Intraarticular administration of chondroitin sulfate in experimental osteoarthritis

Authors

DOI:

https://doi.org/10.15584/ejcem.2022.2.7

Keywords:

chondroitin sulfate, chondroprotection, intra-articular and intramuscular administration, osteoarthritis

Abstract

Introduction and aim. Osteoarthritis (OA) is generally a progressive disease that affects synovial joints, resulting in abnormalities to articular cartilage subchondral bone, synovium, and adjacent soft tissues. The purpose of this work was to investigate the specific activity of chondroitin sulfate (CS) in intra-articular and intramuscular administration to laboratory rabbits in experimental OA.

Material and methods. OA was induced in rabbits by a single injection of mono-iodoacetate in knee joint. CS was administered intra-articularly and intramuscularly. The analysis of biochemical markers and macroscopic assessment of rabbit knee joints was performed.

Results. Intramuscular and intra-articular injection of CS reduces the intensity of the degenerative-dystrophic process due to the impact on inflammatory and the activation of anabolic mechanisms. Intra-articular administration of CS leads to a greater increase in the level of factors of bone and cartilage formation and a greater decrease in the levels of factors of the acute phase of inflammation and factors that destroy the cartilage matrix.

Conclusion. Intramuscular administration of CS revealed a lower intensity of destructive changes in the cartilaginous surface of the knee joint, and intramuscular – the absence of cartilage destruction and defects of the cartilaginous surface, which indicates the peculiarity of the topical effect of the CS.

Downloads

Download data is not yet available.

References

Barnett R. Osteoarthritis. Lancet. 2018;391(10134):1985.

Hügle T. Le point sur l’arthrose [Update Osteoarthritis]. Rev Med Suisse. 2020;16(685):500-502.

Vina ER, Kwoh CK. Epidemiology of osteoarthritis: literature update. Curr Opin Rheumatol. 2018;30(2):160-167.

Mandl LA. Osteoarthritis year in review 2018: clinical. Osteoarthritis Cartilage. 2019;27(3):359-364.

Hunter DJ, March L, Chew M. Osteoarthritis in 2020 and beyond: a Lancet Commission. Lancet. 2020;396(10264):1711-1712.

O'Neill TW, McCabe PS, McBeth J. Update on the epidemiology, risk factors and disease outcomes of osteoarthritis. Best Pract Res Clin Rheumatol. 2018;32(2):312-326.

Sacitharan PK. Ageing and osteoarthritis. Subcell Biochem. 2019;91:123-159.

Vincent TL. Mechanoflammation in osteoarthritis pathogenesis. Semin Arthritis Rheum. 2019;49(3S):36-38.

Mobasheri A, Rayman MP, Gualillo O, Sellam J, van der Kraan P, Fearon U. The role of metabolism in the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2017;13(5):302-311.

Astephen Wilson JL, Kobsar D. Osteoarthritis year in review 2020: mechanics. Osteoarthritis Cartilage. 2021;29(2):161-169.

Malfait AM, Miller RE, Miller RJ. Basic mechanisms of pain in osteoarthritis: experimental observations and new perspectives. Rheum Dis Clin North Am. 2021;47(2):165-180.

Allen KD, Walsh DA. Modelling pathology: pain relationships in osteoarthritis. Osteoarthritis Cartilage. 2021;29(10):1386-1388.

Xia B, Di Chen, Zhang J, Hu S, Jin H, Tong P. Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcif Tissue Int. 2014;95(6):495-505.

Fang T, Zhou X, Jin M, Nie J, Li X. Molecular mechanisms of mechanical load-induced osteoarthritis. Int Orthop. 2021;45(5):1125-1136.

Mao L, Wu W, Wang M, et al. Targeted treatment for osteoarthritis: drugs and delivery system. Drug Deliv. 2021;28(1):1861-1876.

Materkowski M. Efficacy Treatment of Osteoarthritis with Combine Chondroitin and Glucosamine. Ortop Traumatol Rehabil. 2021;23(3):239-244.

Lin J, Wang L, Lin J, Liu Q. The Role of Extracellular Vesicles in the Pathogenesis, Diagnosis, and Treatment of Osteoarthritis. Molecules. 2021;26(16):4987.

Mahmoudian A, Lohmander LS, Mobasheri A, Englund M, Luyten FP. Early-stage symptomatic osteoarthritis of the knee - time for action. Nat Rev Rheumatol. 2021;17(10):621-632.

Zhang X, He J, Wang W. Progress in the use of mesenchymal stromal cells for osteoarthritis treatment. Cytotherapy. 2021;23(6):459-470.

Franklin SP, Stoker AM, Bozynski CC, et al. Comparison of Platelet-Rich Plasma, Stromal Vascular Fraction (SVF), or SVF with an Injectable PLGA Nanofiber Scaffold for the Treatment of Osteochondral Injury in Dogs. J Knee Surg. 2018;31(7):686-697.

Musumeci G, Carnazza ML, Leonardi R, Loreto C. Expression of β-defensin-4 in "an in vivo and ex vivo model" of human osteoarthritic knee meniscus. Knee Surg Sports Traumatol Arthrosc. 2012;20(2):216-222.

Musumeci G, Trovato FM, Loreto C, et al. Lubricin expression in human osteoarthritic knee meniscus and synovial fluid: a morphological, immunohistochemical and biochemical study. Acta Histochem. 2014;116(5):965-972.

Rukovodstvo po provedeniyu doklinicheskih issledovaniy lekarstvennyih sredstv. Chast' 1. Moskva: Grif K. 2012:944.

Guidelines for experimental (preclinical) study of new pharmacological substances. Endorsed by corresponding member of RAMS prof. R. U. Khabrieva. 2005:425.

Guingamp C, Gegout-Pottie P, Philippe L, Terlain B, Netter P, Gillet P. Mono-iodoacetate-induced experimental osteoarthritis: a dose-response study of loss of mobility, morphology, and biochemistry. Arthritis Rheum. 1997;40:1670-1679.

Nosivets DS. Experimental models of cartilage tissue pathology. Zaporozhye medical journal. 2019;4(115):554-560.

Guzman RE, Evans MG, Bove S, Morenko B, Kilgore K. Mono-iodoacetate-induced histologic changes in subchondral bone and articular cartilage of rat femorotibial joints: an animal model of osteoarthritis. Toxicol Pathol. 2003;31:619-624.

AVMA Guidelines for the Euthanasia of Animals: 2020 Edition - https://www.avma.org/sites/default/files/2020-01/2020_Euthanasia_Final_1-15-20.pdf

Nosivets D, Montell E, Opryshko V. Histological changes following the administration of two different chondroitin sulfate products in experimental osteoarthritis models in rats. Eur J Clin Exp Med. 2021;19(1):23-32.

Choi BR, Kang SJ, Kim JL, Lee YJ, Ku SK. Anti-osteoarthritic effects of a mixture of dried pomegranate concentrate powder, eucommiae cortex, and achyranthis radix 5:4:1 (g/g) in a surgically induced osteoarthritic rabbit model. Nutrients. 2020;12(3):852.

Oliver RA, Lovric V, Christou C, Walsh WR. Evaluation of comparative soft tissue response to bone void fillers with antibiotics in a rabbit intramuscular model. J Biomater Appl. 2019;34(1):117-129.

Zhao H, Lu A, He X. Roles of microRNAs in bone destruction of rheumatoid arthritis. Front Cell Dev Biol. 2020;8:600867.

Heikal MM, Shaaban AA, Elkashef WF, Ibrahim TM. Effect of febuxostat on biochemical parameters of hyperlipidemia induced by a high-fat diet in rabbits. Can J Physiol Pharmacol. 2019;97(7):611-622.

Mohan N, Mohanan PV, Sabareeswaran A, Nair P. Chitosan-hyaluronic acid hydrogel for cartilage repair. Int J Biol Macromol. 2017;104(Pt B):1936-1945.

Nosivets DS. Evaluation of the influence of chondroitin sulfate on morphometric parameters of the knee joint, pain threshold and biochemical indices in rats at experimental osteoarthritis. Ukr J of Medicine Biology and Sport. 2020;2(24):77-83.

Nosivets DS. Bone and cartilage condition in experimental osteoarthritis and hypothyroidism. Medicinski Glasnik. 2022;19(1):68-74.

Nosivets DS. Changes in the level of interleukin-8 in the blood serum of rats with experimental osteoarthritis and hypothyroidism. Ukr Biochem J. 2020;92(6):167-171.

Downloads

Published

2022-06-30

How to Cite

Nosivets, D. (2022). Intraarticular administration of chondroitin sulfate in experimental osteoarthritis. European Journal of Clinical and Experimental Medicine, 20(2), 185–193. https://doi.org/10.15584/ejcem.2022.2.7

Issue

Section

ORIGINAL PAPERS