Harnessing therapeutic potential of vitamins and microelements to mitigate testicular damage caused by drugs or chemical toxins ‒ a review
DOI:
https://doi.org/10.15584/ejcem.2025.4.18Keywords:
drugs and chemical toxins, testicular damage, vitamins and microelementsAbstract
Introduction and aim. Exposure to drugs and chemical toxins has been a common cause of structural and functional impairment of the male gonad (or testis), often leading to male reproductive disorder and infertility. Health concerns due to drugs or chemical-induced testicular damage have increased the exploration of potential therapeutic agents including vitamins and microelements. This review summarizes therapeutic role of vitamins and microelements against drugs or chemical toxins in preclinical studies.
Material and methods. Relevant articles published on scientific databases like PubMed, Google Scholar, Scopus, and Web of Science were retrieved and critically reviewed for this study.
Analysis of the literature. The mitigating effect of essential vitamins (such as vitamin B2, vitamin B9, vitamin B12, vitamin B17, vitamin C, vitamin E) and microelements (such as zinc and selenium) has been demonstrated on testicular damage caused by exposure to drugs and chemical toxins in preclinical studies and associated with their antioxidant, anti-inflammatory and anti-apoptotic properties. This was further characterized with reparation of testicular histopathology, suppression of testicular oxidative damage, improved sperm parameters, elevated testicular antioxidants and testosterone level, upregulation of steroidogenic gene, inhibition of sperm DNA damage.
Conclusion. Vitamins and microelements exert therapeutic effect against drugs and chemical-induced testicular damage.
Downloads
References
Sembulingam K, Sembulingam P. Male reproductive system. In: Essential of Medical Physiology. 6th ed. Jaypee Brothers Medical Publishers ed. New Delhi; 2012:456-458.
Das PK, Mukherjee J, Banerjee D. Functional morphology of the male reproductive system. In: Textbook of Veterinary Physiology. Berlin, Germany: Springer; 2023:441-476. doi: 10.1007/978-981-19-9410-4_19
Kryger JV. Acute and chronic scrotal swelling. In: Nelson Pediatric Symptom-Based Diagnosis. Philadelphia, PA: Elsevier; 2018:330-338. doi: 10.1016/B978-0-323-39956-2.00021-2
Li L, Lin W, Wang Z. Hormone regulation in testicular development and function. Int J Mol Sci. 2024;25(11):5805. doi: 10.3390/ijms25115805
Abdel-Latif R, Fathy M, Anwar HA, Naseem M, Dandekar T, Othman EM. Cisplatin-induced reproductive toxicity and oxidative stress: ameliorative effect of kinetin. Antioxidants. 2022;11(5):863. doi: 10.3390/antiox11050863
Guo R, Lv J, Xu H, Bai Y, Lu B, Han Y. A systems toxicology approach to explore toxicological mechanisms of fluoroquinolones-induced testis injury. Ecotoxicol Environ Saf. 2021;228:113002. doi: 10.1016/j.ecoenv.2021.113002
Omotoso DR, Akinola AO, Ehiemere WP. Assessment of histo-reparative effect of methanolic extract of Camellia sinensis in a rat model of lead-induced testicular damage. J Drug Deliv Ther. 2020;10(4-s):46-52. doi: 10.22270/jddt.v10i4-s.4007
Lin H. Novel testicular injury biomarkers. In: Dragunow M, ed. Drug Discovery Toxicology. Hoboken, NJ: Wiley; 2016:471-474. doi: 10.1002/9781119053248.ch39
Taha SHN, Zaghloul HS, Ali AAER, Rashed LA, Sabry RM, Gaballah IF. Molecular and hormonal changes caused by long-term use of high dose pregabalin on testicular tissue: the role of p38 MAPK, oxidative stress and apoptosis. Mol Biol Rep. 2020:47(11):8523-8533. doi: 10.1007/s11033-020-05894-6
Dutta S, Sengupta, P, Slama P, Roychoudhury S. Oxidative Stress, Testicular Inflammatory Pathways, and Male Reproduction. Int J Mol Sci. 2021;22(18):10043. doi: 10.3390/ijms221810043
Gabrielsen JS, Tanrikut C. Chronic exposures and male fertility: the impacts of environment, diet, and drug use on spermatogenesis. Andrology. 2016;4(4):6480-661. doi: 10.1111/andr.12198
Abarikwu SO, Mgbudom-Okah CJ, Onuah CL. The protective effect of rutin against busulfan-induced testicular damage in adult rats. Drug Chem Toxicol. 2022;45(3):1035-1043. doi: 10.1080/01480545.2020.1803905
Abarikwu SO, Mgbudom-Okah CJ, Njoku R-CC, Okonkwo CJ, Onuoha CC, Wokoma AFS. Gallic acid ameliorates busulfan-induced testicular toxicity and damage in mature rats. Drug Chem Toxicol. 2022;45(4):1881-1890. doi: 10.1080/01480545.2021.1892949
Ezim OO, Abarikwu SO. Exogenous ascorbate administration elevates testicular oxidative damage and histological injuries in rats after busulfan treatment. Andrologia. 2023;1:5209480. doi: 10.1155/2023/5209480
Abd El-Hay RI, Hamed WHE, Mostafa Omar N, Refat El-Bassouny D, Gawish SA. The impact of busulfan on the testicular structure in prepubertal rats: A histological, ultrastructural and immunohistochemical study. Ultrastruct Pathol. 2023;47(5):424-450. doi: 10.1080/01913123.2023.2234470
Moghadam MT, Dadfar R, Khorsandi L. The effects of ozone and melatonin on busulfan-induced testicular damage in mice. JBRA Assist Repr. 2021;25(2):176-184. doi: 10.5935/1518-0557.20200081
Abarikwu SO, Njoku RCC, John IG, Amadi BA, Mgbudom-Okah CJ, Onuah CL. Antioxidant and anti-inflammatory protective effects of rutin and kolaviron against busulfan-induced testicular injuries in rats. Syst Biol Reprod Med. 2022;68(2):151-161. doi: 10.1080/19396368.2021.1989727
Soni KK, Kim HK, Choi BR, et al. Dose-dependent effects of cisplatin on the severity of testicular injury in Sprague Dawley rats: reactive oxygen species and endoplasmic reticulum stress. Drug Des Dev Therap. 2016;10:3959-3968. doi: 10.2147/DDDT.S120014
Elsayed A, Elkomy A, Alkafafy M, et al. Testicular toxicity of cisplatin in rats: ameliorative effect of lycopene and N-acetylcysteine. Environ Sci Poll Res Int. 2022;29(16):24077–24084. doi: 10.1007/s11356-021-17736-4
Nofal AE, Okdah YA, Rady MI, Hassaan HZ. Gum Acacia attenuates cisplatin toxic effect spermatogenesis dysfunction and infertility in rats. Int J Biol Macromolec. 2023;240:124292. doi: 10.1016/j.ijbiomac.2023.124292
Othman EM, Habib HA, Zahran ME, Amin A, Heeba GH. Mechanistic protective effect of cilostazol in cisplatin-induced testicular damage via regulation of oxidative stress and TNF-α/NF-κB/caspase-3 pathways. Int J Mol Sci. 2023;24(16):12651. doi: 10.3390/ijms241612651
Kraai EP, Seifert SA. Citalopram Overdose: A Fatal Case. J Med Toxicol. 2015;11(2):232-236. doi: 10.1007/s13181-014-0441-0
Moradi M, Hashemian MA, Douhandeh E, Peysokhan M, Hashemian AH, Faramarzi A. The protective role of melatonin in citalopram-induced reproductive toxicity via modulating nitro-oxidative stress and apoptosis in male mice. Reprod Toxicol. 2023;118:108368. doi: 10.1016/j.reprotox.2023.108368
Ilgin, S, Kilic, G, Baysal, M, et al. Citalopram induces reproductive toxicity in male rats. Birth Defects Res. 2017;109(7):475-485. doi: 10.1002/bdr2.1010
Moradi M, Hashemian MA, Fathi M, et al. Utility of vitamin C in ameliorating citalopram-induced testicular toxicity via modulating nitro-oxidative stress and apoptosis in mice. J Biochem Mol Toxicol. 2024;38(1):e23543. doi: 10.1002/jbt.23543
Ahlmann M, Hempel G. The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy. Cancer Chemother Pharmacol. 2016;78(4):661-671. doi: 10.1007/s00280-016-3152-1
Ghobadi E, Moloudizargari M, Asghari MH, Abdollahi M. The mechanisms of cyclophosphamide-induced testicular toxicity and the protective agents. Exp Opin Drug Metab Toxicol. 2017;13(5):525-536. doi: 10.1080/17425255.2017.1277205
Shaker Kordedeh Z, Ghorbani S, Ahmadi S, Soleimani Mehranjani M. Silymarin mitigates toxic effects of cyclophosphamide on testicular tissue and sperm parameters in mice. Reprod Biol. 2024;24(4):100946. doi: 10.1016/j.repbio.2024.100946
Adana MY, Imam A, Bello AA, et al. Oral thymoquinone modulates cyclophosphamide‐induced testicular toxicity in adolescent Wistar rats. Andrologia. 2022;54(4):e14368. doi: 10.1111/and.14368
Kciuk M, Gielecińska A, Mujwar S, et al. Doxorubicin—an agent with multiple mechanisms of anticancer activity. Cells. 2023;12(4):659. doi: 10.3390/cells12040659
Levi M, Tzabari M, Savion N, Stemmer SM, Shalgi R, Ben-Aharon I. Dexrazoxane exacerbates doxorubicin-induced testicular toxicity. Reprod. 2015;150(4):357-366. doi: 10.1530/REP-15-0129
Mohan UP, Pichiah T, Iqbal STA, Arunachalam S. Mechanisms of doxorubicin-mediated reproductive toxicity – A review. Reproductive Toxicology. 2021;102:80-89. doi: 10.1016/j.reprotox.2021.04.003
Alafifi S, Wahdan S, Elsherbiny D, Azab S. Doxorubicin-induced testicular toxicity: possible underlying mechanisms and promising pharmacological treatments in experimental models. Arch Pharmaceut Sci Ain Shams Univ. 2022;6(2):196-207. doi: 10.21608/aps.2022.155127.1098
Sarman E, Koca HB. Effect of grape seed extract on doxorubicin-induced testicular and epididymal damage in rats. Human Exp Toxicol. 2025;44:1-9. doi: 10.1177/09603271251319787
Tektemur A, Tektemur NK, Güzel EE. The therapeutic effect of hesperetin on doxorubicin-induced testicular toxicity: Potential roles of the mechanistic target of rapamycin kinase (mTOR) and dynamin-related protein 1 (DRP1). Toxicol Appl Pharmacol. 2022;435:115833. doi: 10.1016/j.taap.2021.115833
Ijaz MU, Yaqoob S, Hamza A. Apigetrin ameliorates doxorubicin prompted testicular damage: biochemical, spermatological and histological based study. Sci Rep. 2024;14(1):9049. doi: 10.1038/s41598-024-59392-x
Koźmiński P, Halik PK, Chesori R, Gniazdowska E. Overview of Dual-Acting Drug Methotrexate in Different Neurological Diseases, Autoimmune Pathologies and Cancers. Int J Mol Sci. 2020;21(10):3483. doi: 10.3390/ijms21103483
Akacha A, Badraoui R, Rebai T, Zourgui L. Effect of Opuntia ficus indica extract on methotrexate-induced testicular injury: a biochemical, docking and histological study. J Biomolec Struct Dynam. 2022;40(10):4341-4351. doi: 10.1080/07391102.2020.1856187
Hassanein EHM, Mohamed WR, Hussein RM, Arafa, E.-S. A. Edaravone alleviates methotrexate-induced testicular injury in rats: Implications on inflammation, steroidogenesis, and Akt/p53 signaling. Int Immunopharmacol. 2023;117:109969. doi: 10.1016/j.intimp.2023.109969
Rofaeil RR, Ibrahim MA, Mohyeldin RH, El-Tahawy NF, Abdelzaher WY. Role of EGF/ERK1/2/HO-1 axis in mediating methotrexate induced testicular damage in rats and the ameliorative effect of xanthine oxidase inhibitors. Immunopharmacol Immunotoxicol. 2023;45(5):511-520. doi: 10.1080/08923973.2023.2181684
Sarman E, Gulle K, Ilhan I. Histochemical, Immunohistochemical, and Biochemical Investigation of the Effect of Resveratrol on Testicular Damage Caused by Methotrexate (MTX). Reprod Sci. 2023;30(11):3315-3324. doi: 10.1007/s43032-023-01269-x
Conei D, Rojas M, Santamaría L, Risopatrón J. Protective role of vitamin E in testicular development of mice exposed to valproic acid. Andrologia. 2021;53(8):e14140. doi: 10.1111/and.14140
Alsemeh AE, Ahmed MM, Fawzy A, Samy W, Tharwat M, Rezq S. Vitamin E rescues valproic acid-induced testicular injury in rats: Role of autophagy. Life Sci. 2022;296:120434. doi: 10.1016/j.lfs.2022.120434
Savran M, Ascı H, Armagan İ, et al. Thymoquinone could be protective against valproic acid‐induced testicular toxicity by antioxidant and anti‐inflammatory mechanisms. Andrologia. 2020;52(7) doi: 10.1111/and.13623
Bordbar H, Yahyavi S-S, Noorafshan A, Aliabadi E, Naseh M. Resveratrol ameliorates bisphenol A-induced testicular toxicity in adult male rats: a stereological and functional study. Basic Clin Androl. 2023;33(1):1. doi: 10.1186/s12610-022-00174-8
Gules O, Yildiz M, Naseer Z, Tatar M. Effects of folic acid on testicular toxicity induced by bisphenol-A in male Wistar rats. Biotechnol Histochem. 2019;94(1):26-35. doi: 10.1080/10520295.2018
Tekin S, Çelebi F. Investigation of the effect of hesperidin on some reproductive parameters in testicular toxicity induced by Bisphenol A. Andrologia. 2022;54(10): doi: 10.1111/and.14562
Rezaee-Tazangi F, Zeidooni L, Rafiee Z, et al. Taurine effects on Bisphenol A-induced oxidative stress in the mouse testicular mitochondria and sperm motility. JBRA Assist Repr. 2020;24(4):428-435. doi: 10.5935/1518-0557.20200017
Asadi-Fard Y, Soleimani MZ, Khodayar MJ, Khorsandi L, Shirani M, Samimi A. Morin improves Bisphenol-A-induced toxicity in the rat testicular mitochondria and sperms. JBRA Assist Reprod. 20223;27(2):174-179. doi: 10.5935/1518-0557.20220010
Zhang D, Li M, Shi T, et al. Protective effects of flavonoids on fluoride-induced testicular DNA damage in mice. Free Rad Biol Med. 2025;228:79-92. doi: 10.1016/j.freeradbiomed.2024.12.047
Chhabra V, Meenakshi S, Maity S, et al. Impact of fluoride exposure on reproductive health: Insights into molecular mechanisms and health implications. Reprod Toxicol. 2025;135:108907. doi: 10.1016/j.reprotox.2025
Patial B, Khan I, Thakur R, Fishta A. Effects of fluoride toxicity on the male reproductive system: A review. J Trace Elements Med Biol. 2024;86:127522. doi: 10.1016/j.jtemb.2024.127522
Li X, Yang J, Shi E. Riboflavin alleviates fluoride-induced ferroptosis by IL-17A-independent system Xc-/GPX4 pathway and iron metabolism in testicular Leydig cells. Environ Pollut. 2024b;344:123332. doi: 10.1016/j.envpol.2024
Talebi SF, Seify M, Bhandari RK, Shoorei H, Oskuei SD. Fluoride-induced testicular and ovarian toxicity: evidence from animal studies. Biol Res. 2025;58(1):6. doi: 10.1186/s40659-025-00586-6
Luqman EM, Ananda AT, Widjiati W, Hendrawan VF. Protective Effect of Apis dorsata Honey on Chronic Monosodium Glutamate-Induced Testicular Toxicity in Mus musculus Mice. Turk J Pharmaceut Sci. 2022;19(3):246-250. doi: 10.4274/tjps.galenos.2021.30737
Gad FA-M, Farouk SM, Emam MA. Antiapoptotic and antioxidant capacity of phytochemicals from Roselle (Hibiscus sabdariffa) and their potential effects on monosodium glutamate-induced testicular damage in rat. Environ Sci Pollut Res. 2021;28(2):2379-2390. doi: 10.1007/s11356-020-10674-7
Morsy MM, Hassan HA, Morsi RM, Nafea OE, Farag AI, Ramadan RS. Alogliptin attenuates testicular damage induced by monosodium glutamate in both juvenile and adult male rats by activating autophagy: ROS dependent AMPK/mTOR. Reproductive Toxicology. 2025;132:108826. doi: 10.1016/j.reprotox.2024.108826
Ikwuka DC, Anyaehie BU, Nwobodo E, Umegbolu EI, Nworgu CC. Ameliorative effects of African walnut on nicotine-induced reproductive toxicity in rat model. Int J Health Sci (Qassim). 2021;15(1):3-8.
Jalili C, Mastaneh K, Mona P, Ghanbari A, Mohsen Z, Samira D. Protective effect of gallic acid on nicotine-induced testicular toxicity in mice. Res Pharmaceut Sci. 2021;16(4):414-424. doi: 10.4103/1735-5362.319579
Ashoub AH, Abdel-Naby DH, Safar MM, El-Ghazaly MA, Kenawy SA. Ameliorative effect of fractionated low-dose gamma radiation in combination with ellagic acid on nicotine-induced hormonal changes and testicular toxicity in rats. Environ Sci Pollut Res. 2021;28(18):23287-23300. doi: 10.1007/s11356-020-12334-2
Zhang Z, Cheng J, Yang L, et al. The role of ferroptosis mediated by Bmal1/Nrf2 in nicotine-induce injury of BTB integrity. Free Rad Biol Med. 2023;200:26-35. doi: 10.1016/j.freeradbiomed.2023.02.024
EL-Deeb MEE, Abd-EL-Hafez AAA. Can vitamin C affect the KBrO3 induced oxidative stress on left ventricular myocardium of adult male albino rats? A histological and immunohistochemical study. J Microscop Ultrastr. 2015;3:120-136. doi: 10.1016/j.jmau.2015.03.003
Mohamed EAK, Saddek EA. The protective effect of taurine and/or vanillin against renal, testicular, and hematological alterations induced by potassium bromate toxicity in rats. J Basic Appl Zool. 2019;80:3. doi: 10.1186/s41936-018-0070-2
Akinola AO, Omotoso DR, Oyeyemi AW, Daramola OO. Ameliorative activity of α-tocopherol against potassium bromate-induced reproductive functional and morphological impairments in male rats. As Pac J Sci Technol. 2024;29(01).
Nwonuma CO, Lawal TA, Acho MA, et al. Protective effects of Allium cepa-fortified feed on testicular function alterations by potassium bromate-induced oxidative damage: an in vivo and in silico approach. Comp Clin Pathol. 2024;33:453-466. Doi: 10.1007/s00580-024-03566-6
Akinola AO, Omotoso DR, Oyeyemi AW, Daramola OO, Emojevwe V. α-Tocopherol Mitigates Adverse Effects of Potassium Bromate on Hematological Parameters and Markers of Hepatic Function in Rat Model. J Morphol Sci. 2023;40:89-94.
Mondal S, Bandyopadhyay A. Antioxidants in mitigating phthalate-induced male reproductive toxicity: A comprehensive review. Chemosphere. 2024;364:143297. doi: 10.1016/j.chemosphere.2024.143297
Tang X, Wu S, Shen L, et al. Di-(2-ethylhexyl) phthalate (DEHP)-induced testicular toxicity through Nrf2-mediated Notch1 signaling pathway in Sprague-Dawley rats. Environ Toxicol. 33(7):720-728. doi: 10.1002/tox.22559
Liu L-L, Yue J-Z, Lu Z-Y, et al. Long-term exposure to the mixture of phthalates induced male reproductive toxicity in rats and the alleviative effects of quercetin. Toxicol Appl Pharmacol. 2024;483:116816. doi: 10.1016/j.taap.2024.116816
Omotoso D, Joseph D. Comparative therapeutic role of ascorbic acid, α-tocopherol and riboflavin in mitigating hepatotoxicity induced by drugs and chemical toxins – a review. Eur J Clin Exp Med. 2025. doi: 10.15584/ejcem.2025.3.4
Suwannasom N, Kao I, Pruß A, Georgieva R, Bäumler H. Riboflavin: The Health Benefits of a Forgotten Natural Vitamin. Int J Mol Sci. 2020;21(3):950. doi: 10.3390/ijms21030950
Murgia C, Dehlia A, Guthridge MA. New insights into the nutritional genomics of adult-onset riboflavin-responsive diseases. Nutr Metab. 2023;20(1):42. doi: 10.1186/s12986-023-00764-x
Omotoso DR, Amakhabi SA. Histo-reparation of hepatic parenchyma of experimental wistar rats exposed to Ccl4-induced hepatopathy and treated with vitamin B2 and green tea extract. J Appl Biol Sci. 2021;15(3):247-256.
Saedisomeolia A, Ashoori M. Riboflavin in human health: a review of current evidences. In: Watson RR, ed. Advances in Food and Nutrition Research. Vol 83. Cambridge, MA: Academic Press; 2018:57-81. doi: 10.1016/bs.afnr.2017.11.002
Gliszczyńska-Świgło A. Folates as antioxidants. Food Chem. 2007;101(4):1480-1483. doi: 10.1016/j.foodchem.2006.04.022
Asbaghi O, Ghanavati M, Ashtary-Larky D, et al. Effects of Folic Acid Supplementation on Oxidative Stress Markers: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Antioxidants. 2021;10:871. doi: 10.3390/antiox1006087
Ray D, Bhattacharjee A, Banerjee O, et al. Folic acid and vitamin B12 ameliorate nicotine-induced testicular toxicity in rats. Biomedicine. 2019;39(2):353-368. doi: 10.51248/v39i2.22
Rizzo G, Laganà AS. A review of vitamin B12. In: Patel VB, Preedy VR, eds. Molecular Nutrition. Cambridge, MA: Academic Press; 2020:105-129. doi: 10.1016/B978-0-12-811907-5.00005-1
Moravcová M, Siatka T, Krčmová LK, Matoušová K, Mladěnka P. Biological properties of vitamin B12. Nutr Res Rev. 2025;38(1):338-370. doi: 10.1017/S0954422424000210
Rakusa ZT, Roskar R, Hickey N, Geremia S. Vitamin B12 in Foods, Food Supplements, and Medicines - A Review of Its Role and Properties with a Focus on Its Stability. Molecules. 2023;28(1):240. doi: 10.3390/molecules28010240
Olorunnisola OS, Ajayi AF, Okeleji LO, Oladipo AA, Emorioloye JT. Vitamins as antioxidants. J Food Sci Nutr Res. 2019;2(3):214-235. doi: 10.26502/jfsnr.2642-11000021
Amany MB, Moustafa AAA, Manar HA. Antioxidant activity and defensive role of vitamin B17 to fight cancer. Sci Res Refract Tech Ceram. 2020;3(2):1-4. doi: 10.31031/COJTS.2020.03.000556
Felemban SG, Aldubayan MA, Alhowail A.H., and Almami, I.S., 2020. Vitamin B17 Ameliorates Methotrexate-Induced Reproductive Toxicity, Oxidative Stress, and Testicular Injury in Male Rats. Oxid Med Cell Longev. 2020;2020:4372719. doi: 10.1155/2020/4372719
Lykkesfeldt J, Tveden-Nyborg P. The Pharmacokinetics of Vitamin C. Nutrients. 2019;11(10): 2412. doi: 10.3390/nu11102412
Gęgotek A, Skrzydlewska E. Antioxidative and Anti-Inflammatory Activity of Ascorbic Acid. Antioxidants. 2022;11(10);1993. doi: 10.3390/antiox11101993
Okwuonu UC, Omotoso DR, Bienonwu EO, Adagbonyin O, Dappa J. Histomorphological profile of liver and kidney tissues of albino Wistar rats following exposure to cadmium-induced damage and ascorbic acid supplementation. Acad Anat Int. 2020;6(1):15-19. doi: 10.21276/aanat.2020.6.1.7
Omotoso DR, Owonikoko WM, Ehiemere WP. Comparative amelioration of renal histomorphology by ascorbic acid and Camellia sinensis extract in Wistar rats exposed to Lead-induced nephropathy. Ann Med Res. 2020;27(8):2161-2165. doi: 10.5455/annalsmedres.2020.02.105
Conklin PL, Foyer CH, Hancock RD, Ishikawa T, Smirnoff N. Ascorbic acid metabolism and functions. J Exp Botany. 2024;75(9):2599-2603. doi: 10.1093/jxb/erae143
Hajjar T, Soleymani F, Vatanchian M. Protective Effect of Vitamin C and Zinc as an Antioxidant Against Chemotherapy-Induced Male Reproductive Toxicity. J Med Life. 2020;13(2):138-143. doi: 10.25122/jml-2019-0107
Rauf N, Nawaz A, Ullah H, et al. Therapeutic effects of chitosan-embedded vitamin C, E nanoparticles against cisplatin-induced gametogenic and androgenic toxicity in adult male rats. Environ Sci Poll Res. 2021;28(40):56319-56332. doi: 10.1007/s11356-021-14516-y
Jain P, Singh I, Surana SJ, Shirkhedkar AA. Tocopherols and tocotrienols: the essential vitamin E. In: Puri M, ed. Bioactive Food Components: Activity in Mechanistic Approach. 1st ed. Elsevier; 2022:139-154. doi: 10.1016/B978-0-12-823569-0.00009-6
Torquato P, Marinelli R, Bartolini D, Galli F. Vitamin E: nutritional aspects. In: Stacchiotti A, Corsetti G, eds. Molecular Nutrition. 1st ed. Elsevier; 2020:447-485. doi: 10.1016/B978-0-12-811907-5.00019-1
Omotoso DR, Ehiemere WP. Comparative histomorphological assessment of Vitamin E and green tea (Camellia sinensis) extract-mediated amelioration of Lead-induced hepatopathy in experimental Wistar rats. Am J Physiol Biochem Pharmacol. 2020;10:18-24. doi: 10.5455/ajpbp.20191105104249
Kloubert V, Rink L. Zinc as a micronutrient and its preventive role of oxidative damage in cells. Food Funct. 2015;6(10):3195-3204. doi: 10.1039/c5fo00630a
Rice JM, Zweifach A, Lynes MA. Metallothionein regulates intracellular zinc signaling during CD4(+) T cell activation. BMC Immunol. 2016;17:13. doi: 10.1186/s12865-016-0151-2
Fallah A, Mohammad-Hasani A, Colagar AH. Zinc is an essential element for male fertility: a review of Zn roles in men's health, germination, sperm quality, and fertilization. J Reprod Infertil. 2018;19(2):69-81.
Maremanda KP, Khan S, Jena G. Zinc protects cyclophosphamide-induced testicular damage in rat: involvement of metallothionein, tesmin and Nrf2. Biochem Biophys Res Comm. 2014;445(3):591-596. doi: 10.1016/j.bbrc.2014.02.055
Genchi G, Lauria G, Catalano A, Sinicropi MS, Carocci A. Biological activity of selenium and its impact on human health. Int J Mol Sci. 2023;24(3):2633. doi: 10.3390/ijms24032633
Bjørklund G, Shanaida M, Lysiuk R, et al. Selenium: an antioxidant with a critical role in anti-aging. Molecules. 2022;27(19):6613. doi: 10.3390/molecules27196613
Huang H, Li X, Wang Z. Anti-inflammatory effect of selenium on lead-induced testicular inflammation by inhibiting NLRP3 inflammasome activation in chickens. Theriogenol. 2020;155:139-149. doi: 10.1016/j.theriogenology.2020.06.01
Hamza RZ, Diab AEA. Testicular protective and antioxidant effects of selenium nanoparticles on monosodium glutamate–induced testicular structure alterations in male mice. Toxicol Rep. 2020;7:254-260. doi: 10.1016/j.toxrep.2020.01.012
Keshta AT, Fathallah AM, Attia YA, Salem EA, Watad SH. Ameliorative effect of selenium nanoparticles on testicular toxicity induced by cisplatin in adult male rats. Food Chem Toxicol. 2023;179:113979. doi: 10.1016/j.fct.2023.113979
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 European Journal of Clinical and Experimental Medicine

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our open access policy is in accordance with the Budapest Open Access Initiative (BOAI) definition: this means that articles have free availability on the public Internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from having access to the Internet itself.
All articles are published with free open access under the CC-BY Creative Commons attribution license (the current version is CC-BY, version 4.0). If you submit your paper for publication by the Eur J Clin Exp Med, you agree to have the CC-BY license applied to your work. Under this Open Access license, you, as the author, agree that anyone may download and read the paper for free. In addition, the article may be reused and quoted provided that the original published version is cited. This facilitates freedom in re-use and also ensures that Eur J Clin Exp Med content can be mined without barriers for the research needs.




