Review of the therapeutic effect of alpha-tocopherol, ascorbic acid, and folic acid against ovarian toxicity induced by drugs and heavy metals

Authors

DOI:

https://doi.org/10.15584/ejcem.2025.4.23

Keywords:

experimental animal model, ovarian toxicity, vitamins

Abstract

Introduction and aim. The ovaries are almond-shaped organs that produce the female gametes and reproductive hormones. They also play a critical role of ovulation under well-coordinated hormonal regulation. However, chemotherapy involving the application of drugs to combat chronic diseases (like cancer) results in toxicity to tissues like ovaries. Similarly, exposure to heavy metals has a toxic effect on the ovaries. Hence, potential therapeutic agents including vitamin antioxidants have been explored to combat ovarian toxicity caused by drugs or heavy metals.

Material and methods. This review was based on previous articles archived on Web of Science, PubMed, Scopus and Google Scholar databases. After initial assessment, the relevant articles were selected for further critical assessment.

Analysis of the literature. Induction of oxidative stress and activation of inflammo-apoptotic signaling were indicated as the major mechanisms of ovarian toxicity due to exposure to drugs and heavy metals. Moreover, vitamins such as alpha-tocopherol, ascorbic acid and folic acid demonstrated therapeutic effects against drug and heavy metal-induced ovarian toxicity based on their modulatory effect on the downstream mechanisms of the toxicity.

Conclusion. Vitamins exert a therapeutic effect against ovarian toxicity caused by drugs or heavy metal exposure due to their antioxidant, anti-inflammatory and anti-apoptotic properties.

Downloads

Download data is not yet available.

References

Moore KL, Dalley AF, Agur AMR. Clinically Oriented Anatomy. 7th ed. Philadelphia, PA: Wolters Kluwer; 2018:1411-1413.

Orisaka M, Miyazaki Y, Shirafuji A, et al. The role of pituitary gonadotropins and intraovarian regulators in follicle development: A mini-review. Reprod Med Biol. 2021;20(2):169-175. doi: 10.1002/rmb2.12371

Richards JS, Pangas SA. The ovary: basic biology and clinical implications. J Clin Invest. 2010;120(4):963-972. doi: 10.1172/JCI41350

Li H, Chian RC. Follicular development and oocyte growth. In: Chian RC, Nargund G, Huang J, eds. Development of In Vitro Maturation for Human Oocytes. Cham, Switzerland: Springer; 2017. doi: 10.1007/978-3-319-53454-1_2

Yilmaz B, Terekeci H, Sandal S, Kelestimur F. Endocrine disrupting chemicals: exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev Endocr Metab Disord. 2020;21(1):127-147. doi: 10.1007/s11154-019-09521-z

Biswas S, Ghosh S, Das S, Maitra S. Female reproduction: at the crossroads of endocrine disruptors and epigenetics. Proc Zool Soc. 2021;74:532-545. doi: 10.1007/s12595-021-00403-4

Zhang S, Liu Q, Chang M, et al. Chemotherapy impairs ovarian function through excessive ROS-induced ferroptosis. Cell Death Dis. 2023;14(5):340. doi: 10.1038/s41419-023-05859-0

Cho HW, Lee S, Min KJ, et al. Advances in the Treatment and Prevention of Chemotherapy-Induced Ovarian Toxicity. Int J Mol Sci. 2020;21(20):7792. doi: 10.3390/ijms21207792

Melekoglu R, Ciftci O, Eraslan S, Cetin A, Basak N. Beneficial effects of curcumin and capsaicin on cyclophosphamide-induced premature ovarian failure in a rat model. J Ovarian Res. 2018;11(1):33. doi: 10.1186/s13048-018-0409-9

Spears N, Lopes F, Stefansdottir S, et al. Ovarian damage from chemotherapy and current approaches to its protection. Human Reprod Update. 2019;25(6):673-693. doi: 10.1093/humupd/dmz027

Wang Y, Li SH, Yang SJ, et al. Exposure to phenanthrene affects oocyte meiosis by inducing mitochondrial dysfunction and endoplasmic reticulum stress. Cell Pro. 2023;56(1):e13335. doi: 10.1111/cpr.13335

Xiao C, Lai D. Impact of oxidative stress induced by heavy metals on ovarian function. J Appl Toxicol. 2025;45(1):107-116. doi: 10.1002/jat.4664

Thonen M, Jiang H, Luan Y, Dong R, Wadhwa A, Kim SY. The gonadotoxic effects of cyclophosphamide and busulfan on ovaries in CD-1 mouse model. J Endocr Soc. 2023;7(1):bvad114.1575. doi: 10.1210/jendso/bvad114.1575

Sakurada Y, Kudo S, Iwasaki S, Miyata Y, Nishi M, Masumoto Y. Collaborative work on evaluation of ovarian toxicity: two- or four-week repeated-dose studies and fertility study of busulfan in female rats. J Toxicol Sci. 2009;34(1):SP65-SP72. doi: 10.2131/jts.34.s65

Peng Y, Sun L, Guo W, et al. Berberine protects cyclophosphamide and busulfan-induced premature ovarian insufficiency in mouse model. J Pharmacol Sci. 2023;153(1):46-54. doi: 10.1016/j.jphs.2023.07.004

Del Castillo LM, Buigues A, Rossi V, et al. The cyto-protective effects of LH on ovarian reserve and female fertility during exposure to gonadotoxic alkylating agents in an adult mouse model. Hum Reprod. 2021;36(9):2514-2528. doi: 10.1093/humrep/deab165

Jiang Y, Zhao J, Qi HJ, et al. Accelerated ovarian aging in mice by treatment of busulfan and cyclophosphamide. J Zhejiang Univ Sci B. 2013;14(4):318-324. doi: 10.1631/jzus.B1200181

Pascuali N, Scotti L, Di Pietro M, et al. Ceramide-1-phosphate has protective properties against cyclophosphamide-induced ovarian damage in a mice model of premature ovarian failure. Hum Reprod. 2018;33(5):844-859. doi: 10.1093/humrep/dey045

Nan N, Du XL, Chen M, Luo JQ. Qirong Tablets inhibits apoptosis of ovarian granulosa cells via PI3K/Akt/ HIF-1 signaling pathway. Zhongguo Zhong Yao Za Zhi. 2023;48(17):4774-4781. doi: 10.19540/j.cnki.cjcmm.20230424.501

Xiu Z, Tang S, Kong P, et al. Zigui-Yichong-Fang protects against cyclophosphamide-induced premature ovarian insufficiency via the SIRT1/Foxo3a pathway. J Ethnopharmacol. 2023;314:116608. doi: 10.1016/j.jep.2023.116608

Notghi P, Mehranjani MS, Shariatzadeh SMA. Atorvastatin improves ovarian function and follicular reserve in rats with premature ovarian insufficiency. Reprod Biomed Online. 2024;49(5):104324. doi: 10.1016/j.rbmo.2024.104324

Eid BG, Binmahfouz LS, Shaik RA, Bagher AM, Sirwi A, Abdel-Naim AB. Icariin inhibits cisplatin-induced ovarian toxicity via modulating NF-κB and PTEN/AKT/mTOR/AMPK axis. Naunyn-Schmiedeberg's Arch Pharmacol. 2025;398:1949-1959. doi: 10.1007/s00210-024-03395-y

Said RS, Mantawy EM, El-Demerdash E. Mechanistic perspective of protective effects of resveratrol against cisplatin-induced ovarian injury in rats: emphasis on anti-inflammatory and anti-apoptotic effects. Naunyn-Schmiedeberg's Arch Pharmacol. 2019;392:1225-1238. doi: 10.1007/s00210-019-01662-x

Li F, Zhu F, Wang S, et al. Icariin alleviates cisplatin-induced premature ovarian failure by inhibiting ferroptosis through activation of the Nrf2/ARE pathway. Sci Rep. 2024;14:17318. doi: 10.1038/s41598-024-67557-x

Soyman Z, Uzun H, Bayindir N, Esrefoglu M, Boran B. Can ebselen prevent cisplatin-induced ovarian damage? Arch Gynecol Obstet. 2018;297:1549-1555. doi: 10.1007/s00404-018-4750-4

Ben-Aharon I, Bar-Joseph H, Tzarfaty G, et al. Doxorubicin-induced ovarian toxicity. Reprod Biol Endocrinol. 2010;8:20. doi: 10.1186/1477-7827-8-20

Zhang T, He WH, Feng LL, Huang HG. Effect of doxorubicin-induced ovarian toxicity on mouse ovarian granulosa cells. Regul Toxicol Pharmacol. 2017:86:1-10. doi: 10.1016/j.yrtph.2017.02.012

Mohan UP, Pichiah TPB, Iqbal STA, Arunachalam S. Mechanisms of doxorubicin-mediated reproductive toxicity – A review. Reprod Toxicol. 2021;102:80-89. doi: 10.1016/j.reprtox.2021.04.003

Xiao S, Zhang J, Liu M, Iwahata H, Rogers HB, Woodruff TK. Doxorubicin Has Dose-Dependent Toxicity on Mouse Ovarian Follicle Development, Hormone Secretion, and Oocyte Maturation. Toxicol Sci. 2017;157(2):320-329. doi: 10.1093/toxsci/kfx047

Xiao C, Lai D. Impact of oxidative stress induced by heavy metals on ovarian function. J Appl Toxicol. 2025;45(1):107-116. doi: 10.1002/jat.4664

Bhardwaj JK, Bikal P, Sachdeva SN. Cadmium as an ovarian toxicant: A review. J Appl Toxicol. 2024;44(1):129-147. doi: 10.1002/jat.4526

Oyewopo AO, Olaniyi KS, Olojede SO, Lawal SK, Amusa OA, Ajadi IO. Hibiscus sabdariffa extract protects against cadmium-induced ovarian toxicity in adult Wistar rats. Int J Physiol Pathophysiol Pharmacol. 2020;12(4):107-114.

Massányi P, Massányi M, Madeddu R, Stawarz R, Lukáč N. Effects of Cadmium, Lead, and Mercury on the Structure and Function of Reproductive Organs. Toxics. 2020;8(4):94. doi: 10.3390/toxics8040094

Wang Q, Sun Y, Zhao A, et al. High dietary copper intake induces perturbations in the gut microbiota and affects host ovarian follicle development. Ecotoxicol Environ Saf. 2023;255:114810. doi: 10.1016/j.ecoenv.2023.114810

Yiqin C, Yan S, Peiwen W, et al. Copper exposure disrupts ovarian steroidogenesis in human ovarian granulosa cells via the FSHR/CYP19A1 pathway and alters methylation patterns on the SF-1 gene promoter. Toxicol Lett. 2022;356:11-20. doi: 10.1016/j.toxlet.2021

Chen Y, Guan F, Wang P, et al. Copper exposure induces ovarian granulosa cell apoptosis by activating the caspase-dependent apoptosis signaling pathway and corresponding changes in microRNA patterns. Ecotoxicol Environ Saf. 2023;264:115414. doi: 10.1016/j.ecoenv.2023

Chen Y, Sun Y, Zhao A, et al. Arsenic exposure diminishes ovarian follicular reserve and induces abnormal steroidogenesis by DNA methylation. Ecotoxicol Environ Saf. 2022;241:113816. doi: 10.1016/j.ecoenv.2022.113816

Ommati MM, Shi X, Li H, et al. The mechanisms of arsenic-induced ovotoxicity, ultrastructural alterations, and autophagic related paths: An enduring developmental study in folliculogenesis of mice. Ecotoxicol Environ Saf. 2020;204:110973. doi: 10.1016/j.ecoenv.2020.110973

Merlo E, Schereider IRG, Simoes MR, Vassallo DV, Graceli JB. Mercury leads to features of polycystic ovary syndrome in rats. Toxicol Lett. 2019;312:45-54. doi: 10.1016/j.toxlet.2019.05.006

Qu J, Niu H, Wang J, Wang Q, Li Y. Potential mechanism of lead poisoning to growth and development of ovarian follicle. Toxicol Lett. 2021;457:152810. doi: 10.1016/j.tox.2021.152810

Waseem N, Butt SA, Hamid S. Amelioration of lead induced changes in ovary of mice by garlic extract. J Pak Med Assoc. 2014;64:798-801.

Fatima P, Hossain MM, Rahman D, et al. Association of blood and semen lead and zinc level with semen parameter in the male partner of infertile couple. Mymensingh Med J. 2015;24:537-541.

Yang ZN, Du X, Wang A, et al. Melatonin ameliorates Pb-induced mitochondrial homeostasis and ovarian damage through regulating the p38 signaling pathway. Ecotoxicol Environ Saf. 2025;292:117937. doi: 10.1016/j.ecoenv.2025.117937

Khan Z, Elahi A, Bukhari DA, Rehman A. Cadmium sources, toxicity, resistance, and removal by microorganisms: a potential strategy for cadmium eradication. J Saud Chem Soc. 2022;26(6):101569. doi: 10.1016/j.jscs.2022.101569

Akram M, Munir N, Daniyal M, et al. Vitamins and minerals: types, sources and their functions. In: Egbuna C, Dable Tupas G, eds. Functional Foods and Nutraceuticals. Cham, Switzerland: Springer; 2020. doi: 10.1007/978-3-030-42319-3_9

Akinola AO, Omotoso DR, Oyeyemi AW, Daramola OO, Emojevwe V. α-Tocopherol mitigates adverse effects of potassium bromate on hematological parameters and markers of hepatic function in rat model. J Morphol Sci. 2023;40:89-94.

Niki E, Abe K. Vitamin E: chemistry and nutritional benefits. In: Niki E, ed. Vitamin E. Cambridge, UK: The Royal Society of Chemistry; 2019:1-11. doi: 10.1039/9781788016216-00001

Torquato P, Marinelli R, Bartolini D, Galli F. Vitamin E: nutritional aspects. Mol Nutr. 2020:447-485. doi: 10.1016/B978-0-12-811907-5.00019-1

Du R, Cheng X, Ji J, et al. Mechanism of ferroptosis in a rat model of premature ovarian insufficiency induced by cisplatin. Sci Rep. 2023;13(1):4463. doi: 10.1038/s41598-023-31712-7

Gürgen SG, Erdoğan D, Elmas C, Kaplanoğlu GT, Özer C. Chemoprotective effect of ascorbic acid, α-tocopherol, and selenium on cyclophosphamide-induced toxicity in the rat ovarium. Nutr. 2013;29(5):777-784. doi: 10.1016/j.nut.2012.11.004

Zhai Q, NArbad A, Chen W. Dietary strategies for the treatment of cadmium and lead toxicity. Nutr. 2015;7(1):552-571. doi: 10.3390/nu7010552

Omotoso DR, Ehiemere WP. Comparative histomorphological assessment of Vitamin E and Green tea (Camellia sinensis) extract-mediated amelioration of Lead–induced hepatopathy in experimental Wistar rats. Am J Physiol Biochem Pharmacol. 2020;10(1):18-24. doi: 10.5455/ajpbp.20191105104249

Fan Y, Jiang X, Xiao Y, Li H, Chen J, Bai W. Natural antioxidants mitigate heavy metal induced reproductive toxicity: prospective mechanisms and biomarkers. Crit Rev Food Sci Nutr. 2023;64(31):11530-11542. doi: 10.1080/10408398.2023.2240399

Steinberg FM, Rucker RB. Vitamin C. In: Encyclopedia of Biological Chemistry. Elsevier; 2013:530-534. doi: 10.1016/B978-0-12-378630-2.00092-X

Akram M, Munir N, Daniyal M, et al. Vitamins and Minerals: Types, Sources and their Functions. Funct Foods and Nutraceut. 2020:149-172. doi: 10.1007/978-3-030-42319-3_9

Gęgotek A, Skrzydlewska E. Ascorbic acid as antioxidant. Vitamin Horm. 2023;121:247-270. doi: 10.1016/bs.vh.2022.10.008

Gęgotek A, Skrzydlewska E. Antioxidative and Anti-Inflammatory Activity of Ascorbic Acid. Antioxidants. 2022;11(10):1993. doi: 10.3390/antiox11101993

Conklin PL, Foyer CH, Hancock RD, Ishikawa T, Smirnoff N. Ascorbic acid metabolism and functions. J Exp Bot. 2024;75(9):2599-2603. doi: 10.1093/jxb/erae143

Okwuonu UC, Omotoso DR, Bienonwu EO, Adagbonyin O, Dappa J. Histomorphological profile of liver and kidney tissues of albino Wistar rats following exposure to cadmium-induced damage and ascorbic acid supplementation. Acad Anat Int. 2020;6(1):15-19. doi: 10.21276/aanat.2020.6.1.5

Myszczyszyn A, Krajewski R, Ostapow M, Hirnle L. Folic acid: role in the body, recommendations, and clinical significance. Nurs 21st Century. 2019;18(1):66. doi: 10.2478/pielxxiw-2019-0007

Harris ED. Cofactors: organic. In: Encyclopedia of Human Nutrition. Elsevier; 2013:366-377. doi: 10.1016/B978-0-12-375083-9.00058-1

Gliszczyńska-Świgło A. Folates as antioxidants. Food Chem. 2007;101(4):1480-1483. doi: 10.1016/foodchem.2006.04.022

Asbaghi O, Ghanavati M, Ashtary-Larky D, et al. Effects of Folic Acid Supplementation on Oxidative Stress Markers: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Antioxidants. 2021;10(6):871. doi: 10.3390/antiox10060871

Liao K, Wang Y, Zheng L, et al. Effect of folic acid supplementation on diminished ovarian reserve: study protocol of a single-centre, open-label, randomised, placebo-controlled clinical trial. BMJ Open. 2022;12(7):e057689. doi: 10.1136/bmjopen-2021-057689

Kadir M, Hood RB, Mínguez-Alarcón L, et al. Folate intake and ovarian reserve among women attending a fertility center. Fertil Steril. 2022;117(1):171-180. doi: 10.1016/j.fertnstert.2021.09.037

Shohda AA, El-Banna A, Fattah FA. The possible protective effect of folic acid against methotrexate induced ovarian damage in female albino rats: light and electron microscopic study. Bull Natl Nutr Inst Arab Repub Egypt. 2017;49(1):1-24. doi: 10.21608/bnni.2017.4247

Downloads

Published

2025-07-13

How to Cite

Omotoso, D. R., Alamu, O. O., & Aderinto, O. (2025). Review of the therapeutic effect of alpha-tocopherol, ascorbic acid, and folic acid against ovarian toxicity induced by drugs and heavy metals. European Journal of Clinical and Experimental Medicine. https://doi.org/10.15584/ejcem.2025.4.23

Issue

Section

REVIEW PAPERS