gniazdowska E. Overview of Dual-Acting Drug Methotrexate in Different Neurological Diseases, Autoimmune Pathologies and Cancers. Int J Mol Sci. 2020;21(10):3483. doi: 10.3390/ijms21103483 DOI: https://doi.org/10.3390/ijms21103483

Akacha A, Badraoui R, Rebai T, Zourgui L. Effect of Opuntia ficus indica extract on methotrexate-induced testicular injury: a biochemical, docking and histological study. J Biomolec Struct Dynam. 2022;40(10):4341-4351. doi: 10.1080/07391102.2020.1856187 DOI: https://doi.org/10.1080/07391102.2020.1856187

Hassanein EHM, Mohamed WR, Hussein RM, Arafa, E.-S. A. Edaravone alleviates methotrexate-induced testicular injury in rats: Implications on inflammation, steroidogenesis, and Akt/p53 signaling. Int Immunopharmacol. 2023;117:109969. doi: 10.1016/j.intimp.2023.109969 DOI: https://doi.org/10.1016/j.intimp.2023.109969

Rofaeil RR, Ibrahim MA, Mohyeldin RH, El-Tahawy NF, Abdelzaher WY. Role of EGF/ERK1/2/HO-1 axis in mediating methotrexate induced testicular damage in rats and the ameliorative effect of xanthine oxidase inhibitors. Immunopharmacol Immunotoxicol. 2023;45(5):511-520. doi: 10.1080/08923973.2023.2181684 DOI: https://doi.org/10.1080/08923973.2023.2181684

Sarman E, Gulle K, Ilhan I. Histochemical, Immunohistochemical, and Biochemical Investigation of the Effect of Resveratrol on Testicular Damage Caused by Methotrexate (MTX). Reprod Sci. 2023;30(11):3315-3324. doi: 10.1007/s43032-023-01269-x DOI: https://doi.org/10.1007/s43032-023-01269-x

Conei D, Rojas M, Santamaría L, Risopatrón J. Protective role of vitamin E in testicular development of mice exposed to valproic acid. Andrologia. 2021;53(8):e14140. doi: 10.1111/and.14140 DOI: https://doi.org/10.1111/and.14140

Alsemeh AE, Ahmed MM, Fawzy A, Samy W, Tharwat M, Rezq S. Vitamin E rescues valproic acid-induced testicular injury in rats: Role of autophagy. Life Sci. 2022;296:120434. doi: 10.1016/j.lfs.2022.120434 DOI: https://doi.org/10.1016/j.lfs.2022.120434

Savran M, Ascı H, Armagan İ, et al. Thymoquinone could be protective against valproic acid‐induced testicular toxicity by antioxidant and anti‐inflammatory mechanisms. Andrologia. 2020;52(7) doi: 10.1111/and.13623 DOI: https://doi.org/10.1111/and.13623

Bordbar H, Yahyavi S-S, Noorafshan A, Aliabadi E, Naseh M. Resveratrol ameliorates bisphenol A-induced testicular toxicity in adult male rats: a stereological and functional study. Basic Clin Androl. 2023;33(1):1. doi: 10.1186/s12610-022-00174-8 DOI: https://doi.org/10.1186/s12610-022-00174-8

Gules O, Yildiz M, Naseer Z, Tatar M. Effects of folic acid on testicular toxicity induced by bisphenol-A in male Wistar rats. Biotechnol Histochem. 2019;94(1):26-35. doi: 10.1080/10520295.2018 DOI: https://doi.org/10.1080/10520295.2018.1493222

Tekin S, Çelebi F. Investigation of the effect of hesperidin on some reproductive parameters in testicular toxicity induced by Bisphenol A. Andrologia. 2022;54(10): doi: 10.1111/and.14562 DOI: https://doi.org/10.1111/and.14562

Rezaee-Tazangi F, Zeidooni L, Rafiee Z, et al. Taurine effects on Bisphenol A-induced oxidative stress in the mouse testicular mitochondria and sperm motility. JBRA Assist Repr. 2020;24(4):428-435. doi: 10.5935/1518-0557.20200017 DOI: https://doi.org/10.5935/1518-0557.20200017

Asadi-Fard Y, Soleimani MZ, Khodayar MJ, Khorsandi L, Shirani M, Samimi A. Morin improves Bisphenol-A-induced toxicity in the rat testicular mitochondria and sperms. JBRA Assist Reprod. 20223;27(2):174-179. doi: 10.5935/1518-0557.20220010 DOI: https://doi.org/10.5935/1518-0557.20220010

Zhang D, Li M, Shi T, et al. Protective effects of flavonoids on fluoride-induced testicular DNA damage in mice. Free Rad Biol Med. 2025;228:79-92. doi: 10.1016/j.freeradbiomed.2024.12.047 DOI: https://doi.org/10.1016/j.freeradbiomed.2024.12.047

Chhabra V, Meenakshi S, Maity S, et al. Impact of fluoride exposure on reproductive health: Insights into molecular mechanisms and health implications. Reprod Toxicol. 2025;135:108907. doi: 10.1016/j.reprotox.2025 DOI: https://doi.org/10.1016/j.reprotox.2025.108907

Patial B, Khan I, Thakur R, Fishta A. Effects of fluoride toxicity on the male reproductive system: A review. J Trace Elements Med Biol. 2024;86:127522. doi: 10.1016/j.jtemb.2024.127522 DOI: https://doi.org/10.1016/j.jtemb.2024.127522

Li X, Yang J, Shi E. Riboflavin alleviates fluoride-induced ferroptosis by IL-17A-independent system Xc-/GPX4 pathway and iron metabolism in testicular Leydig cells. Environ Pollut. 2024b;344:123332. doi: 10.1016/j.envpol.2024 DOI: https://doi.org/10.1016/j.envpol.2024.123332

Talebi SF, Seify M, Bhandari RK, Shoorei H, Oskuei SD. Fluoride-induced testicular and ovarian toxicity: evidence from animal studies. Biol Res. 2025;58(1):6. doi: 10.1186/s40659-025-00586-6 DOI: https://doi.org/10.1186/s40659-025-00586-6

Luqman EM, Ananda AT, Widjiati W, Hendrawan VF. Protective Effect of Apis dorsata Honey on Chronic Monosodium Glutamate-Induced Testicular Toxicity in Mus musculus Mice. Turk J Pharmaceut Sci. 2022;19(3):246-250. doi: 10.4274/tjps.galenos.2021.30737 DOI: https://doi.org/10.4274/tjps.galenos.2021.30737

Gad FA-M, Farouk SM, Emam MA. Antiapoptotic and antioxidant capacity of phytochemicals from Roselle (Hibiscus sabdariffa) and their potential effects on monosodium glutamate-induced testicular damage in rat. Environ Sci Pollut Res. 2021;28(2):2379-2390. doi: 10.1007/s11356-020-10674-7 DOI: https://doi.org/10.1007/s11356-020-10674-7

Morsy MM, Hassan HA, Morsi RM, Nafea OE, Farag AI, Ramadan RS. Alogliptin attenuates testicular damage induced by monosodium glutamate in both juvenile and adult male rats by activating autophagy: ROS dependent AMPK/mTOR. Reproductive Toxicology. 2025;132:108826. doi: 10.1016/j.reprotox.2024.108826 DOI: https://doi.org/10.1016/j.reprotox.2024.108826

Ikwuka DC, Anyaehie BU, Nwobodo E, Umegbolu EI, Nworgu CC. Ameliorative effects of African walnut on nicotine-induced reproductive toxicity in rat model. Int J Health Sci (Qassim). 2021;15(1):3-8.

Jalili C, Mastaneh K, Mona P, Ghanbari A, Mohsen Z, Samira D. Protective effect of gallic acid on nicotine-induced testicular toxicity in mice. Res Pharmaceut Sci. 2021;16(4):414-424. doi: 10.4103/1735-5362.319579 DOI: https://doi.org/10.4103/1735-5362.319579

Ashoub AH, Abdel-Naby DH, Safar MM, El-Ghazaly MA, Kenawy SA. Ameliorative effect of fractionated low-dose gamma radiation in combination with ellagic acid on nicotine-induced hormonal changes and testicular toxicity in rats. Environ Sci Pollut Res. 2021;28(18):23287-23300. doi: 10.1007/s11356-020-12334-2 DOI: https://doi.org/10.1007/s11356-020-12334-2

Zhang Z, Cheng J, Yang L, et al. The role of ferroptosis mediated by Bmal1/Nrf2 in nicotine-induce injury of BTB integrity. Free Rad Biol Med. 2023;200:26-35. doi: 10.1016/j.freeradbiomed.2023.02.024 DOI: https://doi.org/10.1016/j.freeradbiomed.2023.02.024

EL-Deeb MEE, Abd-EL-Hafez AAA. Can vitamin C affect the KBrO3 induced oxidative stress on left ventricular myocardium of adult male albino rats? A histological and immunohistochemical study. J Microscop Ultrastr. 2015;3:120-136. doi: 10.1016/j.jmau.2015.03.003 DOI: https://doi.org/10.1016/j.jmau.2015.03.003

Mohamed EAK, Saddek EA. The protective effect of taurine and/or vanillin against renal, testicular, and hematological alterations induced by potassium bromate toxicity in rats. J Basic Appl Zool. 2019;80:3. doi: 10.1186/s41936-018-0070-2 DOI: https://doi.org/10.1186/s41936-018-0070-2

Akinola AO, Omotoso DR, Oyeyemi AW, Daramola OO. Ameliorative activity of α-tocopherol against potassium bromate-induced reproductive functional and morphological impairments in male rats. As Pac J Sci Technol. 2024;29(01).

Nwonuma CO, Lawal TA, Acho MA, et al. Protective effects of Allium cepa-fortified feed on testicular function alterations by potassium bromate-induced oxidative damage: an in vivo and in silico approach. Comp Clin Pathol. 2024;33:453-466. Doi: 10.1007/s00580-024-03566-6 DOI: https://doi.org/10.1007/s00580-024-03566-6

Akinola AO, Omotoso DR, Oyeyemi AW, Daramola OO, Emojevwe V. α-Tocopherol Mitigates Adverse Effects of Potassium Bromate on Hematological Parameters and Markers of Hepatic Function in Rat Model. J Morphol Sci. 2023;40:89-94.

Mondal S, Bandyopadhyay A. Antioxidants in mitigating phthalate-induced male reproductive toxicity: A comprehensive review. Chemosphere. 2024;364:143297. doi: 10.1016/j.chemosphere.2024.143297 DOI: https://doi.org/10.1016/j.chemosphere.2024.143297

Tang X, Wu S, Shen L, et al. Di-(2-ethylhexyl) phthalate (DEHP)-induced testicular toxicity through Nrf2-mediated Notch1 signaling pathway in Sprague-Dawley rats. Environ Toxicol. 33(7):720-728. doi: 10.1002/tox.22559 DOI: https://doi.org/10.1002/tox.22559

Liu L-L, Yue J-Z, Lu Z-Y, et al. Long-term exposure to the mixture of phthalates induced male reproductive toxicity in rats and the alleviative effects of quercetin. Toxicol Appl Pharmacol. 2024;483:116816. doi: 10.1016/j.taap.2024.116816 DOI: https://doi.org/10.1016/j.taap.2024.116816

Omotoso D, Joseph D. Comparative therapeutic role of ascorbic acid, α-tocopherol and riboflavin in mitigating hepatotoxicity induced by drugs and chemical toxins – a review. Eur J Clin Exp Med. 2025. doi: 10.15584/ejcem.2025.3.4 DOI: https://doi.org/10.15584/ejcem.2025.3.4

Suwannasom N, Kao I, Pruß A, Georgieva R, Bäumler H. Riboflavin: The Health Benefits of a Forgotten Natural Vitamin. Int J Mol Sci. 2020;21(3):950. doi: 10.3390/ijms21030950 DOI: https://doi.org/10.3390/ijms21030950

Murgia C, Dehlia A, Guthridge MA. New insights into the nutritional genomics of adult-onset riboflavin-responsive diseases. Nutr Metab. 2023;20(1):42. doi: 10.1186/s12986-023-00764-x DOI: https://doi.org/10.1186/s12986-023-00764-x

Omotoso DR, Amakhabi SA. Histo-reparation of hepatic parenchyma of experimental wistar rats exposed to Ccl4-induced hepatopathy and treated with vitamin B2 and green tea extract. J Appl Biol Sci. 2021;15(3):247-256.

Saedisomeolia A, Ashoori M. Riboflavin in human health: a review of current evidences. In: Watson RR, ed. Advances in Food and Nutrition Research. Vol 83. Cambridge, MA: Academic Press; 2018:57-81. doi: 10.1016/bs.afnr.2017.11.002 DOI: https://doi.org/10.1016/bs.afnr.2017.11.002

Gliszczyńska-Świgło A. Folates as antioxidants. Food Chem. 2007;101(4):1480-1483. doi: 10.1016/j.foodchem.2006.04.022 DOI: https://doi.org/10.1016/j.foodchem.2006.04.022

Asbaghi O, Ghanavati M, Ashtary-Larky D, et al. Effects of Folic Acid Supplementation on Oxidative Stress Markers: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Antioxidants. 2021;10:871. doi: 10.3390/antiox1006087 DOI: https://doi.org/10.3390/antiox10060871

Ray D, Bhattacharjee A, Banerjee O, et al. Folic acid and vitamin B12 ameliorate nicotine-induced testicular toxicity in rats. Biomedicine. 2019;39(2):353-368. doi: 10.51248/v39i2.22 DOI: https://doi.org/10.51248/.v39i2.208

Rizzo G, Laganà AS. A review of vitamin B12. In: Patel VB, Preedy VR, eds. Molecular Nutrition. Cambridge, MA: Academic Press; 2020:105-129. doi: 10.1016/B978-0-12-811907-5.00005-1 DOI: https://doi.org/10.1016/B978-0-12-811907-5.00005-1

Moravcová M, Siatka T, Krčmová LK, Matoušová K, Mladěnka P. Biological properties of vitamin B12. Nutr Res Rev. 2025;38(1):338-370. doi: 10.1017/S0954422424000210 DOI: https://doi.org/10.1017/S0954422424000210

Rakusa ZT, Roskar R, Hickey N, Geremia S. Vitamin B12 in Foods, Food Supplements, and Medicines - A Review of Its Role and Properties with a Focus on Its Stability. Molecules. 2023;28(1):240. doi: 10.3390/molecules28010240 DOI: https://doi.org/10.3390/molecules28010240

Olorunnisola OS, Ajayi AF, Okeleji LO, Oladipo AA, Emorioloye JT. Vitamins as antioxidants. J Food Sci Nutr Res. 2019;2(3):214-235. doi: 10.26502/jfsnr.2642-11000021 DOI: https://doi.org/10.26502/jfsnr.2642-11000021

Amany MB, Moustafa AAA, Manar HA. Antioxidant activity and defensive role of vitamin B17 to fight cancer. Sci Res Refract Tech Ceram. 2020;3(2):1-4. doi: 10.31031/COJTS.2020.03.000556 DOI: https://doi.org/10.31031/COJTS.2020.03.000556

Felemban SG, Aldubayan MA, Alhowail A.H., and Almami, I.S., 2020. Vitamin B17 Ameliorates Methotrexate-Induced Reproductive Toxicity, Oxidative Stress, and Testicular Injury in Male Rats. Oxid Med Cell Longev. 2020;2020:4372719. doi: 10.1155/2020/4372719 DOI: https://doi.org/10.1155/2020/4372719

Lykkesfeldt J, Tveden-Nyborg P. The Pharmacokinetics of Vitamin C. Nutrients. 2019;11(10): 2412. doi: 10.3390/nu11102412 DOI: https://doi.org/10.3390/nu11102412

Gęgotek A, Skrzydlewska E. Antioxidative and Anti-Inflammatory Activity of Ascorbic Acid. Antioxidants. 2022;11(10);1993. doi: 10.3390/antiox11101993 DOI: https://doi.org/10.3390/antiox11101993

Okwuonu UC, Omotoso DR, Bienonwu EO, Adagbonyin O, Dappa J. Histomorphological profile of liver and kidney tissues of albino Wistar rats following exposure to cadmium-induced damage and ascorbic acid supplementation. Acad Anat Int. 2020;6(1):15-19. doi: 10.21276/aanat.2020.6.1.7 DOI: https://doi.org/10.21276/aanat.2020.6.1.7

Omotoso DR, Owonikoko WM, Ehiemere WP. Comparative amelioration of renal histomorphology by ascorbic acid and Camellia sinensis extract in Wistar rats exposed to Lead-induced nephropathy. Ann Med Res. 2020;27(8):2161-2165. doi: 10.5455/annalsmedres.2020.02.105 DOI: https://doi.org/10.5455/annalsmedres.2020.02.105

Conklin PL, Foyer CH, Hancock RD, Ishikawa T, Smirnoff N. Ascorbic acid metabolism and functions. J Exp Botany. 2024;75(9):2599-2603. doi: 10.1093/jxb/erae143

Hajjar T, Soleymani F, Vatanchian M. Protective Effect of Vitamin C and Zinc as an Antioxidant Against Chemotherapy-Induced Male Reproductive Toxicity. J Med Life. 2020;13(2):138-143. doi: 10.25122/jml-2019-0107 DOI: https://doi.org/10.25122/jml-2019-0107

Rauf N, Nawaz A, Ullah H, et al. Therapeutic effects of chitosan-embedded vitamin C, E nanoparticles against cisplatin-induced gametogenic and androgenic toxicity in adult male rats. Environ Sci Poll Res. 2021;28(40):56319-56332. doi: 10.1007/s11356-021-14516-y DOI: https://doi.org/10.1007/s11356-021-14516-y

Jain P, Singh I, Surana SJ, Shirkhedkar AA. Tocopherols and tocotrienols: the essential vitamin E. In: Puri M, ed. Bioactive Food Components: Activity in Mechanistic Approach. 1st ed. Elsevier; 2022:139-154. doi: 10.1016/B978-0-12-823569-0.00009-6 DOI: https://doi.org/10.1016/B978-0-12-823569-0.00009-6

Torquato P, Marinelli R, Bartolini D, Galli F. Vitamin E: nutritional aspects. In: Stacchiotti A, Corsetti G, eds. Molecular Nutrition. 1st ed. Elsevier; 2020:447-485. doi: 10.1016/B978-0-12-811907-5.00019-1 DOI: https://doi.org/10.1016/B978-0-12-811907-5.00019-1

Omotoso DR, Ehiemere WP. Comparative histomorphological assessment of Vitamin E and green tea (Camellia sinensis) extract-mediated amelioration of Lead-induced hepatopathy in experimental Wistar rats. Am J Physiol Biochem Pharmacol. 2020;10:18-24. doi: 10.5455/ajpbp.20191105104249 DOI: https://doi.org/10.5455/ajpbp.20191105104249

Kloubert V, Rink L. Zinc as a micronutrient and its preventive role of oxidative damage in cells. Food Funct. 2015;6(10):3195-3204. doi: 10.1039/c5fo00630a DOI: https://doi.org/10.1039/C5FO00630A

Rice JM, Zweifach A, Lynes MA. Metallothionein regulates intracellular zinc signaling during CD4(+) T cell activation. BMC Immunol. 2016;17:13. doi: 10.1186/s12865-016-0151-2 DOI: https://doi.org/10.1186/s12865-016-0151-2

Fallah A, Mohammad-Hasani A, Colagar AH. Zinc is an essential element for male fertility: a review of Zn roles in men's health, germination, sperm quality, and fertilization. J Reprod Infertil. 2018;19(2):69-81.

Maremanda KP, Khan S, Jena G. Zinc protects cyclophosphamide-induced testicular damage in rat: involvement of metallothionein, tesmin and Nrf2. Biochem Biophys Res Comm. 2014;445(3):591-596. doi: 10.1016/j.bbrc.2014.02.055 DOI: https://doi.org/10.1016/j.bbrc.2014.02.055

Genchi G, Lauria G, Catalano A, Sinicropi MS, Carocci A. Biological activity of selenium and its impact on human health. Int J Mol Sci. 2023;24(3):2633. doi: 10.3390/ijms24032633 DOI: https://doi.org/10.3390/ijms24032633

Bjørklund G, Shanaida M, Lysiuk R, et al. Selenium: an antioxidant with a critical role in anti-aging. Molecules. 2022;27(19):6613. doi: 10.3390/molecules27196613 DOI: https://doi.org/10.3390/molecules27196613

Huang H, Li X, Wang Z. Anti-inflammatory effect of selenium on lead-induced testicular inflammation by inhibiting NLRP3 inflammasome activation in chickens. Theriogenol. 2020;155:139-149. doi: 10.1016/j.theriogenology.2020.06.01 DOI: https://doi.org/10.1016/j.theriogenology.2020.06.015

Hamza RZ, Diab AEA. Testicular protective and antioxidant effects of selenium nanoparticles on monosodium glutamate–induced testicular structure alterations in male mice. Toxicol Rep. 2020;7:254-260. doi: 10.1016/j.toxrep.2020.01.012 DOI: https://doi.org/10.1016/j.toxrep.2020.01.012

Keshta AT, Fathallah AM, Attia YA, Salem EA, Watad SH. Ameliorative effect of selenium nanoparticles on testicular toxicity induced by cisplatin in adult male rats. Food Chem Toxicol. 2023;179:113979. doi: 10.1016/j.fct.2023.113979 DOI: https://doi.org/10.1016/j.fct.2023.113979

Downloads

Published

2025-12-30

How to Cite

Omotoso, D. R., Iwasokun, O., Olatomide, O. D., & Arogundade, T. T. (2025). Harnessing therapeutic potential of vitamins and microelements to mitigate testicular damage caused by drugs or chemical toxins ‒ a review. European Journal of Clinical and Experimental Medicine, 23(4), 1047–1059. https://doi.org/10.15584/ejcem.2025.4.18

Issue

Section

REVIEW PAPERS