The role of ABCA12 in neurodegenerative diseases – a review of molecular mechanisms and potential therapeutic implications
DOI:
https://doi.org/10.15584/ejcem.2025.2.8Keywords:
ABCA12, central nervous system cholesterol homeostasis, lipid metabolism, neurodegenerative diseasesAbstract
Introduction and aim. ABCA12 a member of the ATP-binding cassette transporter superfamily, is known to be involved in lipid transport and in the formation of the skin barrier. However, recent evidence also suggests its implication in the pathophysiology of neurodegenerative diseases. This review focuses on the molecular mechanisms that could link ABCA12 to neurodegenerative processes and its potential as a therapeutic target.
Material and methods. A literature review search was conducted between 200 and 2024 via the databases, which included PubMed, Scopus, and Web of Science. There, pertinent studies with relevance to ABCA12 involvement in neurodegenerative diseases were searched. This study reviewed pertinent articles on the expression patterns of ABCA12 and its molecular inter actions, as well as its contribution to cellular processes, such as lipid homeostasis, inflammation, and neuronal integrity. The analysis further included studies on ABCA12 mutations and their associations with neurodegenerative pathologies such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease.
Analysis of literature. The results from the analysis showed that ABCA12 dysfunction led to disturbances in lipid metabolism, accompanied by increased oxidative stress, neuroinflammation, and compromised integrity of the neuronal membrane. The results imply that mutations or dysregulation of ABCA12 exaggerates amyloid-beta aggregation in Alzheimer’s disease and dopaminergic neuron loss in Parkinson’s disease. Finally, pathways of ABCA12 functionally interact with other core neurodegenerative mechanisms, which include autophagy dysregulation and mitochondrial dysfunction. Preliminary preclinical data indicate that altering ABCA12 expression or function diminishes neuroinflammation and restores cellular homeostasis.
Conclusion. ABCA12 plays an important role in maintaining neuronal health and its dysfunction contributes to neurodegenerative processes. Targeting pathways related to ABCA12 seems promising to mitigate disease progression in neurodegenerative diseases. More research is still required to elucidate its precise molecular mechanisms and identify specific interventions.
Downloads
References
Yin X, Yan Y, Li J, et al. Nuclear receptors for epidermal lipid barrier: Advances in mechanisms and applications. Exp Dermatol. 2024;33(6):e15107. doi: 10.1111/exd.15107
Paseban T, Alavi MS, Etemad L, Roohbakhsh A. The role of the ATP-Binding Cassette A1 (ABCA1) in neurological disorders: a mechanistic review. Expert Opin Ther Targets. 2023;27(7):531-552. doi: 10.1080/14728222.2023.2235718
Behl T, Kaur I, Sehgal A, Kumar A, Uddin MS, Bungau S. The Interplay of ABC Transporters in Aβ Translocation and Cholesterol Metabolism: Implicating Their Roles in Alzheimer’s Disease. Mol Neurobiol. 2021;58(4):1564-1582. doi: 10.1007/s12035-020-02211-x
Vendruscolo M. Lipid Homeostasis and Its Links With Protein Misfolding Diseases. Front Mol Neurosci. 2022;15:829291. doi: 10.3389/fnmol.2022.829291
Alqahtani T, Deore SL, Kide AA, et al. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease, and Parkinson’s disease, Huntington’s disease and Amyotrophic Lateral Sclerosis -An updated review. Mitochondrion. 2023;71:83-92. doi: 10.1016/j.mito.2023.05.007
Mori A, Imai Y, Hattori N. Lipids: Key Players That Modulate α-Synuclein Toxicity and Neurodegeneration in Parkinson’s Disease. Int J Mol Sci. 2020;21(9):3301. doi: 10.3390/ijms21093301
Chowdhury MR, Jin HK, Bae JS. Diverse Roles of Ceramide in the Progression and Pathogenesis of Alzheimer’s Disease. Biomedicines. 2022;10(8):1956. doi: 10.3390/biomedicines10081956
Penke B, Szűcs M, Bogár F. Oligomerization and Conformational Change Turn Monomeric β-Amyloid and Tau Proteins Toxic: Their Role in Alzheimer’s Pathogenesis. Molecules. 2020;25(7):1659. doi: 10.3390/molecules25071659.
Boer DEC, van Smeden J, Bouwstra JA, Aerts JMFG. Glucocerebrosidase: Functions in and Beyond the Lysosome. J Clin Med. 2020;9(3):736. doi: 10.3390/jcm9030736
Angelova PR. Sources and triggers of oxidative damage in neurodegeneration. Free Radic Biol Med. 2021;173:52-63. doi: 10.1016/j.freeradbiomed.2021.07.003
Mhaske A, Shukla S, Ahirwar K, Singh KK, Shukla R. Receptor-Assisted Nanotherapeutics for Overcoming the Blood-Brain Barrier. Mol Neurobiol. 2024;61(11):8702-8738. doi: 10.1007/s12035-024-04015-9
Hennies HC, Poumay Y. Skin Disease Models In Vitro and Inflammatory Mechanisms: Predictability for Drug Development. Handb Exp Pharmacol. 2021;265:187-218. doi: 10.1007/164_2020_428
Behl T, Kaur I, Sehgal A, Kumar A, Uddin MS, Bungau S. The Interplay of ABC Transporters in Aβ Translocation and Cholesterol Metabolism: Implicating Their Roles in Alzheimer’s Disease. Mol Neurobiol. 2021;58(4):1564-1582. doi: 10.1007/s12035-020-02211-x.
Breuss MW, Mamerto A, Renner T, Waters ER. The Evolution of the Mammalian ABCA6-like Genes: Analysis of Phylogenetic, Expression, and Population Genetic Data Reveals Complex Evolutionary Histories. Genome Biol Evol. 2020;12(11):2093-2106. doi: 10.1093/gbe/evaa179.
Wertz PW. Lipid Metabolic Events Underlying the Formation of the Corneocyte Lipid Envelope. Skin Pharmacol Physiol. 2021;34(1):38-50. doi: 10.1159/000513261.
Budani M, Auray-Blais C, Lingwood C. ATP-binding cassette transporters mediate differential biosynthesis of glycosphingolipid species. J Lipid Res. 2021;62:100128. doi: 10.1016/j.jlr.2021.100128
Fu Y, He Y, Phan K, et al. Sex-specific lipid dysregulation in the Abca7 knockout mouse brain. Brain Commun. 2022;4(3):fcac120. doi: 10.1093/braincomms/fcac120
Constantin AM, Mihu CM, Boşca AB, et al. Short histological kaleidoscope - recent findings in histology. Part III. Rom J Morphol Embryol. 2023;64(2):115-133. doi: 10.47162/RJME.64.2.01
Lee AY. Molecular Mechanism of Epidermal Barrier Dysfunction as Primary Abnormalities. Int J Mol Sci. 2020;21(4):1194. doi: 10.3390/ijms21041194
Wójtowicz S, Strosznajder AK, Jeżyna M, Strosznajder JB. The Novel Role of PPAR Alpha in the Brain: Promising Target in Therapy of Alzheimer’s Disease and Other Neurodegenerative Disorders. Neurochem Res. 2020;45(5):972-988. doi: 10.1007/s11064-020-02993-5
Ishikawa S, Nikaido M, Otani T, et al. Inhibition of retinoid X receptor improved the morphology, localization of desmosomal proteins and paracellular permeability in three-dimensional cultures of mouse keratinocytes. Microscopy (Oxf). 2022;71(3):152-160. doi: 10.1093/jmicro/dfac007
Ye Z, Lu Y, Wu T. The impact of ATP-binding cassette transporters on metabolic diseases. Nutr Metab (Lond). 2020;17:61. doi: 10.1186/s12986-020-00478-4
Pang B, Zhu Z, Xiao C, et al. Keratin 17 Is Required for Lipid Metabolism in Keratinocytes and Benefits Epidermal Permeability Barrier Homeostasis. Front Cell Dev Biol. 2022;9:779257. doi: 10.3389/fcell.2021.779257
Arman K, Dalloul Z, Bozgeyik E. Emerging role of microRNAs and long non-coding RNAs in COVID-19 with implications to therapeutics. Gene. 2023;861:147232. doi: 10.1016/j.gene.2023.147232
Qian H, Maghsoudloo M, Kaboli PJ, et al. Decoding the Promise and Challenges of miRNA-Based Cancer Therapies: An Essential Update on miR-21, miR-34, and miR-155. Int J Med Sci. 2024;21(14):2781-2798. doi: 10.7150/ijms.102123
Dalgaard LT, Sørensen AE, Hardikar AA, Joglekar MV. The microRNA-29 family: role in metabolism and metabolic disease. Am J Physiol Cell Physiol. 2022;323(2):C367-C377. doi: 10.1152/ajpcell.00051.2022
Lee AY. The Role of MicroRNAs in Epidermal Barrier. Int J Mol Sci. 2020;21(16):5781. doi: 10.3390/ijms21165781
Xie W, Sun H, Li X, Lin F, Wang Z, Wang X. Ovarian cancer: epigenetics, drug resistance, and progression. Cancer Cell Int. 2021;21(1):434. doi: 10.1186/s12935-021-02136-y
Yu Y, Lu S, Jin H, et al. RNA N6-methyladenosine methylation and skin diseases. Autoimmunity. 2023;56(1):2167983. doi: 10.1080/08916934.2023.2167983
Dhar GA, Saha S, Mitra P, Nag Chaudhuri R. DNA methylation and regulation of gene expression: Guardian of our health. Nucleus (Calcutta). 2021;64(3):259-270. doi: 10.1007/s13237-021-00367-y
Zhang Y, Sun Z, Jia J, et al. Overview of Histone Modification. Adv Exp Med Biol. 2021;1283:1-16. doi: 10.1007/978-981-15-8104-5_1
Scott CA, Rajpopat S, Di WL. Harlequin ichthyosis: ABCA12 mutations underlie defective lipid transport, reduced protease regulation and skin-barrier dysfunction. Cell Tissue Res. 2013;351(2):281-288. doi: 10.1007/s00441-012-1474-9
Cui J, Christin JR, Reisz JA, et al. Targeting ABCA12-controlled ceramide homeostasis inhibits breast cancer stem cell function and chemoresistance. Sci Adv. 2023;9(48): eadh1891. doi: 10.1126/sciadv.adh1891
Vietri Rudan M, Watt FM. Mammalian Epidermis: A Compendium of Lipid Functionality. Front Physiol. 2022;12:804824. doi: 10.3389/fphys.2021.804824
Yang Y, Liu L, Tian Y, et al. Autophagy-driven regulation of cisplatin response in human cancers: Exploring molecular and cell death dynamics. Cancer Lett. 2024;587:216659. doi: 10.1016/j.canlet.2024.216659
Balić A, Vlašić D, Žužul K, Marinović B, Bukvić Mokos Z. Omega-3 Versus Omega-6 Polyunsaturated Fatty Acids in the Prevention and Treatment of Inflammatory Skin Diseases. Int J Mol Sci. 2020;21(3):741. doi: 10.3390/ijms21030741
Fan J, To KKW, Chen ZS, Fu L. ABC transporters affects tumor immune microenvironment to regulate cancer immunotherapy and multidrug resistance. Drug Resist Updat. 2023;66:100905. doi: 10.1016/j.drup.2022. 100905
Wang D, Yeung AWK, Atanasov AG. A Review: Molecular Mechanism of Regulation of ABCA1 Expression. Curr Protein Pept Sci. 2022;23(3):170-191. doi: 10.2174/1389203723666220429083753
Teramura T, Nomura T. Acute skin barrier disruption alters the secretion of lamellar bodies via the multilayered expression of ABCA12. J Dermatol Sci. 2020;100(1):50-57. doi: 10.1016/j.jdermsci.2020.08.010
Yang D, Wang X, Zhang L, et al. Lipid metabolism and storage in neuroglia: role in brain development and neurodegenerative diseases. Cell Biosci. 2022;12(1):106. doi: 10.1186/s13578-022-00828-0
García-Sanz P, Aerts J, Moratalla R. The Role of Cholesterol in α-Synuclein and Lewy Body Pathology in GBA1 Parkinson’s Disease. Mov Disord. 2021;36(5):1070-1085. doi: 10.1002/mds.28396
García-Viñuales S, Sciacca MFM, Lanza V, et al. The interplay between lipid and Aβ amyloid homeostasis in Alzheimer’s Disease: risk factors and therapeutic opportunities. Chem Phys Lipids. 2021;236:105072. doi: 10.1016/j.chemphyslip.2021.105072
Hanbouch L, Schaack B, Kasri A, et al. Specific Mutations in the Cholesterol-Binding Site of APP Alter Its Processing and Favor the Production of Shorter, Less Toxic Aβ Peptides. Mol Neurobiol. 2022;59(11):7056-7073. doi: 10.1007/s12035-022-03025-9
Pahnke J, Bascuñana P, Brackhan M, et al. Strategies to gain novel Alzheimer’s disease diagnostics and therapeutics using modulators of ABCA transporters. Free Neuropathol. 2021;2:2-33. doi: 10.17879/freeneuropathology-2021-3528
Zhang JB, Wan XJ, Duan WX, et al. Circadian disruption promotes the neurotoxicity of oligomeric alpha-synuclein in mice. NPJ Parkinsons Dis. 2024;10(1):179. doi: 10.1038/s41531-024-00798-9
Kachappilly N, Srivastava J, Swain BP, Thakur P. Interaction of alpha-synuclein with lipids. Methods Cell Biol. 2022;169:43-66. doi: 10.1016/bs.mcb.
Smyth I, Hacking DF, Hilton AA, et al. A mouse model of harlequin ichthyosis delineates a key role for Abca12 in lipid homeostasis. PLoS Genet. 2008;4(9):e1000192. Doi: 10.1371/journal.pgen.1000192
Tarling EJ, de Aguiar Vallim TQ, Edwards PA. Role of ABC transporters in lipid transport and human disease. Trends Endocrinol Metab. 2013;24(7):342-350. doi: 10.1016/j.tem.2013.01.006
Piehler AP, Ozcürümez M, Kaminski WE. A-Subclass ATP-Binding Cassette Proteins in Brain Lipid Homeostasis and Neurodegeneration. Front Psychiatry. 2012;3:17. doi: 10.3389/fpsyt.2012.00017
Horvath SE, Daum G. Lipids of mitochondria. Prog Lipid Res. 2013;52(4):590-614.
Pereira CD, Martins F, Wiltfang J, da Cruz E Silva OAB, Rebelo S. ABC Transporters Are Key Players in Alzheimer’s Disease. J Alzheimers Dis. 2018;61(2):463-485. doi: 10.3233/JAD-170639
Ciurea AV, Mohan AG, Covache-Busuioc RA, et al. Unraveling Molecular and Genetic Insights into Neurodegenerative Diseases: Advances in Understanding Alzheimer’s, Parkinson’s, and Huntington’s Diseases and Amyotrophic Lateral Sclerosis. Int J Mol Sci. 2023;24(13):10809. doi: 10.3390/ijms241310809
Burtscher J, Pepe G, Maharjan N, et al. Sphingolipids and impaired hypoxic stress responses in Huntington disease. Prog Lipid Res. 2023;90:101224. doi: 10.1016/j.plipres.2023.101224
Xiao C, Rossignol F, Vaz FM, Ferreira CR. Inherited disorders of complex lipid metabolism: A clinical review. J Inherit Metab Dis. 2021;44(4):809-825. doi: 10.1002/jimd.12369
Torres M, Parets S, Fernández-Díaz J, et al. Lipids in Pathophysiology and Development of the Membrane Lipid Therapy: New Bioactive Lipids. Membranes (Basel). 2021;11(12):919. doi: 10.3390/membranes11120919
Ouweneel AB, Thomas MJ, Sorci-Thomas MG. The ins and outs of lipid rafts: functions in intracellular cholesterol homeostasis, microparticles, and cell membranes: Thematic Review Series: Biology of Lipid Rafts. J Lipid Res. 2020;61(5):676-686. doi: 10.1194/jlr.TR119000383
Moll T, Marshall JNG, Soni N, Zhang S, Cooper-Knock J, Shaw PJ. Membrane lipid raft homeostasis is directly linked to neurodegeneration. Essays Biochem. 2021;65(7):999-1011. doi: 10.1042/EBC20210026
Kotlyarov S, Kotlyarova A. The Role of ABC Transporters in Lipid Metabolism and the Comorbid Course of Chronic Obstructive Pulmonary Disease and Atherosclerosis. Int J Mol Sci. 2021;22(13):6711. doi: 10.3390/ijms22136711
Nicholls DG. Mitochondrial proton leaks and unco- upling proteins. Biochim Biophys Acta Bioenerg. 2021; 1862(7):148428. doi: 10.1016/j.bbabio.2021.148428
Pasello M, Giudice AM, Scotlandi K. The ABC subfamily A transporters: Multifaceted players with incipient potentialities in cancer. Semin Cancer Biol. 2020;60:57-71.
Manju, Bharadvaja N. Exploring the Potential Therapeutic Approach Using Ginsenosides for the Management of Neurodegenerative Disorders. Mol Biotechnol. 2024;66(7):1520-1536. doi: 10.1007/s12033-023-00783-2
Basseri S, Austin RC. Endoplasmic reticulum stress and lipid metabolism: mechanisms and therapeutic potential. Biochem Res Int. 2012;2012:841362. doi: 10.1155/2012/841362
Ricciardi CA, Gnudi L. The endoplasmic reticulum stress and the unfolded protein response in kidney disease: Implications for vascular growth factors. J Cell Mol Med. 2020;24(22):12910-12919. doi: 10.1111/jcmm.15999
Lanzillotta C, Zuliani I, Tramutola A, et al. Chronic PERK induction promotes Alzheimer-like neuropathology in Down syndrome: Insights for therapeutic intervention. Prog Neurobiol. 2021;196:101892. doi: 10.1016/j.pneurobio.2020.101892
Kalinin A, Zubkova E, Menshikov M. Integrated Stress Response (ISR) Pathway: Unraveling Its Role in Cellular Senescence. Int J Mol Sci. 2023;24(24):17423. doi: 10.3390/ijms242417423
Shi M, Chai Y, Zhang J, Chen X. Endoplasmic Reticulum Stress-Associated Neuronal Death and Innate Immune Response in Neurological Diseases. Front Immunol. 2022;12:794580. doi: 10.3389/fimmu.2021.794580
Lanzillotta C, Di Domenico F. Stress Responses in Down Syndrome Neurodegeneration: State of the Art and Therapeutic Molecules. Biomolecules. 2021;11(2):266. doi: 10.3390/biom11020266
Bashir S, Banday M, Qadri O, et al. The molecular mechanism and functional diversity of UPR signaling sensor IRE1. Life Sci. 2021;265:118740. doi: 10.1016/j.lfs.2020.118740
Tak J, Kim YS, Kim SG. Roles of X-box binding protein 1 in liver pathogenesis. Clin Mol Hepatol. doi: 10.3350/cmh.2024.0441
Qiu L, Zheng X, Jaishankar D, et al. Beyond UPR: cell-specific roles of ER stress sensor IRE1α in kidney ischemic injury and transplant rejection. Kidney Int. 2023;104(3):463-469. doi: 10.1016/j.kint.2023.06.016
Gebert M, Sobolewska A, Bartoszewska S, et al. Genome-wide mRNA profiling identifies X-box-binding protein 1 (XBP1) as an IRE1 and PUMA repressor. Cell Mol Life Sci. 2021;78(21-22):7061-7080. doi: 10.1007/s00018-021-03952-1
Turishcheva E, Vildanova M, Onishchenko G, Smirnova E. The Role of Endoplasmic Reticulum Stress in Differentiation of Cells of Mesenchymal Origin. Biochemistry (Mosc). 2022;87(9):916-931. doi: 10.1134/S000629792209005X
Christianson JC, Jarosch E, Sommer T. Mechanisms of substrate processing during ER-associated protein degradation. Nat Rev Mol Cell Biol. 2023;24(11):777-796. doi: 10.1038/s41580-023-00633-8
Medinas DB, Hazari Y, Hetz C. Disruption of Endoplasmic Reticulum Proteostasis in Age-Related Nervous System Disorders. Prog Mol Subcell Biol. 2021;59:239-278. doi: 10.1007/978-3-030-67696-4_12
Koszła O, Sołek P. Misfolding and aggregation in neurodegenerative diseases: protein quality control machinery as potential therapeutic clearance pathways. Cell Commun Signal. 2024;22(1):421. doi: 10.1186/s12964-024-01791-8
Casado ME, Huerta L, Marcos-Díaz A, et al. Hormone-sensitive lipase deficiency affects the expression of SR-BI, LDLr, and ABCA1 receptors/transporters involved in cellular cholesterol uptake and efflux and disturbs fertility in mouse testis. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866(12):159043. doi: 10.1016/j.bbalip.2021.159043
Uddin MS, Tewari D, Sharma G, et al. Molecular Mechanisms of ER Stress and UPR in the Pathogenesis of Alzheimer’s Disease. Mol Neurobiol. 2020;57(7):2902-2919. doi: 10.1007/s12035-020-01929-y
Uddin MS, Yu WS, Lim LW. Exploring ER stress response in cellular aging and neuroinflammation in Alzheimer’s disease. Ageing Res Rev. 2021;70:101417. doi: 10.1016/j.arr.2021.101417
Rodríguez-Gómez JA, Kavanagh E, Engskog-Vlachos P, et al. Microglia: Agents of the CNS Pro-Inflammatory Response. Cells. 2020;9(7):1717. doi: 10.3390/cells9071717
Rauf A, Badoni H, Abu-Izneid T, et al. Neuroinflammatory Markers: Key Indicators in the Pathology of Neurodegenerative Diseases. Molecules. 2022;27(10):3194. doi: 10.3390/molecules27103194
Jaganjac M, Milkovic L, Zarkovic N, Zarkovic K. Oxidative stress and regeneration. Free Radic Biol Med. 2022;181:154-165. doi: 10.1016/j.freeradbiomed.2022.02.004
McInnis JJ, Sood D, Guo L, et al. Unravelling neuronal and glial differences in ceramide composition, synthesis, and sensitivity to toxicity. Commun Biol. 2024;7(1):1597. doi: 10.1038/s42003-024-07231-0
Bao HN, Yin J, Wang LY, et al. Aberrant accumulation of ceramides in mitochondria triggers cell death by inducing autophagy in Arabidopsis. J Exp Bot. 2024;75(5):1314-1330. doi: 10.1093/jxb/erad456
Cerasuolo M, Di Meo I, Auriemma MC, Paolisso G, Papa M, Rizzo MR. Exploring the Dynamic Changes of Brain Lipids, Lipid Rafts, and Lipid Droplets in Aging and Alzheimer’s Disease. Biomolecules. 2024;14(11):1362. doi: 10.3390/biom14111362
Pan Y, Li J, Lin P, et al. A review of the mechanisms of abnormal ceramide metabolism in type 2 diabetes mellitus, Alzheimer’s disease, and their co-morbidities. Front Pharmacol. 2024;15:1348410. doi: 10.3389/fphar.2024.1348410
Dubot P, Sabourdy F, Levade T. Human genetic defects of sphingolipid synthesis. J Inherit Metab Dis. doi: 10.1002/jimd.12745
Behl T, Sehgal A, Grover M, et al. Uncurtaining the pivotal role of ABC transporters in diabetes mellitus. Environ Sci Pollut Res Int. 2021;28(31):41533-41551. doi: 10.1007/s11356-021-14675-y
Porokhovnik LN, Pisarev VM, Chumachenko AG, et al. Association of NEF2L2 Rs35652124 Polymorphism with Nrf2 Induction and Genotoxic Stress Biomarkers in Autism. Genes (Basel). 2023;14(3):718. doi: 10.3390/genes14030718
Warnecke A, Giesemann A. Embryology, Malformations, and Rare Diseases of the Cochlea. Embryologie, Fehlbildungen und seltene Erkrankungen der Cochlea. Laryngorhinootologie. 2021;100(S01):S1-S43. doi: 10.1055/a-1349-3824
Teixeira MI, Lopes CM, Amaral MH, Costa PC. Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. Eur J Pharm Biopharm. 2020;149:192-217. doi: 10.1016/j.ejpb.2020.01.005
Ramot Y, Böhm M, Paus R. Translational Neuroendocrinology of Human Skin: Concepts and Perspectives. Trends Mol Med. 2021;27(1):60-74. doi: 10.1016/j.molmed.2020.09.002
Filipek PA, Accardo PJ, Ashwal S, et al. Practice parameter: screening and diagnosis of autism: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Child Neurology Society. Neurology. 2000;55(4):468-479. doi: 10.1212/wnl.55.4.468
Pal D, Rao MRS. Long Noncoding RNAs in Pluripotency of Stem Cells and Cell Fate Specification. Adv Exp Med Biol. 2017;1008:223-252. doi: 10.1007/978-981-10-5203-3_8
Soreghan B, Thomas SN, Yang AJ. Aberrant sphingomyelin/ceramide metabolic-induced neuronal endosomal/lysosomal dysfunction: potential pathological consequences in age-related neurodegeneration. Adv Drug Deliv Rev. 2003;55(11):1515-1524. doi: 10.1016/j.addr.2003.07.007
Chen X, Song Y, Song W, et al. Multi-omics reveal neuroprotection of Acer truncatum Bunge Seed extract on hypoxic-ischemia encephalopathy rats under high-altitude. Commun Biol. 2023;6(1):1001. doi: 10.1038/s42003-023-05341-9
Kanapeckaitė A, Burokienė N. Insights into therapeutic targets and biomarkers using integrated multi-’omics’ approaches for dilated and ischemic cardiomyopathies. Integr Biol (Camb). 2021;13(5):121-137. doi: 10.1093/intbio/zyab007
Hashimoto S, Takanari H, Compe E, Egly JM. Dysregulation of LXR responsive genes contribute to ichthyosis in trichothiodystrophy. J Dermatol Sci. 2020;97(3):201-207. doi: 10.1016/j.jdermsci.2020.01.012
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 European Journal of Clinical and Experimental Medicine

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our open access policy is in accordance with the Budapest Open Access Initiative (BOAI) definition: this means that articles have free availability on the public Internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from having access to the Internet itself.
All articles are published with free open access under the CC-BY Creative Commons attribution license (the current version is CC-BY, version 4.0). If you submit your paper for publication by the Eur J Clin Exp Med, you agree to have the CC-BY license applied to your work. Under this Open Access license, you, as the author, agree that anyone may download and read the paper for free. In addition, the article may be reused and quoted provided that the original published version is cited. This facilitates freedom in re-use and also ensures that Eur J Clin Exp Med content can be mined without barriers for the research needs.




