Membrane lipids under norm and pathology
DOI:
https://doi.org/10.15584/ejcem.2021.1.9Keywords:
cholesterol, lipid distress syndrome, membrane lipids, peroxidation, phosphatidylcholine, plasmenylethanolamineAbstract
Introduction. Lipid is an essential component of the cell and its organelles membrane. The uniqueness and selectivity of lipids to specific functions and asymmetry of lipid distribution in the organelle’s membrane give the cell ability of being highly qualified and specified.
Aim. The paper provides a comprehensive review of membrane lipids in different tissues and organelles of the cell in norm and disease.
Material and methods. The paper analyzed the present literature data on membrane lipids behavior in physiology and pathology.
Analysis of the literature. The major structural and functional lipids of the cell membrane are phosphatidylcholine > phosphatidylethanolamine. The absence/deficiency or augmentation of a specific type of lipid results in serious defects and usually life-threatening with a permanent disability. The observations discussed here suggest, the lipid peroxidation severity depends on the membrane lipid composition of the cell. Some tissue cells can handle lipoperoxidation and protect themselves from the peroxidation damaging products better, while other cells cannot compensate. Therefore, some organs are highly sensitive to peroxidation and irreversible changes occur rapidly.
Conclusion. To sum up, the understanding of lipid’s role in norm and disease is clinically crucial to evaluate a novel therapeutic target to treat many metabolic disorders such as metabolic syndrome and some lysosomal storage disorders via targeting specific new signaling pathways, lipid molecules, and enzymes.
Downloads
References
Schultz M. Rudolf Virchow. Emerg Infect Dis. 2008;14(9):1480-1481.
Membranes - Biology LibreTexts. Accessed October 18, 2020. https://bio.libretexts.org/Courses/University_of_California_Davis/BIS_2A%3A_Introductory_Biology_(Easlon)/Readings/15.1%3A_Membranes
Stillwell W. An Introduction to Biological Membranes: Composition, Structure and Function: Second Edition.; 2016. doi:10.1016/C2015-0-06226-8
Horrocks, L A, Sharma M. Phospholipids. 1st ed. (Hawthorne N, Ansell B, eds.). Elsevier Biomedical Press; 1982.
Casolari JM, Brown CR, Komili S, West J, Hieronymus H, Silver PA. Genome-Wide Localization of the Nuclear Transport Machinery Couples Transcriptional Status and Nuclear Organization. Cell. 2004;117(4):427-439.
Keenan TW, Berezney R, Crane FL. Lipid composition of further purified bovine liver nuclear membranes. Lipids. 1972;7(3):212-215.
Sohrab Hossain M, Mohamed SH, Binti Khalid AM, Balakrishnan V, Zaidul Islam Sarker M, Kadir MOA. Avenues in Supercritical Carbon Dioxide Extraction and Fractionation of Lipids. In: Innovative Food Processing Technologies. Elsevier; 2021:584-596. doi:10.1016/B978-0-08-100596-5.22980-6
Antonio B, Gustavo B. MEDICAL BIOCHEMISTRY. 1st ed. Academic Press; 2017. https://www.elsevier.com/books/medical-biochemistry/blanco/978-0-12-803550-4
van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9(2):112-124.
Dulai. Cell Membrane Lipid Synthesis and Conditioning - YouTube. Accessed October 18, 2020. https://www.youtube.com/watch?v=lFXLTragQ_A&t=981s
Vance JE. Historical perspective: phosphatidylserine and phosphatidylethanolamine from the 1800s to the present. J Lipid Res. 2018;59(6):923-944.
Daum G, Vance JE. Import of lipids into mitochondria. Prog Lipid Res. Published online 1997. doi:10.1016/S0163-7827(97)00006-4
Krimm S. The hydrophobic effect: Formation of micelles and biological membranes, Charles Tanford, Wiley-Interscience, New York, 1980, 233 pp. price: $18.50. J Polym Sci Polym Lett Ed. 1980;18(10):687-687.
Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. (Wilson J, Hunt T, eds.). Garland Science; 2017. doi:10.1201/9781315735368
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell. 2012;149(5):1060-1072.
Phillips R. Membranes by the Numbers. In: Physics of Biological Membranes. Springer International Publishing; 2018:73-105. doi:10.1007/978-3-030-00630-3_3
Vallée B, Teyssier C, Maget-Dana R, Ramstein J, Bureaud N, Schoentgen F. Stability and physicochemical properties of the bovine brain phosphatidylethanolamine-binding protein. Eur J Biochem. Published online 1999. doi:10.1046/j.1432-1327.1999.00812.x
Oram JF, Wolfbauer G, Vaughan AM, Tang C, Albers JJ. Phospholipid Transfer Protein Interacts with and Stabilizes ATP-binding Cassette Transporter A1 and Enhances Cholesterol Efflux from Cells. J Biol Chem. Published online 2003. doi:10.1074/jbc.M310695200
Voelker DR. New perspectives on the regulation of intermembrane glycerophospholipid traffic. J Lipid Res. Published online 2003. doi:10.1194/jlr.R200020-JLR200
Kent C, Carman GM. Interactions among pathways for phosphatidylcholine metabolism, CTP synthesis and secretion through the Golgi apparatus. Trends Biochem Sci. Published online 1999. doi:10.1016/S0968-0004(99)01365-1
Houtkooper RH, Vaz FM. Cardiolipin, the heart of mitochondrial metabolism. Cell Mol Life Sci. Published online 2008. doi:10.1007/s00018-008-8030-5
Strauss J, Barbieri R. Yen & Jaffe’s Reproductive Endocrinology. 7th ed. Saunders; 2013.
Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: Structural, Cellular, and Molecular Biology. Annu Rev Biochem. 2000;69(1):145-182.
Smith W. Molecular biology of prostanoid biosynthetic enzymes and receptors. Adv Exp Med Biol. 1997;400B(1997):989-1011. http://www.ncbi.nlm.nih.gov/pubmed/9547656
M. P-G, W.R. HJ. Mechanisms of disease: Leukotrienes. N Engl J Med. Published online 2007.
Funk CD. Prostaglandins and leukotrienes: Advances in eicosanoid biology. Science (80- ). Published online 2001. doi:10.1126/science.294.5548.1871
Spector AA. Arachidonic acid cytochrome P450 epoxygenase pathway. J Lipid Res. 2009;50:52-56.
Roberts LJ, Morrow JD. Isoprostanes. Ann N Y Acad Sci. 1994;744(1 Cellular Gene):237-242.
Milne GL, Yin H, Hardy KD, Davies SS, Roberts LJ. Isoprostane Generation and Function. Chem Rev. 2011;111(10):5973-5996.
Cheng KW, Lahad JP, Kuo W, et al. The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat Med. 2004;10(11):1251-1256.
Cai H, Smith DA, Memarzadeh S, Lowell CA, Cooper JA, Witte ON. Differential transformation capacity of Src family kinases during the initiation of prostate cancer. Proc Natl Acad Sci. 2011;108(16):6579-6584.
Puig B, Altmeppen H, Glatzel M. The GPI-anchoring of PrP Implications in sorting and pathogenesis. Prion. Published online 2014. doi:10.4161/pri.27892
Brodsky RA. New insights into paroxysmal nocturnal hemoglobinuria. Hematology Am Soc Hematol Educ Program. Published online 2006. doi:10.1182/asheducation-2006.1.24
Pike LJ. The challenge of lipid rafts. J Lipid Res. 2009;50(Supplement):S323-S328.
Shakirov, D F. The state of the lipid peroxidation system in the body of experimental animals after exposure to cyclic hydrocarbons. Pathol Physiol Exp Ther. 2003;3(1):26-28. http://www.fesmu.ru/elib/Article.aspx?id=87219
Vlasova T. organ lipid distress syndrome in the pathogenesis of the progression of surgical endotoxicosis. Published online 2015.
Yin H, Xu L, Porter NA. Free Radical Lipid Peroxidation: Mechanisms and Analysis. Chem Rev. 2011;111(10):5944-5972.
Girotti AW. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res. Published online 1998.
Kanner J, German JB, Kinsella JE. Initiation of Lipid Peroxidation in Biological Systems. C R C Crit Rev Food Sci Nutr. Published online 1987. doi:10.1080/10408398709527457
Mostafa Abd El-Aal HAH. Lipid Peroxidation End-Products as a Key of Oxidative Stress: Effect of Antioxidant on Their Production and Transfer of Free Radicals. In: Lipid Peroxidation. InTech; 2012. doi:10.5772/45944
Preedy VR. Pathology: Oxidative Stress and Dietary Antioxidants. 1st ed. Academic Press; 2020. https://www.researchgate.net/profile/Camila_Correa15/publication/340950069_Pathological_bases_of_oxidative_stress_in_the_development_of_cardiovascular_diseases/links/5ea6f6b192851c1a90737791/Pathological-bases-of-oxidative-stress-in-the-development-of-car
Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. Published online 2014. doi:10.1155/2014/360438
Catalán V, Frühbeck G, Gómez-Ambrosi J. Inflammatory and Oxidative Stress Markers in Skeletal Muscle of Obese Subjects. In: Obesity. Elsevier; 2018:163-189. doi:10.1016/B978-0-12-812504-5.00008-8
Nair U, Bartsch H, Nair J. Lipid peroxidation-induced DNA damage in cancer-prone inflammatory diseases: A review of published adduct types and levels in humans. Free Radic Biol Med. 2007;43(8):1109-1120.
Moldovan L, Moldovan NI. Oxygen free radicals and redox biology of organelles. Histochem Cell Biol. Published online 2004. doi:10.1007/s00418-004-0676-y
Yang J, Lam EWN, Hammad HM, Oberley TD, Oberley LW. Antioxidant enzyme levels in oral squamous cell carcinoma and normal human oral epithelium. J Oral Pathol Med. 2002;31(2):71-77.
Koc M, Taysi S, Emin Buyukokuroglu M, Bakan N. The Effect of Melatonin against Oxidative Damage during Total-Body Irradiation in Rats. Radiat Res. 2003;160(2):251-255.
Gounden V, Vashisht R, Jialal I. Hypoalbuminemia. StatPearls Publishing; 2020. Accessed October 18, 2020. http://www.ncbi.nlm.nih.gov/pubmed/30252336
Brigelius-Flohé R. Tissue-specific functions of individual glutathione peroxidases. In: Free Radical Biology and Medicine. ; 1999. doi:10.1016/S0891-5849(99)00173-2
Ma Q. Role of Nrf2 in Oxidative Stress and Toxicity. Annu Rev Pharmacol Toxicol. 2013;53(1):401-426.
Hassan HA, Abdel-Aziz AF. Evaluation of free radical-scavenging and anti-oxidant properties of black berry against fluoride toxicity in rats. Food Chem Toxicol. Published online 2010. doi:10.1016/j.fct.2010.05.018
Coliva G, Lange M, Colombo S, Chervet J-P, Domingues MR, Fedorova M. Sphingomyelins Prevent Propagation of Lipid Peroxidation—LC-MS/MS Evaluation of Inhibition Mechanisms. Molecules. 2020;25(8):1925.
Knasmüller S, Nersesyan A, Mišík M, et al. Use of conventional and -omics based methods for health claims of dietary antioxidants: a critical overview. Br J Nutr. 2008;99(E-S1):ES3-ES52.
Davì G, Guagnano MT, Ciabattoni G, et al. Platelet Activation in Obese Women. JAMA. 2002;288(16):2008.
Meagher EA, Barry OP, Burke A, et al. Alcohol-induced generation of lipid peroxidation products in humans. J Clin Invest. 1999;104(6):805-813.
Jain SK. In vivo externalization of phosphatidylserine and phosphatidylethanolamine in the membrane bilayer and hypercoagulability by the lipid peroxidation of erythrocytes in rats. J Clin Invest. 1985;76(1):281-286.
Turunen M, Olsson J, Dallner G. Metabolism and function of coenzyme Q. Biochim Biophys Acta - Biomembr. 2004;1660(1-2):171-199.
Takayanagi R, Takeshige K, Minakami S. NADH- and NADPH-dependent lipid peroxidation in bovine heart submitochondrial particles. Dependence on the rate of electron flow in the respiratory chain and an antioxidant role of ubiquinol. Biochem J. Published online 1980. doi:10.1042/bj1920853
Cook NR. A Randomized Factorial Trial of Vitamins C and E and Beta Carotene in the Secondary Prevention of Cardiovascular Events in Women. Arch Intern Med. 2007;167(15):1610.
Patel D, Witt SN. Ethanolamine and Phosphatidylethanolamine: Partners in Health and Disease. Oxid Med Cell Longev. 2017;2017:1-18. doi:10.1155/2017/4829180
Ridgway ND, McLeod RS. Biochemistry of Lipids, Lipoproteins and Membranes: Sixth Edition.; 2015.
Lajtha A, Tettamanti G, Goracci G. Handbook of Neurochemistry and Molecular Neurobiology. 3rd ed. Springer US; 2009. https://www.springer.com/gp/book/9780387303451
Lee T. Biosynthesis and possible biological functions of plasmalogens. Biochim Biophys Acta - Lipids Lipid Metab. 1998;1394(2-3):129-145.
Mandel H, Sharf R, Berant M, Wanders RJA, Vreken P, Aviram M. Plasmalogen phospholipids are involved in HDL-mediated cholesterol efflux: Insights from investigations with plasmalogen-deficient cells. Biochem Biophys Res Commun. Published online 1998. doi:10.1006/bbrc.1998.9321
Mueller HW, Purdon AD, Smith JB, Wykle RL. 1-O-alkyl-linked phosphoglycerides of human platelets: Distribution of arachidonate and other acyl residues in the ether-linked and diacyl species. Lipids. 1983;18(11):814-819.
Gross RW. High plasmalogen and arachidonic acid content of canine myocardial sarcolemma: a fast atom bombardment mass spectroscopic and gas chromatography-mass spectroscopic characterization. Biochemistry. 1984;23(1):158-165.
Braverman NE, Moser AB. Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta - Mol Basis Dis. Published online 2012. doi:10.1016/j.bbadis.2012.05.008
Honsho M, Fujiki Y. Plasmalogen homeostasis – regulation of plasmalogen biosynthesis and its physiological consequence in mammals. FEBS Lett. 2017;591(18):2720-2729.
Honsho M, Yagita Y, Kinoshita N, Fujiki Y. Isolation and characterization of mutant animal cell line defective in alkyl-dihydroxyacetonephosphate synthase: Localization and transport of plasmalogens to post-Golgi compartments. Biochim Biophys Acta - Mol Cell Res. 2008;1783(10):1857-1865.
Brites P, Waterham HR, Wanders RJA. Functions and biosynthesis of plasmalogens in health and disease. Biochim Biophys Acta - Mol Cell Biol Lipids. 2004;1636(2-3):219-231.
Heymans HSA, Schutgens RBH, Tan R, van den Bosch H, Borst P. Severe plasmalogen deficiency in tissues of infants without peroxisomes (Zellweger syndrome). Nature. 1983;306(5938):69-70.
Panganamala RV, Horrocks LA, Geer JC, Cornwell DG. Positions of double bonds in the monounsaturated alk-1-enyl groups from the plasmalogens of human heart and brain. Chem Phys Lipids. 1971;6(2):97-102.
Han X, Holtzman DM, McKeel DW. Plasmalogen deficiency in early Alzheimer’s disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J Neurochem. 2001;77(4):1168-1180.
Rapport MM, Lerner B. The structure of plasmalogens IV. Lipids in normal and neoplastic tissues of man and in normal tissues of rabbit and rat. Biochim Biophys Acta. 1959;33(2):319-325.
Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997;387(6633):569-572.
Brown DA, London E. Structure and Function of Sphingolipid- and Cholesterol-rich Membrane Rafts. J Biol Chem. 2000;275(23):17221-17224.
Spiegel S, Merrill AH. Sphingolipid metabolism and cell growth regulation. FASEB J. 1996;10(12):1388-1397.
Hakomori S. Traveling for the glycosphingolipid path. Glycoconj J. 2000;17(7-9):627-647.
Meckfessel MH, Brandt S. The structure, function, and importance of ceramides in skin and their use as therapeutic agents in skin-care products. J Am Acad Dermatol. Published online 2014. doi:10.1016/j.jaad.2014.01.891
Feingold KR. Thematic review series: Skin Lipids . The role of epidermal lipids in cutaneous permeability barrier homeostasis: Fig. 1. J Lipid Res. 2007;48(12):2531-2546.
Han X, M. Holtzman D, W. McKeel D, Kelley J, Morris JC. Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J Neurochem. 2002;82(4):809-818.
Goldstein AM, Abramovits W. Ceramides and the stratum corneum: structure, function, and new methods to promote repair. Int J Dermatol. 2003;42(4):256-259.
Kumari A. Ceramide Structure and Derivatives. In: Sweet Biochemistry. Elsevier; 2018:59-61. doi:10.1016/B978-0-12-814453-4.00013-3
Perry DK, Hannun YA. The role of ceramide in cell signaling. Biochim Biophys Acta - Mol Cell Biol Lipids. 1998;1436(1-2):233-243.
Gulbins E. Regulation of death receptor signaling and apoptosis by ceramide. Pharmacol Res. 2003;47(5):393-399.
Wang J, Zhen L, Klug MG, Wood D, Wu X, Mizrahi J. Involvement of caspase 3- and 8-like proteases in ceramide-induced apoptosis of cardiomyocytes. J Card Fail. Published online 2000. doi:10.1054/jcaf.2000.9502
Johns DG, Osborn H, Webb RC. Ceramide: A Novel Cell Signaling Mechanism for Vasodilation. Biochem Biophys Res Commun. 1997;237(1):95-97.
Johns DG, Webb RC, Charpie JR. Impaired ceramide signalling in spontaneously hypertensive rat vascular smooth muscle: a possible mechanism for augmented cell proliferation. J Hypertens. 2001;19(1):63-70.
Charles R, Sandirasegarane L, Yun J, et al. Ceramide-coated balloon catheters limit neointimal hyperplasia after stretch injury in carotid arteries. Circ Res. Published online 2000. doi:10.1161/01.RES.87.4.282
Roshan Lal TR, Lopez G, Sidransky E. Glucocerebrosidase Gene Mutations and Parkinsonism☆. In: Reference Module in Neuroscience and Biobehavioral Psychology. Elsevier; 2017. doi:10.1016/B978-0-12-809324-5.00611-8
Scriver CR, Beaudet AL, Sly WS, Valle D. The Metabolic Basis of Inherited Disease. 6th ed. McGraw-Hill; 1989.
Vekey K, Telekes A, Vertes A. Medical Applications of Mass Spectrometry. 1st ed. Elsevier Science; 2007. https://www.elsevier.com/books/medical-applications-of-mass-spectrometry/vekey/978-0-444-51980-1
Choudhary V, Uaratanawong R, Patel RR, et al. Phosphatidylglycerol Inhibits Toll-Like Receptor–Mediated Inflammation by Danger-Associated Molecular Patterns. J Invest Dermatol. 2019;139(4):868-877.
Spyridakis S, Leondaritis G, Nakos G, Lekka ME, Galanopoulou D. A specific phospholipase C activity regulates phosphatidylinositol levels in lung surfactant of patients with acute respiratory distress syndrome. Am J Respir Cell Mol Biol. Published online 2010. doi:10.1165/rcmb.2009-0078OC
Kuronuma K, Mitsuzawa H, Takeda K, et al. Anionic pulmonary surfactant phospholipids inhibit inflammatory responses from alveolar macrophages and U937 cells by binding the lipopolysaccharide-interacting proteins CD14 and MD-2. J Biol Chem. Published online 2009. doi:10.1074/jbc.M109.040832
Long DL, Hite RD, Grier BL, et al. Secretory Phospholipase A2-Mediated Depletion of Phosphatidylglycerol in Early Acute Respiratory Distress Syndrome. Am J Med Sci. 2012;343(6):446-451.
Horvath SE, Daum G. Lipids of mitochondria. Prog Lipid Res. 2013;52(4):590-614.
Foster DA, Xu L. Phospholipase D in cell proliferation and cancer. Mol Cancer Res. 2003;1(11):789-800. http://www.ncbi.nlm.nih.gov/pubmed/14517341
Robert L. Systemic Lupus Erythematosus. 4th ed. Academic Press; 2004. https://www.elsevier.com/books/systemic-lupus-erythematosus/lahita/978-0-12-433901-9
Heimburg T. Physical Properties of Biological Membranes. Published online February 16, 2009. Accessed October 18, 2020. http://arxiv.org/abs/0902.2454
Bhagavan NV. Lipids II: Phospholipids, Glycosphingolipids, and Cholesterol. In: Medical Biochemistry. Elsevier; 2002:401-427. doi:10.1016/B978-012095440-7/50021-4
Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57-63.
Kokkinidis DG, Bosdelekidou EE, Iliopoulou SM, et al. Emerging treatments for ulcerative colitis: a systematic review. Scand J Gastroenterol. Published online May 14, 2017:1-9. doi:10.1080/00365521.2017.1326163
Shields DJ, Agellon LB, Vance DE. Structure, expression profile and alternative processing of the human phosphatidylethanolamine N-methyltransferase (PEMT) gene1Sequence data from this article have been deposited with the GenBank Data Library under accession numbers AF294460–AF294468 incl. Biochim Biophys Acta - Mol Cell Biol Lipids. 2001;1532(1-2):105-114.
Carter K, Bowman D, Carrington W, et al. A three-dimensional view of precursor messenger RNA metabolism within the mammalian nucleus. Science (80- ). 1993;259(5099):1330-1335.
Xing Y, Johnson C, Dobner P, Lawrence J. Higher level organization of individual gene transcription and RNA splicing. Science (80- ). 1993;259(5099):1326-1330.
Shopland LS, Lawrence JB. Seeking Common Ground in Nuclear Complexity. J Cell Biol. 2000;150(1):F1-F4.
Bernales S, Papa FR, Walter P. Intracellular signaling by the unfolded protein response. Annu Rev Cell Dev Biol. Published online 2006. doi:10.1146/annurev.cellbio.21.122303.120200
Schröder M, Kaufman RJ. THE MAMMALIAN UNFOLDED PROTEIN RESPONSE. Annu Rev Biochem. 2005;74(1):739-789.
Fu S, Watkins SM, Hotamisligil GS. The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell Metab. Published online 2012. doi:10.1016/j.cmet.2012.03.007
Jamieson GA, Robinson DM. Mammalian Cell Membranes. 1st ed. Butterworth-Heinemann; 1976. https://www.elsevier.com/books/mammalian-cell-membranes/jamieson/978-0-408-70722-0
Anderson KE, Kielkowska A, Durrant TN, et al. Lysophosphatidylinositol-Acyltransferase-1 (LPIAT1) Is Required to Maintain Physiological Levels of PtdIns and PtdInsP2 in the Mouse. PLoS One. Published online 2013. doi:10.1371/journal.pone.0058425
Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase-AKT pathway in humancancer. Nat Rev Cancer. Published online 2002. doi:10.1038/nrc839
Kuksis A. Inositol Phospholipid Metabolism and Phosphatidyl Inositol Kinases. 1st ed. Elsevier Science; 2003.
Wenk MR, Lucast L, Di Paolo G, et al. Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry. Nat Biotechnol. 2003;21(7):813-817.
Meer G van, Sprong H. Membrane lipids and vesicular traffic. Curr Opin Cell Biol. 2004;16(4):373-378.
Berridge MJ, Irvine RF. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984;312(5992):315-321.
Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science (80- ). Published online 1992. doi:10.1126/science.1411571
Feigenson GW. Phase behavior of lipid mixtures. Nat Chem Biol. Published online 2006. doi:10.1038/nchembio1106-560
Balla T. Phosphoinositides: Tiny Lipids With Giant Impact on Cell Regulation. Physiol Rev. 2013;93(3):1019-1137.
Brodsky RA. Paroxysmal nocturnal hemoglobinuria. Blood. 2014;124(18):2804-2811.
William WC. Phosphatidylinositol and Related Phosphoinositides. Published 2020. Accessed October 18, 2020. https://www.lipidmaps.org/resources/lipidweb/index.php?page=lipids/complex/pi/index.htm
Op den Kamp JA. Lipid asymmetry in membranes. Annu Rev Biochem. Published online 1979. doi:10.1146/annurev.bi.48.070179.000403
Kimura AK, Kim H-Y. Phosphatidylserine synthase 2: high efficiency for synthesizing phosphatidylserine containing docosahexaenoic acid. J Lipid Res. 2013;54(1):214-222.
Swairjo MA, Concha NO, Kaetzel MA, Dedman JR, Seaton BA. Ca2+-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nat Struct Mol Biol. 1995;2(11):968-974.
Powell KA, Valova VA, Malladi CS, Jensen ON, Larsen MR, Robinson PJ. Phosphorylation of dynamin I on Ser-795 by protein kinase C blocks its association with phospholipids. J Biol Chem. Published online 2000. doi:10.1074/jbc.275.16.11610
Kanfer JN, McCartney D, Hattori H. Regulation of the choline, ethanolamine and serine base exchange enzyme activities of rat brain microsomes by phosphorylation and dephosphorylation. FEBS Lett. 1988;240(1-2):101-104.
Huang BX, Akbar M, Kevala K, Kim HY. Phosphatidylserine is a critical modulator for Akt activation. J Cell Biol. Published online 2011. doi:10.1083/jcb.201005100
Hsu F-F, Turk J. Studies on phosphatidylserine by tandem quadrupole and multiple stage quadrupole ion-trap mass spectrometry with electrospray ionization: Structural characterization and the fragmentation processes. J Am Soc Mass Spectrom. 2005;16(9):1510-1522.
Silbernagl S, Lang F. Color Atlas of Pathophysiology. Georg Thieme Verlag; 2015. doi:10.1055/b-005-148940
Simmen T, Aslan JE, Blagoveshchenskaya AD, et al. PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J. Published online 2005. doi:10.1038/sj.emboj.7600559
Csordás G, Renken C, Várnai P, et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol. Published online 2006. doi:10.1083/jcb.200604016
Kagan VE, Chu CT, Tyurina YY, Cheikhi A, Bayir H. Cardiolipin asymmetry, oxidation and signaling. Chem Phys Lipids. 2014;179:64-69. doi:10.1016/j.chemphyslip.2013.11.010
Pomorski T, Menon AK. Lipid flippases and their biological functions. Cell Mol Life Sci. Published online 2006. doi:10.1007/s00018-006-6167-7
Yeung T, Gilbert GE, Shi J, Silvius J, Kapus A, Grinstein S. Membrane phosphatidylserine regulates surface charge and protein localization. Science (80- ). Published online 2008. doi:10.1126/science.1152066
Arispe N, Doh M, Simakova O, Kurganov B, Maio A De. Hsc70 and Hsp70 interact with phosphatidylserine on the surface of PC12 cells resulting in a decrease of viability. FASEB J. 2004;18(14):1636-1645.
Hirama T, Das R, Yang Y, et al. Phosphatidylserine dictates the assembly and dynamics of caveolae in the plasma membrane. J Biol Chem. Published online 2017. doi:10.1074/jbc.M117.791400
Zachowski A. Phospholipids in animal eukaryotic membranes: Transverse asymmetry and movement. Biochem J. Published online 1993. doi:10.1042/bj2940001
Vance JE, Tasseva G. Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim Biophys Acta - Mol Cell Biol Lipids. 2013;1831(3):543-554.
Hübscher G, Dils RR, Pover WFR. Studies on the biosynthesis of phosphatidyl serine. Biochim Biophys Acta. 1959;36(2):518-528.
Stone SJ, Vance JE. Phosphatidylserine Synthase-1 and -2 Are Localized to Mitochondria-associated Membranes. J Biol Chem. 2000;275(44):34534-34540.
Vance JE. Newly made phosphatidylserine and phosphatidylethanolamine are preferentially translocated between rat liver mitochondria and endoplasmic reticulum. J Biol Chem. 1991;266(1):89-97. http://www.ncbi.nlm.nih.gov/pubmed/1898727
Kuge O, Saito K, Nishijima M. Cloning of a Chinese hamster ovary (CHO) cDNA encoding phosphatidylserine synthase (PSS) II, overexpression of which suppresses the phosphatidylserine biosynthetic defect of a PSS I-lacking mutant of CHO-K1 cells. J Biol Chem. Published online 1997. doi:10.1074/jbc.272.31.19133
Stone SJ, Vance JE. Cloning and expression of murine liver phosphatidylserine synthase (PSS)-2: Differential regulation of phospholipid metabolism by PSS1 and PSS2. Biochem J. Published online 1999. doi:10.1042/0264-6021:3420057
Sturbois-Balcerzak B, Stone SJ, Sreenivas A, Vance JE. Structure and Expression of the Murine Phosphatidylserine Synthase-1 Gene. J Biol Chem. Published online 2001. doi:10.1074/jbc.M009776200
Bergo MO, Gavino BJ, Steenbergen R, et al. Defining the importance of phosphatidylserine synthase 2 in mice. J Biol Chem. Published online 2002. doi:10.1074/jbc.M207734200
Lenz WD, Majewski F. A generalized disorders of the connective tissues with progeria, choanal atresia, symphalangism, hypoplasia of dentine and craniodiaphyseal hypostosis. Birth Defects Orig Artic Ser. 1974;10(12):133-136. http://www.ncbi.nlm.nih.gov/pubmed/4376705
Whyte MP, Blythe A, McAlister WH, Nenninger AR, Bijanki VN, Mumm S. Lenz-Majewski Hyperostotic Dwarfism with Hyperphosphoserinuria from a Novel Mutation in PTDSS1 Encoding Phosphatidylserine Synthase 1. J Bone Miner Res. 2015;30(4):606-614.
Sohn M, Ivanova P, Brown HA, et al. Lenz-Majewski mutations in PTDSS1 affect phosphatidylinositol 4-phosphate metabolism at ER-PM and ER-Golgi junctions. Proc Natl Acad Sci. 2016;113(16):4314-4319.
Piard J, Lespinasse J, Vlckova M, et al. Cutis laxa and excessive bone growth due to de novo mutations in PTDSS1. Am J Med Genet Part A. Published online 2018. doi:10.1002/ajmg.a.38604
Emoto K, Toyama-Sorimachi N, Karasuyama H, Inoue K, Umeda M. Exposure of Phosphatidylethanolamine on the Surface of Apoptotic Cells. Exp Cell Res. 1997;232(2):430-434.
Stafford JH, Thorpe PE. Increased exposure of phosphatidylethanolamine on the surface of tumor vascular endothelium. Neoplasia. Published online 2011. doi:10.1593/neo.101366
Marconescu A, Thorpe PE. Coincident exposure of phosphatidylethanolamine and anionic phospholipids on the surface of irradiated cells. Biochim Biophys Acta - Biomembr. 2008;1778(10):2217-2224.
Vance JE. Phospholipid Synthesis and Transport in Mammalian Cells. Traffic. 2015;16(1):1-18.
Verkleij A., Zwaal RF., Roelofsen B, Comfurius P, Kastelijn D, van Deenen LL. The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim Biophys Acta - Biomembr. 1973;323(2):178-193.
Riekkinen P, Rinne UK, Pelliniemi TT, Sonninen V. Interaction Between Dopamine and Phospholipids: Studies of the Substantia Nigra in Parkinson Disease Patients. Arch Neurol. Published online 1975. doi:10.1001/archneur.1975.00490430047006
Hattingen E, Magerkurth J, Pilatus U, et al. Phosphorus and proton magnetic resonance spectroscopy demonstrates mitochondrial dysfunction in early and advanced Parkinson’s disease. Brain. 2009;132(12):3285-3297.
Manyam B V. Cerebrospinal Fluid Amino Compounds in Parkinson’s Disease. Arch Neurol. 1988;45(1):48. doi:10.1001/archneur.1988.00520250054021
Pollard AK, Ortori CA, Stöger R, Barrett DA, Chakrabarti L. Mouse mitochondrial lipid composition is defined by age in brain and muscle. Aging (Albany NY). 2017;9(3):986-998.
Ross BM, Mamalias N, Moszczynska A, Rajput AH, Kish SJ. Elevated activity of phospholipid biosynthetic enzymes in substantia nigra of patients with Parkinson’s disease. Neuroscience. Published online 2001. doi:10.1016/S0306-4522(00)00501-7
Emoto K, Kobayashi T, Yamaji A, et al. Redistribution of phosphatidylethanolamine at the cleavage furrow of dividing cells during cytokinesis. Proc Natl Acad Sci. 1996;93(23):12867-12872.
Martens S, McMahon HT. Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol. 2008;9(7):543-556.
Deleault NR, Piro JR, Walsh DJ, et al. Isolation of phosphatidylethanolamine as a solitary cofactor for prion formation in the absence of nucleic acids. Proc Natl Acad Sci U S A. Published online 2012. doi:10.1073/pnas.1204498109
Triplett D. Many faces of lupus anticoagulants. Lupus. 1998;7(2_suppl):18-22.
Calzada E, Onguka O, Claypool SM. Phosphatidylethanolamine Metabolism in Health and Disease. In: ; 2016:29-88. doi:10.1016/bs.ircmb.2015.10.001
Riekhof WR, Wu J, Jones JL, Voelker DR. Identification and characterization of the major lysophosphatidylethanolamine acyltransferase in Saccharomyces cerevisiae. J Biol Chem. Published online 2007. doi:10.1074/jbc.M705256200
Sundler R, Åkesson B, Nilsson Å. Quantitative role of base exchange in phosphatidylethanolamine synthesis in isolated rat hepatocytes. FEBS Lett. Published online 1974. doi:10.1016/0014-5793(74)80667-8
Bleijerveld OB, Brouwers JFHM, Vaandrager AB, Helms JB, Houweling M. The CDP-ethanolamine pathway and phosphatidylserine decarboxylation generate different phosphatidylethanolamine molecular species. J Biol Chem. Published online 2007. doi:10.1074/jbc.M703786200
Miller MA, Kent C. Characterization of the pathways for phosphatidylethanolamine biosynthesis in Chinese hamster ovary mutant and parental cell lines. J Biol Chem. Published online 1986.
Ando H, Aoyama C, Horibata Y, et al. Transcriptional suppression of CTP:Phosphoethanolamine cytidylyltransferase by 25-hydroxycholesterol is mediated by nuclear factor-Y and Yin Yang. Biochem J. Published online 2015. doi:10.1042/BJ20150318
Pavlovic Z, Zhu L, Pereira L, Singh RK, Cornel RB, Bakovic M. Isoform-specific and protein kinase C-mediated regulation of CTP:Phosphoethanolamine cytidylyltransferase phosphorylation. J Biol Chem. Published online 2014. doi:10.1074/jbc.M113.544932
Henry SA, Kohlwein SD, Carman GM. Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics. Published online 2012. doi:10.1534/genetics.111.130286
Vance JE, Vance DE. Phospholipid biosynthesis in mammalian cells. Biochem Cell Biol. Published online 2004. doi:10.1139/o03-073
Steenbergen R, Nanowski TS, Beigneux A, Kulinski A, Young SG, Vance JE. Disruption of the Phosphatidylserine Decarboxylase Gene in Mice Causes Embryonic Lethality and Mitochondrial Defects. J Biol Chem. 2005;280(48):40032-40040.
Tasseva G, Bai HD, Davidescu M, Haromy A, Michelakis E, Vance JE. Phosphatidylethanolamine deficiency in mammalian mitochondria impairs oxidative phosphorylation and alters mitochondrial morphology. J Biol Chem. Published online 2013. doi:10.1074/jbc.M112.434183
Kelly RF, Lamont KT, Somers S, et al. Ethanolamine is a novel STAT-3 dependent cardioprotective agent. Basic Res Cardiol. 2010;105(6):763-770.
Hailey DW, Rambold AS, Satpute-Krishnan P, et al. Mitochondria Supply Membranes for Autophagosome Biogenesis during Starvation. Cell. Published online 2010. doi:10.1016/j.cell.2010.04.009
Birner R, Bürgermeister M, Schneiter R, Daum G. Roles of Phosphatidylethanolamine and of Its Several Biosynthetic Pathways in Saccharomyces cerevisiae. Pringle J, ed. Mol Biol Cell. 2001;12(4):997-1007.
Ichimura Y, Kirisako T, Takao T, et al. A ubiquitin-like system mediates protein lipidation. Nature. 2000;408(6811):488-492.
Fu S, Yang L, Li P, et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature. 2011;473(7348):528-531.
Wang S, Zhang S, Liou L-C, et al. Phosphatidylethanolamine deficiency disrupts -synuclein homeostasis in yeast and worm models of Parkinson disease. Proc Natl Acad Sci. 2014;111(38):E3976-E3985.
Jin X-H, Okamoto Y, Morishita J, Tsuboi K, Tonai T, Ueda N. Discovery and Characterization of a Ca2+-independent Phosphatidylethanolamine N-Acyltransferase Generating the Anandamide Precursor and Its Congeners. J Biol Chem. 2006;282(6):3614-3623.
Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017;13(1):91-98.
Kagan VE, Mao G, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 2017;13(1):81-90.
Zielinski ZAM, Pratt DA. Lipid Peroxidation: Kinetics, Mechanisms, and Products. J Org Chem. 2017;82(6):2817-2825.
Dawaliby R, Trubbia C, Delporte C, et al. Phosphatidylethanolamine is a key regulator of membrane fluidity in eukaryotic cells. J Biol Chem. 2016;291(7):3658-3667.
Irie A, Yamamoto K, Miki Y, Murakami M. Phosphatidylethanolamine dynamics are required for osteoclast fusion. Sci Rep. 2017;7. doi:10.1038/srep46715
Paradies G, Paradies V, De Benedictis V, Ruggiero FM, Petrosillo G. Functional role of cardiolipin in mitochondrial bioenergetics. Biochim Biophys Acta - Bioenerg. 2014;1837(4):408-417.
Valianpour F, Wanders RJA, Overmars H, Vaz FM, Barth PG, van Gennip AH. Linoleic acid supplemention of Barth syndrome fibroblasts restores cardiolipin levels. J Lipid Res. 2003;44(3):560-566.
Chu CT, Ji J, Dagda RK, et al. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat Cell Biol. Published online 2013. doi:10.1038/ncb2837
Malhotra A, Edelman-Novemsky I, Xu Y, et al. Role of calcium-independent phospholipase A2 in the pathogenesis of Barth syndrome. Proc Natl Acad Sci. 2009;106(7):2337-2341.
Cao J, Liu Y, Lockwood J, Burn P, Shi Y. A novel cardiolipin-remodeling pathway revealed by a gene encoding an endoplasmic reticulum-associated acyl-CoA:lysocardiolipin acyltransferase (ALCAT1) in mouse. J Biol Chem. Published online 2004. doi:10.1074/jbc.M402930200
Matsuo H. Role of LBPA and Alix in Multivesicular Liposome Formation and Endosome Organization. Science (80- ). 2004;303(5657):531-534.
Moolenaar WH, van Meeteren LA, Giepmans BNG. The ins and outs of lysophosphatidic acid signaling. BioEssays. 2004;26(8):870-881.
Tigyi GJ. Lysophospholipid Receptors. In: Reference Module in Biomedical Sciences. Elsevier; 2018. doi:10.1016/B978-0-12-801238-3.11136-5
Fielding CJ. Preface. Lipid Rafts Caveolae From Membr Biophys to Cell Biol. Published online 2006. doi:10.1002/3527608079
Jacquelyn, L B, Lee-Ellen, C C. Pathophysiology. 6th ed.; 2019.
Morinaga T, Yamaguchi N, Nakayama Y, Tagawa M, Yamaguchi N. Role of Membrane Cholesterol Levels in Activation of Lyn upon Cell Detachment. Int J Mol Sci. 2018;19(6):1811. doi:10.3390/ijms19061811
Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis.1985. Accessed November 6, 2020. https://www.nobelprize.org/uploads/2018/06/brown-goldstein-lecture-1.pdf
Melchior DL, Rottem S. The Organization of Cholesterol Esters in Membranes of Mycoplasma capricolum. Eur J Biochem. 2005;117(1):147-153.
Fullerton MD, Bakovic M. Complementation of the metabolic defect in CTP:phosphoethanolamine cytidylyltransferase (Pcyt2)–deficient primary hepatocytes. Metabolism. 2010;59(12):1691-1700.
Fullerton MD, Hakimuddin F, Bonen A, Bakovic M. The Development of a Metabolic Disease Phenotype in CTP:Phosphoethanolamine Cytidylyltransferase-deficient Mice. J Biol Chem. 2009;284(38):25704-25713.
Borradaile NM, Han X, Harp JD, Gale SE, Ory DS, Schaffer JE. Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J Lipid Res. Published online 2006. doi:10.1194/jlr.M600299-JLR200
Kitai Y, Ariyama H, Kono N, Oikawa D, Iwawaki T, Arai H. Membrane lipid saturation activates IRE1α without inducing clustering. Genes to Cells. Published online 2013. doi:10.1111/gtc.12074
Feng B, Yao PM, Li Y, et al. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol. 2003;5(9):781-792.
Wei Y, Wang D, Topczewski F, Pagliassotti MJ. Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am J Physiol - Endocrinol Metab. Published online 2006. doi:10.1152/ajpendo.00644.2005
Deguil J, Pineau L, Rowland Snyder EC, et al. Modulation of Lipid-Induced ER Stress by Fatty Acid Shape. Traffic. 2011;12(3):349-362.
Engelking LR. Textbook of Veterinary Physiological Chemistry. Elsevier; 2015. doi:10.1016/C2010-0-66047-0
Demmig-Adams B. Antioxidants in Photosynthesis and Human Nutrition. Science (80- ). 2002;298(5601):2149-2153.
Walsh CT. Polyketide and Nonribosomal Peptide Antibiotics: Modularity and Versatility. Science (80- ). Published online 2004. doi:10.1126/science.1094318
Khosla C, Gokhale RS, Jacobsen JR, Cane DE. Tolerance and Specificity of Polyketide Synthases. Annu Rev Biochem. 1999;68(1):219-253.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 European Journal of Clinical and Experimental Medicine

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our open access policy is in accordance with the Budapest Open Access Initiative (BOAI) definition: this means that articles have free availability on the public Internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from having access to the Internet itself.
All articles are published with free open access under the CC-BY Creative Commons attribution license (the current version is CC-BY, version 4.0). If you submit your paper for publication by the Eur J Clin Exp Med, you agree to have the CC-BY license applied to your work. Under this Open Access license, you, as the author, agree that anyone may download and read the paper for free. In addition, the article may be reused and quoted provided that the original published version is cited. This facilitates freedom in re-use and also ensures that Eur J Clin Exp Med content can be mined without barriers for the research needs.




