Plants reaction on the anatomical, physiological and molecular level for environmental global changes
DOI:
https://doi.org/10.15584/pjsd.2018.22.1.11Keywords:
environmental factors, global warming, biodiversity, epigenetics, microevolutionAbstract
Plants are organisms deprived of the ability to actively move. The adaptations they created during the evolution allow them to survive adverse habitat changes. The recent decline in the diversity of plants on the globe is caused by changes in the environment too quickly. These processes lead to the extinction of plant populations without giving them time to create appropriate adaptations. In connection with the observed decline in biodiversity, it seems that research into the possibilities of adaptation of plants to changes in habitat conditions is extremely important for understanding the functioning of ecosystems and the protection of endangered species. The article focuses on the main mechanisms adapting plants to environmental changes such as: drought, decrease in soil pH and increase in temperature on the Earth.
Downloads
References
Bone E., Farres A. 2001. Trends and rates of microevolution in plants. Genetica. 112-113. 165-182.
Burg M.B., Ferraris J.D. 2008. Intracellular Organic Osmolytes: Function and Regulation. J. Biol. Chem. 283. 12. 7309-7313.
Clergue B., Amiaud F., Pervanchon F., Lasserre-Joulin S., Plantureux D. 2005. Biodiversity: function and assessment in agricultural areas. A review. Agron. Sustain. Dev. 25 (1). 1-15.
Daszkowska-Golec A., Szarejko I. 2013. Open or close the gate – stomata action under the control of phytohormones in drought stress conditions. Front. Plant Sci. 4 (138). 1-16.
Fife D.N., Nambiar K.S., Saur E. 2008. Retranslocation of foliar nutrients in evergreen tree species planted in a Mediterranean environment. Tree Physiol. 28 (2). 187-196.
Filek M., Rudolphi-Skórska E., Sieprawska A., Kvasnica M., Janeczko A. 2017. Regulation of the membrane structure by brassinosteroids and progesterone in winter wheat seedlings exposed to low temperature. Steroids. 128. 37-45.
George S., Manoharana D., Lib J., Britton M., Paridac A. 2017. Transcriptomic responses to drought and salt stress in desert tree Prosopis juliflora. Plant. Gene. 12. 114-122.
Helmisaari H.S. 1992. Nutrient retranslocation within the foliage of Pinus sylvestris. Tree Physiol. 10 (1). 45-58.
Kędziora A., Karg J. 2010. Zagrożenia i ochrona różnorodności biologicznej. Nauka. 4. 107-114.
Kopcewicz J., Lewak S. 2009. Fizjologia roślin. Wyd. PWN, Warszawa 2009.
Kundzewicz Z.W. 2011. Zmiany klimatu, ich przyczyny i skutki – obserwacje i projekcje. Landform Analysis. 15. 39-49.
Li N., Zhang S., Liang Y., Qi Y., Chen J., Zhu W., Zhang L. 2017. Label-free quantitative proteomic analysis of drought stress-responsive late embryogenesis abundant proteins in the seedling leaves of two wheat (Triticum aestivum L.) genotypes. J. Proteomics. 10 (172). 122-142.
Müller C., Riederer M. 2005. Plant surface properties in chemical ecology. J. Chem. Ecol. 31 (11). 2621-2651.
Prusinkiewicz Z., Kowalkowski A., Królikowski L. 1983. Ochrona i rekultywacja gleb leśnych. Roczniki Gleboznawcze. 34 (3). 185-201.
Rabbani G. 2017. Role of osmolytes in protein folding and aggregation in cells and its applications in biotechnology. Int. J. Biol. Marcomol. doi: 10.1016/j.ijbiomac.2017.11.022.
Sung S., Amasino R.M. 2004. Vernalization and epigenetics: how plants remember winter. Curr. Opin. Plant Biol. 7 (1). 4-10.
Wierzbicki A.T. 2004. Dziedziczenie epigenetyczne. Kosmos. 53 (3-4). 271-280.
Yamasaki Y., Koehler G., Blacklock B.J., Randall S.K. 2013. Dehydrin expression in soybean. Plant Physiol. Biochem. 70. 213-220.
Downloads
Published
Issue
Section
License
Copyright (c) 2018 Polish Journal for Sustainable Development

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.