Histological aspects of whole-body vibration in the knee remobilization of Wistar rats
DOI:
https://doi.org/10.15584/ejcem.2022.2.4Keywords:
articular cartilage, knee, synovial membrane, vibrationAbstract
Introduction and aim. The knee is one of the joints where immobilization is most used, however, it can cause morphological changes in the joint tissues and is a challenge to be overcome during rehabilitation. Whole-body vibration (WBV) is capable of generating repetitive oscillatory movements, which cause mechanical stimuli that interfere with tissue plasticity. The aim of this study was to analyze the knee morphology of Wistar rats submitted to remobilization with WBV.
Material and methods. 32 male rats were used, divided into four groups (n=8): Control Group (G1), Immobilization Group (G2), Immobilized Group and Free Remobilization (G3), Remobilized Group with WBV (G4). For immobilization, a plastered apparatus was used for 15 days. G3 and G4 carried out free remobilization or with WBV, respectively, for 2 weeks. The knee joints were processed for light microscopy.
Results. The WBV led to a reduction in the inflammatory infiltrate in the articular cavity and greater presence of adipocytes in the subintima of the synovial membrane.
Conclusion. Remobilization with WBV induced a better tissue response in the synovial membrane when compared to free remobilization.
Downloads
References
Andia I, Maffulli N. New biotechnologies for musculoskeletal injuries. Surgeon. 2019;17(4):244-255. doi:10.1016/j.surge.2018.08.004
Bączkowicz D, Skiba G, Falkowski K, Domaszewski P, Selkow N. Effects of immobilization and re-mobilization on knee joint arthrokinematic motion quality. J Clin Med. 2020;9(2):451. doi:10.3390/jcm9020451
Wahl EP, Richard MJ. Management of metacarpal and phalangeal fractures in the athlete. Clin Sports Med. 2020;39(2):401-422. doi:10.1016/j.csm.2019.12.002
Tomori Y, Nanno M, Takai S. Outcomes of nonsurgical treatment for transcondylar humeral fractures in adults: Clinical results of nonoperative management. Medicine (Baltimore). 2019;98(46):e17973. doi:10.1097/MD.0000000000017973
Vanwanseele B, Lucchinetti E, Stüssi E. The effects of immobilization on the characteristics of articular cartilage: current concepts and future directions. Osteoarthr Cartil. 2002;10(5):408-419. doi:10.1053/joca.2002.0529
Nomura M, Sakitani N, Iwasawa H, et al. Thinning of articular cartilage after joint unloading or immobilization. An experimental investigation of the pathogenesis in mice. Osteoarthr Cartil. 2017;25(5):727-736. doi:10.1016/j.joca.2016.11.013
Lu W, Wang L, Yao J, Wo C, Chen Y. C5a aggravates dysfunction of the articular cartilage and synovial fluid in rats with knee joint immobilization. Mol Med Rep. 2018;18(2):2110-2116. doi:10.3892/mmr.2018.9208
Leroux MAM, Cheung HSH, Bau JL, Wang JY, Howell DSD, Setton LA LA. Altered mechanics and histomorphometry of canine tibial cartilage following joint immobilization. Osteoarthr Cartil. 2001;9(7):633-640. doi:10.1053/joca.2001.0432
Narmoneva DA, Cheung HS, Wang JY, Howell DS, Setton LA. Altered swelling behavior of femoral cartilage following joint immobilization in a canine model. J Orthop Res. 2002;20(1):83-91. doi:10.1016/S0736-0266(01)00076-6
Kunz RI, Silva LI, Costa JRG da, et al. Alterações histomorfométricas na articulação do joelho de ratos Wistar após remobilização em meio aquático. Fisioter e Pesqui. 2015;22(3):317-324. doi:10.590/1809-2950/14234922032015
Morimoto A, Winaga H, Sakurai H, et al. Treadmill running and static stretching improve long-lasting hyperalgesia, joint limitation, and muscle atrophy induced by cast immobilization in rats. Neurosci Lett. 2013;534(1):295-300. doi:10.1016/j.neulet.2012.11.009
Ju Y-I, Sone T, Okamoto T, Fukunaga M. Jump exercise during remobilization restores integrity of the trabecular architecture after tail suspension in young rats. J Appl Physiol. 2008;104(6):1594-1600. doi:10.1152/japplphysiol.01004.2007
Luo X, Zhang J, Zhang C, He C, Wang P. The effect of whole-body vibration therapy on bone metabolism, motor function, and anthropometric parameters in women with postmenopausal osteoporosis. Disabil Rehabil. 2017;39(22):2315-2323. doi:10.1080/09638288.2016.1226417
Christiansen BA, Silva MJ. The effect of varying magnitudes of whole-body vibration on several skeletal sites in mice. Ann Biomed Eng. 2006;34(7):1149-1156. doi:10.1007/s10439-006-9133-5
Marín-Cascales E, Alcaraz PE, Ramos-Campo DJ, Martinez-Rodriguez A, Chung LH, Rubio-Arias JÁ. Whole-body vibration training and bone health in postmenopausal women: A systematic review and meta-analysis. Medicine (Baltimore). 2018;97(34):e11918. doi:10.1097/MD.0000000000011918
Lin CI, Huang WC, Chen WC, et al. Effect of whole-body vibration training on body composition, exercise performance and biochemical responses in middle-aged mice. Metabolism. 2015;64(9):1146-1156. doi:10.1016/j.metabol.2015.05.007
Wang L, Wang Z, Liu Q, Su J, Wang T, Li T. Effect of whole body vibration on HIF-2α expression in SD rats with early knee osteoarthritis. J Bone Miner Metab. Published online 2020:Epub ahead of print. doi:10.1007/s00774-020-01092-3
Zazula MF, Wutzke MLS, da Costa JRG, et al. Morphological effects of whole-body vibration on remobilization of the tibialis anterior muscle of Wistar rats. Anat Rec. 2020;303(11):2857-2864. doi:10.1002/ar.24390
Kakihata CMM, Peretti AL, Wutzke MLS, et al. Morphological and nociceptive effects of mechanical vibration on the sciatic nerve of oophorectomized Wistar rats. Motriz. 2019;25(1):e101949. doi:10.1590/s1980-6574201900010005
Kojima S, Hoso M, Watanabe M, Matsuzaki T, Hibino I, Sasaki K. Experimental joint immobilization and remobilization in the rats. J Phys Ther Sci. 2014;26(6):865-871. doi:10.1589/jpts.26.865
Nagai M, Aoyama T, Ito A, et al. Alteration of cartilage surface collagen fibers differs locally after immobilization of knee joints in rats. J Anat. 2015;226(5):447-457. doi:10.1111/joa.12290
Del Carlo RJ, Galvão MR, Viloria MI V, et al. Imobilização prolongada e remobilização da articulação fêmoro-tíbio-patelar de ratos: estudo clínico e microscópico. Arq Bras Med Vetrinária e Zootec. 2007;59(2):363-370.
Vieira L, Lovison K, Kunz RI, et al. Resistance exercise recovers the structure of cartilage and synovial membrane of the ankle joint of rats after sciatic compression. Mot Rev Educ Física. 2017;23(3):e101707. doi:10.1590/s1980-6574201700030001
Elsaid KA, Jay GD, Chichester CO. Reduced expression and proteolytic susceptibility of lubricin/superficial zone protein may explain early elevation in the coefficient of friction in the joints of rats with antigen-induced arthritis. Arthritis Rheum. 2007;56(1):108-116. doi:10.1002/art.22321
Melo EG, Nunes VA, Rezende CMF, Gomes MG, Malm C, Gheller VA. Sulfato de condroitina e hialuronato de sódio no tratamento da doença articular degenerativa em cães. Estudo histológico da cartilagem articular e membrana sinovial. Arq Bras Med Vet e Zootec. 2008;60(1):83-92. doi:10.1590/S0102-09352008000100013
Ando A, Hagiwara Y, Chimoto E, Hatori K, Onoda Y, Itoi E. Intra-articular injection of hyaluronan diminishes loss of chondrocytes in a rat immobilized-knee model. Tohoku J Exp Med. 2008;215(4):321-331. doi:10.1620/tjem.215.321
Weber-Rajek M, Mieszkowski J, Niespodziński B, Ciechanowska K. Whole-body vibration exercise in postmenopausal osteoporosis. Prz Menopauzalny. 2015;14(1):41-47. doi:10.5114/pm.2015.48679
Gnyubkin V, Guignandon A, Laroche N, Vanden-Bossche A, Malaval L, Vico L. High-acceleration whole body vibration stimulates cortical bone accrual and increases bone mineral content in growing mice. J Biomech. 2016;49(9):1899-1908. doi:10.1016/j.jbiomech.2016.04.031
Xu J, Lombardi G, Jiao W, Banfi G. Effects of exercise on bone status in female subjects, from young girls to postmenopausal women: an overview of systematic reviews and meta-analyses. Sport Med. 2016;46(8):1165-1182. doi:10.1007/s40279-016-0494-0
Park S-Y, Son W-M, Kwon O-S. Effects of whole body vibration training on body composition, skeletal muscle strength, and cardiovascular health. J Exerc Rehabil. 2015;11(6):289-295. doi:10.12965/jer.150254
Bemben D, Stark C, Taiar R, Bernardo-Filho M. Relevance of whole-body vibration exercises on muscle strength/power and bone of elderly individuals. Dose-Response. 2018;16(4):155932581881306. doi:10.1177/1559325818813066
Sá-Caputo D, Paineiras-Domingos LL, Francisca-Santos A, et al. Whole-body vibration improves the functional parameters of individuals with metabolic syndrome: An exploratory study. BMC Endocr Disord. 2019;19(1):6. doi:10.1186/s12902-018-0329-0
Van Heuvelen MJG, Rittweger J, Judex S, et al. Reporting guidelines for whole-body vibration studies in humans, animals and cell cultures: A consensus statement from an international group of experts. Biology (Basel). 2021;10:965. doi:10.3390/biology10100965
Mierzwa AGH, Campos JF, Jesus MF, Nader HB, Lazaretti-Castro M, Reginato RD. Different doses of strontium ranelate and mechanical vibration modulate distinct responses in the articular cartilage of ovariectomized rats. Osteoarthr Cartil. 2017;25(7):1179-1188. doi:10.1016/j.joca.2017.02.793
Sá-Caputo DC, Paineiras-Domingos LL, Oliveira R, et al. Acute effects of whole-body vibration on the pain level, flexibility, and cardiovascular responses in individuals with metabolic syndrome. Dose-Response. 2018;16(4):1-9. doi:10.1177/1559325818802139
Kelly S, Dunham JP, Donaldson LF. Sensory nerves have altered function contralateral to a monoarthritis and may contribute to the symmetrical spread of inflammation. Eur J Neurosci. 2007;26(4):935-942. doi:10.1111/j.1460-9568.2007.05737.x
Qin J, Chow SKH, Guo A, Wong WN, Leung KS, Cheung WH. Low magnitude high frequency vibration accelerated cartilage degeneration but improved epiphyseal bone formation in anterior cruciate ligament transect induced osteoarthritis rat model. Osteoarthr Cartil. 2014;22(7):1061-1067. doi:10.1016/j.joca.2014.05.004
McCann MR, Yeung C, Pest MA, et al. Whole-body vibration of mice induces articular cartilage degeneration with minimal changes in subchondral bone. Osteoarthr Cartil. 2017;25(5):770-778. doi:10.1016/j.joca.2016.11.001
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 European Journal of Clinical and Experimental Medicine

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our open access policy is in accordance with the Budapest Open Access Initiative (BOAI) definition: this means that articles have free availability on the public Internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from having access to the Internet itself.
All articles are published with free open access under the CC-BY Creative Commons attribution license (the current version is CC-BY, version 4.0). If you submit your paper for publication by the Eur J Clin Exp Med, you agree to have the CC-BY license applied to your work. Under this Open Access license, you, as the author, agree that anyone may download and read the paper for free. In addition, the article may be reused and quoted provided that the original published version is cited. This facilitates freedom in re-use and also ensures that Eur J Clin Exp Med content can be mined without barriers for the research needs.




