Zn and Se protect toxic metal mixture-mediated memory deficit by activation of Nrf2-hmox-1 signaling in the hippocampus of female rats

Authors

  • Chinyere S. Dike African Center of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Choba, Nigeria
  • Chinna N. Orish epartment of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, Port Harcourt, Choba, Nigeria https://orcid.org/0000-0001-5627-6055
  • Anthonet N. Ezejiofor African Center of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Choba, Nigeria https://orcid.org/0000-0002-3948-399X
  • Theresa C. Umeji Department of Pharmacology and Toxicology, Faculty of Pharmacy, Madonna University, Elele, Rivers State, Nigeria
  • Ana Cirovic University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia https://orcid.org/0009-0004-9085-5308
  • Aleksandar Cirovic University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia https://orcid.org/0000-0001-6010-9559
  • Orish E. Orisakwe Advanced Research Center, European University of Lefke, Lefke, Northern Cyprus, Mersin, Turkey https://orcid.org/0000-0002-5806-9858

DOI:

https://doi.org/10.15584/ejcem.2025.4.9

Keywords:

heavy metal mixture, essential trace elements, neurotoxicity, neurobehavioral testing, oxido-inflammation

Abstract

Introduction and aim. Heavy metals mediate neurotoxicity by altering some signaling pathways. This work investigated the effect of two nutritional elements Zn and Se on neurotoxicity caused by toxic metals.

Material and methods. Female Sprague Dawley rats (35) were divided in to 5 groups (7 rats/group), treated as follows: orally received deionized water (group I), heavy metals mixture HMM: 20 mg·kg -1; 0.40 mg·kg -1 of Hg; 0.56 mg·kg -1 of Mn; and 35 mg·kg -1 of Pb body weight; of Al (group II), HMM+Zn (zinc chloride; 0.80 mg·kg -1) (group III), HMM+Se (sodium selenite: 1.50 mg·kg -1) (group IV) and HMM+Zn+Se (group V). Before euthanasia of the rats, the Cincinnati Dry Maze, Barnes Maze, and Rotarod tests were performed. After euthanasia, the hippocampus was examined biochemically and histopathologically.

Results. Treatment with HMM induced inflammation with increased concentration of interleukin 6 and tumor necrosis factor α (30.70±6.65, p<0.02 pg/mg protein and 14.20±4.81 pg/mg protein, p<0.0001) respectively, compromised antioxidants levels, potentiated lipid peroxidation (higher malondialdehyde at 0.94±0.04 nmol/g tissue, p<0.0001 and nitric oxide at 3.89±0.16 nmol/g tissue, p<0.0001 levels), disrupted Nrf2 signaling pathway, potentiated acetylcholinesterase activity and induced mild pathohistological alterations in the rat hippocampus.

Conclusion. Supplementation with Zn and Se attenuated HMM mediated neurotoxicity.

Downloads

Download data is not yet available.

References

Dobson AW, Erikson KM, Aschner M. Manganese neurotoxicity. Ann N Y Acad Sci. 2004;1012(1):115-128. doi: 10.1196/annals.1306.009

Kumar Singh P, Kumar Singh M, Singh Yadav R, Kumar Dixit R, Mehrotra A, Nath R. Attenuation of lead-induced neurotoxicity by omega-3 fatty acid in rats. Ann Neurosci 2018;24(4):221-232. doi: 10.1159/000481808

Fernandes RM, Corrêa MG, Arago WA, et al. Preclinical evidences of aluminum-induced neurotoxicity in the hippocampus and prefrontal cortex of rats exposed to low doses. Ecotoxicol Environ Saf. 2020;206:111139. doi: 10.1016/j.ecoenv.2020.111139

Bittencourt LO, Damasceno-Silva RD, Aragão WA, et al. Global proteomic profile of aluminum-induced hippocampal impairments in rats: are low doses of aluminum really safe? Int J Mol Med Sci. 2022;23(20):12523. doi: 10.3390/ijms232012523

Eiró-Quirino L, de Lima WF, Aragão WA, et al. Exposure to tolerable concentrations of aluminum triggers systemic and local oxidative stress and global proteomic modulation in the spinal cord of rats. Chemosphere. 2023;313:137296. doi: 10.1016/j.chemosphere.2022.137296

Maduabuchi JM, Nzegwu CN, Adigba EO, et al. Iron, manganese and nickel exposure from beverages in Nigeria: a public health concern? J.Health Sci. 2008;54(3):335-338.

Roberts II, Orisakwe OE. Evaluation of potential dietary toxicity of heavy metals in some common Nigerian beverages: A look at antimony, tin and mercury. QSci. Connect. 2011;2011(1):2. doi: 10.5339/connect.2011.2

Orisakwe OE, Frazzoli C, Ilo CE, Oritsemuelebi B. Public health burden of e-waste in Africa. J. Health and Pollut. 2019;9(22):190610. doi: 10.5696/2156-9614-9.22.190610

Orisakwe OE, Igweze ZN, Udowelle NA. Candy consumption may add to the body burden of lead and cadmium of children in Nigeria. Environ Sci Pollut Res. 2019;26:1921-1931. doi: 10.1007/s11356-018-3706-3

Okoye EA, Ezejiofor AN, Nwaogazie IL, Frazzoli C, Orisakwe OE. Heavy metals and arsenic in soil and vegetation of Niger Delta, Nigeria: Ecological risk assessment. Case Stud Chem Environ Eng. 2022;6:100222. doi: 10.1016/j.cscee.2022.100222

Frazzoli C, Ruggieri F, Battistini B, Orisakwe OE, Igbo JK, Bocca B. E-WASTE threatens health: The scientific solution adopts the one health strategy. Environ. Res. 2022;212:113227. doi: 10.1016/j.envres.2022.113227

Burrell SA, Exley C. There is (still) too much aluminium in infant formulas. BMC Pediatr. 2010;10:1-4.

Baylor NW, Egan W, Richman P. Aluminum salts in vaccines-US perspective. Vaccine. 2002;20:S18-S23. doi: 10.1016/s0264-410x(02)00166-4

Wang B, Liu Y, Wang H, et al. Contamination and health risk assessment of lead, arsenic, cadmium, and aluminum from a total diet study of Jilin Province, China. Food Sci Nutr. 2020;8(10):5631-5640. doi: 10.1002/fsn3.1851.

Jin Y, Liu P, Wu Y, et al. A systematic review on food lead concentration and dietary lead exposure in China. Chin Med J (Engl). 2014;127(15):2844-2849.

Feingold BJ, Berky A, Hsu-Kim H, Jurado ER, Pan WK. Population-based dietary exposure to mercury through fish consumption in the Southern Peruvian Amazon. Environ Res.2020;183:108720. doi: 10.1016/j.envres.2019.108720

Karri V, Kumar V, Ramos D, Oliveira E, Schuhmacher M. An in vitro cytotoxic approach to assess the toxicity of heavy metals and their binary mixtures on hippocampal HT-22 cell line. Toxicol. Lett. 2018;282:25-36. doi: 10.1016/j.toxlet.2017.10.002

Calkins MJ, Johnson DA, Townsend JA, et al. The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxid Redox Signaling. 2009;11(3):497-508. doi: 10.1089/ars.2008.2242

Gan L, Johnson JA. Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis. 2014;1842(8):1208-1218. doi: 10.1016/j.bbadis.2013.12.011

Stýblo M, Walton FS, Harmon AW, Sheridan PA, Beck MA. Activation of superoxide dismutase in selenium-deficient mice infected with influenza virus. J Trace Elem Med Biol 2007;21(1):52-62. doi: 10.1016/j.jtemb.2006.11.001

Dike C, Orish CN, Ezejiofor AN, et al. Selenium and zinc alleviate quaternary metal mixture-induced neurotoxicity in rats by inhibiting oxidative damage and modulating the expressions of NF-kB and Nrf2/Hmox-1 pathway. IBRO Neurosci Rep 2023;15:57-67. doi: 10.1016/j.ibneur.2023.06.003

Institóris L, Kovács D, Kecskemeti-Kovacs I, et al. Immunotoxicological investigation of subacute combined exposure with low doses of Pb, Hg and Cd in rats. Acta Biol Hung. 2006;57:433-439. DOI: 10.1556/ABiol.57.2006.4.5

Yuan CY, Lee YJ, Hsu GS. Aluminum overload increases oxidative stress in four functional brain areas of neonatal rats. J Biomed Sci 2012;19:1-9. doi: 10.1186/1423-0127-19-51

El-Said GF, Youssef DH. Ecotoxicological impact assessment of some heavy metals and their distribution in some fractions of mangrove sediments from Red Sea, Egypt.Environ Monit Assess 2013;185:393-404. doi: 10.1007/s10661-012-2561-9

Su H, Li Z, Fiati Kenston SS, et al. Joint toxicity of different heavy metal mixtures after a short-term oral repeated-administration in rats. Int J Environ Res Public Health. 2017;14(10):1164. doi: 10.3390/ijerph14101164

Anyanwu BO, Orish CN, Ezejiofor AN, Nwaogazie IL, Orisakwe OE. Neuroprotective effect of Costus afer on low dose heavy metal mixture (lead, cadmium and mercury) induced neurotoxicity via antioxidant, anti-inflammatory activities. Toxicol Rep. 2020;7:1032-1038. doi: 10.1016/j.toxrep.2020.08.008

Messarah M, Klibet F, Boumendjel A, et al. Hepatoprotective role and antioxidant capacity of selenium on arsenic-induced liver injury in rats. Exp Toxicol Pathol. 2012;64(3):167-174. doi: 10.1016/j.etp.2010.08.002

Okoye EA, Bocca B, Ruggieri F, et al. Arsenic and toxic metals in meat and fish consumed in Niger delta, Nigeria: employing the margin of exposure approach in human health risk assessment. Food Chem Toxicol. 2022;159:112767. doi: 10.1016/j.fct.2021.112767

Institóris L, Kovács D, Kecskemeti-Kovacs I, et al. Immunotoxicological investigation of subacute combined exposure with low doses of Pb, Hg and Cd in rats. Acta Biol Hung. 2006;57:433-439. doi: 10.1556/ABiol.57.2006.4.5

Andjelkovic M, Buha Djordjevic A, Antonijevic E, et al. Toxic effect of acute cadmium and lead exposure in rat blood, liver, and kidney. Int J Environ Res Public Health. 2019;16(2):274. doi: 10.3390/ijerph16020274

Zhou F, Yin G, Gao Y, et al. Insights into cognitive deficits caused by low-dose toxic heavy metal mixtures and their remediation through a postnatal enriched environment in rats. J Hazard Mater. 2020;388:122081. doi: 10.1016/j.jhazmat.2020.122081

Vorhees CV, Williams MT. Assessing spatial learning and memory in rodents. ILAR Journal. 2014;55(2):310-332.

Sunyer B, Patil S, Höger H, Lubec G. Barnes maze, a useful task to assess spatial reference memory in the mice. Protoc Exch. 2007;390. doi: 10.1038/nprot.2007.390

Jacquez B, Choi H, Bird CW, Linsenbardt DN, Valenzuela CF. Characterization of motor function in mice developmentally exposed to ethanol using the Catwalk system: Comparison with the triple horizontal bar and rotarod tests. Behav Brain Res. 2021;396:112885.

Eddie-Amadi BF, Ezejiofor AN, Orish CN, Rovira J, Allison TA, Orisakwe OE. Banana peel ameliorated hepato-renal damage and exerted anti-inflammatory and anti-apoptotic effects in metal mixture mediated hepatic nephropathy by activation of Nrf2/Hmox-1 and inhibition of Nfkb pathway. Food Chem Toxicol. 2022;170:113471. doi: 10.1016/j.fct.2022.113471

Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70(1):158-169.

Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47(3):469-474. doi: 10.1111/j.1432-1033.1974.tb03714.x

Jollow DJ, Mitchell JR, Zampaglione NA, Gillette JR. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3, 4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacol. 1974;11(3):151-169. doi: 10.1159/000136485

Bergmeyer HU, Gawehn K, Grassl M. Enzymes as biochemical agents: catalase. Methods of Enzymatic Analysis. 1974;1:438-439.

Esterbauer H, Cheeseman KH. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. In: Methods in enzymology. Academic Press. 1990;186:407-421. doi: 10.1016/0076-6879(90)86134-h

Sosroseno W, Sugiatno E, Samsudin AR, Ibrahim MF. The role of nitric oxide on the proliferation of a human osteoblast cell line stimulated with hydroxyapatite. J Oral Implantol. 2008;34(4):196-202. doi: 10.1563/0.910.1

Okoye EA, Ezejiofor AN, Nwaogazie IL, Frazzoli C, Orisakwe OE. Heavy metals and arsenic in soil and vegetation of Niger Delta, Nigeria: Ecological risk assessment. Case Stud Chem Environ Eng. 2022;6:100222. doi: 10.1016/j.cscee.2022.100222

Zhou F, Yin G, Gao Y, et al. Toxicity assessment due to prenatal and lactational exposure to lead, cadmium and mercury mixtures. Environ Int. 2019;133:105192. doi: 10.1016/j.envint.2019.105192

Wang J, Shi R, Zhu D. Switchable skin window induced by optical clearing method for dermal blood flow imaging. J Biomed Opt. 2013;18(6):061209. doi: 10.1117/1.JBO.18.6.061209

Yumoto S, Kakimi S, Ishikawa A. Colocalization of aluminum and iron in nuclei of nerve cells in brains of patients with Alzheimer’s disease. J Alzheimers Dis. 2018;65(4):1267-1281. doi: 10.3233/JAD-171108

Exley C, Mold MJ. Aluminium in human brain tissue: how much is too much?. J Biol Inorg Chem. 2019;24(8):1279-1282. doi: 10.1007/s00775-019-01710-0

Munoz C, Garbe K, Lilienthal H, Winneke G. Significance of hippocampal dysfunction in low level lead exposure of rats. Neurotoxicol Teratol. 1988;10(3):245-253. doi: 10.1016/0892-0362(88)90024-4

Ribeiro TP, Fernandes C, Melo KV, et al. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress. Free Radic Biol Med. 2015;80:67-76. doi: 10.1016/j.freeradbiomed.2014.12.005

Masaldan S, Bush AI, Devos D, Rolland AS, Moreau C. Striking while the iron is hot: Iron metabolism and ferroptosis in neurodegeneration. Free Radic Biol Med. 2019;133:221-233. doi: 10.1016/j.freeradbiomed.2018.09.033

Karri V, Kumar V, Ramos D, Oliveira E, Schuhmacher M. An in vitro cytotoxic approach to assess the toxicity of heavy metals and their binary mixtures on hippocampal HT-22 cell line. Toxicol Lett. 2018;282:25-36. doi: 10.1016/j.toxlet.2017.10.002

Jia Q, Zhang Y, Liu S, et al. Analysis of search strategies for evaluating low-dose heavy metal mixture induced cognitive deficits in rats: an early sensitive toxicological approach. Ecotoxicol Environ Saf. 2020;202:110900. doi: 10.1016/j.ecoenv.2020.110900

Vorhees CV, Williams MT. Cincinnati water maze: A review of the development, methods, and evidence as a test of egocentric learning and memory. Neurotoxicol Teratol. 2016;57:1-9. doi: 10.1016/j.ntt.2016.08.002

Keefe JO, Nadel L. The hippocampus as a cognitive map. Clarendon Press. 1978.

Sooudi M, Naghdi N, Sharifzadeh M, Ostad SN, Abd Elahi MO. Effect of lead (Pb2+) exposure in female pregnant rats and their offspring on spatial learning and memory in Morris water maze. Iran J Pharm Res. 2007;7(1):e128569. doi: 10.22037/ijpr.2010.743

Rahman A, Guillemin GJ. Lead and excitotoxicity. Handbook of neurotoxicity. 2021:1-39.

Ashok A, Rai NK, Tripathi S, Bandyopadhyay S. Exposure to As-, Cd-, and Pb-mixture induces Aβ, amyloidogenic APP processing and cognitive impairments via oxidative stress-dependent neuroinflammation in young rats. Toxicol Sci. 2015;143(1):64-80. doi: 10.1093/toxsci/kfu208

King JA, Burgess N, Hartley T, Vargha‐Khadem F, O'Keefe J. Human hippocampus and viewpoint dependence in spatial memory. Hippocampus. 2002;12(6):811-820. doi: 10.1002/hipo.10070

Surgent OJ, Dadalko OI, Pickett KA, Travers BG. Balance and the brain: A review of structural brain correlates of postural balance and balance training in humans. Gait Posture. 2019;71:245-252. doi: 10.1016/j.gaitpost.2019.05.011

Mann A, Chesselet MF. Techniques for motor assessment in rodents. In: Movement Disorders. 2015;139-157. Academic Press. doi: 10.1016/B978-0-12-405195-9.00008-1

Mastinu A, Bonini SA, Premoli M, et al. Protective effects of Gynostemma pentaphyllum (var. Ginpent) against lipopolysaccharide-induced inflammation and motor alteration in mice. Molecules. 2021;26(3):570. doi: 10.3390/molecules26030570.

Fernández-Lázaro D, Fernandez-Lazaro CI, Mielgo-Ayuso J, et al. The role of selenium mineral trace element in exercise: antioxidant defense system, muscle performance, hormone response, and athletic performance. A systematic review. Nutrients. 2020;12(6):1790. doi: 10.3390/nu12061790

Fernández-Lázaro D, Mielgo-Ayuso J, Seco Calvo J, et al. Modulation of exercise-induced muscle damage, inflammation, and oxidative markers by curcumin supplementation in a physically active population: a systematic review. Nutrients. 2020;12(2):501. doi: 10.3390/nu12020501

Brenneisen P, Steinbrenner H, Sies H. Selenium, oxidative stress, and health aspects. Molecular Aspects of Medicine. 2005;26(4-5):256-267. doi: 10.1016/j.mam.2005.07.004

Tonelli C, Chio II, Tuveson DA. Transcriptional regulation by Nrf2. Antioxid Redox Signal. 2018;29(17):1727-1745. doi: 10.1089/ars.2017.7342

Jenner P. Oxidative stress in Parkinson's disease. Ann Neurol. 2003;53(3):S26-38. doi: 10.1002/ana.10483

Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson's disease. J Parkinsons Dis. 2013;3(4):461-491. doi: 10.3233/JPD-130230

Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR. Oxidative stress and Parkinson’s disease. Front Neuroanat. 2015;9:91. doi: 10.3389/fnana.2015.00091

Tönnies E, Trushina E. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimers Dis. 2017;57(4):1105-1021. doi: 10.3233/JAD-161088

Dong J, Sulik KK, Chen SY. Nrf2-mediated transcriptional induction of antioxidant response in mouse embryos exposed to ethanol in vivo: implications for the prevention of fetal alcohol spectrum disorders. Antioxid Redox Signal. 2008;10(12):2023-2033. doi: 10.1089/ars.2007.2019

Maloy S, Hughes K, editors. Brenner's encyclopedia of genetics. Academic Press; 2013.

Fão L, Mota SI, Rego AC. Shaping the Nrf2-ARE-related pathways in Alzheimer’s and Parkinson’s diseases. Ageing Res Rev. 2019;54:100942. doi: 10.1016/j.arr.2019.100942

Kang TC. Nuclear factor-erythroid 2-related factor 2 (Nrf2) and mitochondrial dynamics/mitophagy in neurological diseases. Antioxidants. 2020;9(7):617. doi: 10.3390/antiox9070617

Osama A, Zhang J, Yao J, Yao X, Fang J. Nrf2: a dark horse in Alzheimer's disease treatment. Ageing Res Rev. 2020;64:101206. doi: 10.1016/j.arr.2020.101206

Jiménez-Villegas J, Ferraiuolo L, Mead RJ, Shaw PJ, Cuadrado A, Rojo AI. NRF2 as a therapeutic opportunity to impact in the molecular roadmap of ALS. Free Radic Biol Med. 2021;173:125-141. doi: 10.1016/j.freeradbiomed.2021.07.022

Zgorzynska E, Dziedzic B, Walczewska A. An overview of the Nrf2/ARE pathway and its role in neurodegenerative diseases. Int J Mol Sci. 2021;22(17):9592. doi: 10.3390/ijms22179592

Arslanbaeva L, Bisaglia M. Activation of the Nrf2 pathway as a therapeutic strategy for ALS treatment. Molecules. 2022;27(5):1471. doi: 10.3390/molecules27051471

Ramsey CP, Glass CA, Montgomery MB,et al. Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol. 2007;66(1):75-85. doi: 10.1097/nen.0b013e31802d6da9

Sarlette A, Krampfl K, Grothe C, Neuhoff NV, Dengler R, Petri S. Nuclear erythroid 2-related factor 2-antioxidative response element signaling pathway in motor cortex and spinal cord in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 2008;67(11):1055-1062. doi: 10.1097/NEN.0b013e31818b4906

Schmidlin CJ, Dodson MB, Madhavan L, Zhang DD. Redox regulation by NRF2 in aging and disease. Free Radic Biol Med. 2019;134:702-707. doi: 10.1016/j.freeradbiomed.2019.01.016

von Otter M, Landgren S, Nilsson S, et al. Nrf2-encoding NFE2L2 haplotypes influence disease progression but not risk in Alzheimer's disease and age-related cataract. Mech Ageing Dev. 2010;131(2):105-110. doi: 10.1016/j.mad.2009.12.007

Müller ML, Bohnen NI. Cholinergic dysfunction in Parkinson’s disease. Curr Neurol Neurosci Rep. 2013;13:1-9. doi: 10.1007/s11910-013-0377-9

Sun Q, Zhang J, Li A, et al. Acetylcholine deficiency disrupts extratelencephalic projection neurons in the prefrontal cortex in a mouse model of Alzheimer’s disease. Nat Commun. 2022;13(1):998. doi: 10.1038/s41467-022-28493-4

Tripathi S, Kharkwal G, Mishra R, Singh G. Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling in heavy metals-induced oxidative stress. Heliyon. 2024;10:e37545. doi: 10.1016/j.heliyon.2024.e37545

Buha A, Baralić K, Djukic-Cosic D, et al. The role of toxic metals and metalloids in Nrf2 signaling. Antioxidants. 2021;10(5):630. doi:10.3390/antiox10050630

Becker JB, Prendergast BJ, Liang JW. Female rats are not more variable than male rats: a meta-analysis of neuroscience studies. Biology of Sex Differences. 2016;7:1-7.

Downloads

Published

2025-06-12

How to Cite

Dike, C. S., Orish, C. N., Ezejiofor, A. N., Umeji, T. C., Cirovic, A., Cirovic, A., & Orisakwe, O. E. (2025). Zn and Se protect toxic metal mixture-mediated memory deficit by activation of Nrf2-hmox-1 signaling in the hippocampus of female rats. European Journal of Clinical and Experimental Medicine. https://doi.org/10.15584/ejcem.2025.4.9

Issue

Section

ORIGINAL PAPERS