Clinical exome sequencing (carrier screening) identifies the gene INPPL1 in a sporadic case of opsismodysplasia

Authors

DOI:

https://doi.org/10.15584/ejcem.2025.1.32

Keywords:

exome sequencing, INPPL1 gene, opsismodysplasia, rare skeletal dysplasia

Abstract

Introduction and aim. This study presents a case of opsismodysplasia in a family, characterized by skeletal dysplasia and neu rological complications in two consecutive neonates.

Description of the case. Genetic analysis revealed that the father carries a likely benign/variant of uncertain significance (VUS) in exon 14 of the INPPL1 gene (c.1706C>T, p.Thr569Met), while the mother carries a pathogenic variant in exon 15 (c.1809del, p.Trp604GlyfsTer17). These variants follow an autosomal recessive inheritance, confirming carrier status. Additionally, the fa ther is a carrier of a likely pathogenic variant in the CYP17A1 gene (OMIM*609300), specifically in exon 6 (c.1040G>A, p.Ar g347His, heterozygous), affecting 17,20-lyase activity and associated with isolated 17,20-lyase deficiency. Targeted sequencing and Sanger validation elucidated the genetic basis of the condition, emphasizing the importance of genetic testing and coun selling in families with a history of genetic disorders. The detected variants in the INPPL1 gene disrupt SHIP2 protein function, contributing to the observed abnormalities.

Conclusion. This study underscores the significance of early genetic diagnosis for reproductive counselling and timely inter vention. Further research into opsismodysplasia’s genetic mechanisms may lead to improved management and therapies for affected individuals. Overall, this case highlights the critical role of genetic analysis in diagnosing and managing rare genetic disorders, offering insights into personalized care and family planning.

Downloads

Download data is not yet available.

References

Krakow D, Vriens J, Camacho N, et al. Mutations in the gene encoding the calcium-permeable ion channel TRPV4 produce spondylometaphyseal dysplasia, Kozlowski type and metatropic dysplasia. Am J Hum Genet. 2009;84(3):307-315. doi: 10.1016/j.ajhg.2009.01.021

Robertson SP, Twigg SR, Sutherland-Smith AJ, et al. Localized mutations in the gene encoding the cytoskeletal protein filamin A cause diverse malformations in humans. Nat Genet. 2003;33(4):487-491. doi: 10.1038/ng1119

Stenson PD, Mort M, Ball EV, et al. The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet. 2017;136(6):665-677. doi: 10.1007/s00439-017-1779-6

Scott RM. Opsismodysplasia: Another lethal skeletal dysplasia among the bent bone dysplasias. Am J Med Genet Part A. 2004;126A(1):33-36.

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754-1760. doi: 10.1093/bioinformatics/btp324

McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297-1303. doi: 10.1101/gr.107524.110

Picard. Broad Institute. http://broadinstitute.github.io/picard/. Accessed July 20, 2024.

Van der Auwera GA, Carneiro MO, Hartl C, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43(1110):11.10.1-11.10.33. doi: 10.1002/0471250953.bi1110s43

MacArthur J, Bowler E, Cerezo M, et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017;45(D1):D896-D901. doi: 10.1093/nar/gkw1133

McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics. 2010;26(16):2069-2070. doi: 10.1093/bioinformatics/btq330

Yates AD, Achuthan P, Akanni W, et al. Ensembl 2020. Nucleic Acids Res. 2020;48(D1):D682-D688. doi: 10.1093/nar/gkz966

Landrum MJ, Lee JM, Benson M, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46(D1):D1062-D1067. Doi: 10.1093/nar/gkx1153

Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015;43(Database issue):D789-D798. doi: 10.1093/nar/gku1205

Landrum MJ, Lee JM, Benson M, et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016;44(D1):D862-D868. doi: 10.1093/nar/gkv1222

Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285-291. doi: 10.1038/nature19057

Okada Y, Momozawa Y, Sakaue S, et al. Deep whole-genome sequencing reveals recent selection signatures linked to evolution and disease risk of Japanese. Nat Commun. 2018;9(1):1631. doi: 10.1038/s41467-018-03274-0

Nagasaki M, Yasuda J, Katsuoka F, et al. Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese individuals. Nat Commun. 2015;6:8018. doi: 10.1038/ncomms9018

Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248-249. doi: 10.1038/nmeth0410-248

Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073-1081. doi: 10.1038/nprot.2009.86

Schwarz JM, Rödelsperger C, Schuelke M, Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods. 2010;7(8):575-576. doi: 10.1038/nmeth0810-575

Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res. 2011;39(17):e118. doi: 10.1093/nar/gkr407

Greenblatt MS, Brody LC, Foulkes WD, et al. Locus-specific databases and recommendations to strengthen their contribution to the classification of variants in cancer susceptibility genes. Hum Mutat. 2008;29(11):1273-1281.doi: 10.1002/humu.20889

Downloads

Published

2025-03-30

How to Cite

Ashish, A., Mishra, S., Singh, R., & Rai, S. (2025). Clinical exome sequencing (carrier screening) identifies the gene INPPL1 in a sporadic case of opsismodysplasia. European Journal of Clinical and Experimental Medicine, 23(1), 277–282. https://doi.org/10.15584/ejcem.2025.1.32

Issue

Section

CASE REPORTS