The effect of vermicompost produced from soybean meal by Eisenia fetida earthworms on wheat (Triticum aestivum L.) emergence

Authors

  • Michał Dziuba Studenckie Koło Naukowe Zrównoważonego Rozwoju, Katedra Podstaw Rolnictwa i Gospodarki Odpadami, Wydział Technologiczno-Przyrodniczy, Uniwersytet Rzeszowski
  • Piotr Filipowicz Studenckie Koło Naukowe Zrównoważonego Rozwoju, Katedra Podstaw Rolnictwa i Gospodarki Odpadami, Wydział Technologiczno-Przyrodniczy, Uniwersytet Rzeszowski

DOI:

https://doi.org/10.15584/pjsd.2025.29.1.3

Keywords:

soybean meal, waste management, vermicomposting, Eisenia fetida, Triticum aestivum

Abstract

Dense earthworm populations effectively convert organic waste into a valuable fertilizer, known as vermicompost. The aim of this study was to determine the effect of vermicompost obtained from soybean meal waste on the emergence of winter wheat (Triticum aestivum L.). A pot experiment was conducted in six variants: vermicomposts made from pure waste – soybean meal (ŚS) and horse manure (O) – were used, as well as their combinations in the appropriate proportions (%): ŚSO (25%), ŚSO (50%), and ŚSO (75%). Additionally, a control variant (Z), based on a universal horticultural substrate, was used. Wheat emergence was monitored for two weeks. The study analyzed the effect of individual vermicomposts on selected parameters of wheat seedlings: the average number of seedlings and their average biomass. The obtained results indicated that the most favorable wheat emergence parameters were obtained in the variant with vermicompost produced from soybean meal mixed with horse manure in a ratio of 1:3. The least favorable effect on wheat seedling emergence and development was demonstrated in the substrate containing only vermicompost from soybean meal.

Downloads

Download data is not yet available.

References

Adhikary S. 2012. Vermicompost, the story of organic gold: A review. Agricultural Sciences. 3(7). 905-917. https://doi.org/110.4236/ as.2012.37110.

Arancon N.Q., Lee S., Edward C.A., Atiyeh R. 2003. Effects of humic acids derived from cattle, food and paper-waste vermicomposts on growth of greenhouse plants. Pedobiologia. 47. 741-744.

Bhat S.A., Singh S., Singh J., Kumar S., Bhawana V.A.P. 2018. Bioremediation and detoxification of industrial wastes by earthworms: vermicompost as powerful crop nutrient in sustainable agriculture. Bioresources Technology. 252. 172-179. https:// doi.org/10.1016/j.bioretech.2018.01.003.

Biegańska J., Ciuła J. 2011. Zintegrowana gospodarka odpadami komunalnymi w Polsce jako element zrównoważonego rozwoju. Archiwum Gospodarki Odpadami i Ochrony Środowiska. 13(1). 51-60.

Dominguez J, Edwards C.A. 2010. Biology and ecology of earthworm species used for vermicomposting.; Soil Zoology for Sustain Development in the 21st Century. S.H. Shakir Hanna and W.Z.A. Mikhall (eds). Cairo. 27-40.

Dziuba M. 2024. Możliwości zagospodarowania odpadów organicznych pochodzących z sektora rolno-spożywczego, Praca inżynierska, Kolegium Nauk Przyrodniczych, Uniwersytet Rzeszowski. 1-116.

Edwards C.A., Bohlen P.J. 1996. Biology and Ecology of Earthworms. Chapman&Hall, London.

Enebe M.C., Erasmus M. 2023. Vermicomposting technology - A perspective on vermicompost production technologies. limitations and prospects. Journal of Environmental Management. 345. 1-15. https://doi.org/10.1016/j. j.jenvman.2023.118585.

Gajewska T., Szkoda M. 2016. Logistyka zwrotna jako nowoczesna forma gospodarki odpadami. Autobusy: Technika, Eksploatacja, Systemy Transportowe. 17-6(196). 1327-1333.

Garczyńska M., Kostecka J., Kaniuczak J. 2020a. Effect of fertilization with the sheep manure vermicompost on the yield of sweet potatoes and selected properties of soil developed from loess. Journal of Ecological Engineering. 21(5). 27-33. https://doi.org/10.12911/22998993/122183.

Garczyńska M., Pączka G., Podolak A., Mazur-Pączka A., Szura R., Butt K.R., Kostecka J. 2020b. Effects of owinema bio-preparation on vermicomposting in earthworm ecological boxes. Applied Sciences. 10(456). 1-13. https://doi.org/10.3390/ app10020456.

Garczyńska M., Kostecka J., Pączka G., Mazur-Pączka A., Cebulak T., Butt K.R. 2023. Chemical composition of earthworm Dendrobaena veneta (Rosa) biomass is suitable as an alternative protein source. International Journal of Environmental Research and Public Health. 20(4). 3108. https://doi.org/10.3390/ ijerph20043108.

Garczyńska M., Krempa M. 2018. Wstępne badania nad prośrodowiskowym zagospodarowaniem topinamburu (Helianthus tuberosus L.). Polish Journal for Sustainable Development. 22(2). 19-26. https://doi.org/10.15584/ pjsd.2018.22.2.2.

Goswami L., Nath A., Sutradhar S., Bhattacharya S. S., Kalamdhadm A., Vellinglri K., Kim K.H. 2017. Application of drum compost and vermicompost to improve soil health, growth, and yield parameters for tomato and cabbage plants. Journal of Environmental Management. 200. 243-252. https://doi.org/10.1016/ j.jenvman.2017.05.073.

Hussain N., Abbasi S.A. 2018. Efficacy of the vermicomposts of different organic wastes as Clean” Fertilizers: State of the Art. Sustainability. 10(1205). 1-63. https://doi.org/10.3390/ su10041205.

Ievinsh G. 2011. Vermicompost treatment differentially affects seeds germination, seedling growth and pshyiological status of vegetable crop species. Plant Growth Regular. 65. 169-181. https://doi.org/10.1007/ s10725-011-9586-x.

Kalembasa D. 1995. Wermikompost – nawóz do rekultywacji gleb zdegradowanych. Zeszyty Problemowe Postępów Nauk Rolniczych. 418(2). 591-596.

Kalembasa D. 1998. Wpływ stosunku C/N w podłożu oraz stopnia rozdrobnienia podłoża na wzrost i rozwój dżdżownicy Eisenia fetida. Zeszyty Naukowe Akademii Rolniczej w Krakowie. 334. 117-120.

Kostecka J. 1994. Poradnik hodowcy dżdżownic. Akademia Rolnicza im. H. Kołłątaja w Krakowie, Filia w Rzeszowie. 1-40.

Kostecka J. 2000. Badania nad wermikompostowaniem odpadów organicznych. Zeszyty Naukowe Akademii Rolniczej w Krakowie. Rozprawy. 268. 1-88.

Kostecka J., Garczyńska M., Pączka G., Mazur-Pączka A. 2022. Chemical composition of earthworm Eisenia fetida (Sav.) biomass and selected determinants for its production. Journal of Ecological Engineering. 23(7). 169-179. https://doi.org/0.12911/22998993/149940.

Kostecka J., Kaniuczak J. 2008. Vermicomposting of duckweed (Lemna minor L.) biomass by Eisenia fetida (Sav.) earthworm. Journal of Elementology. 13(4). 571-579.

Kostecka J., Koc-Jurczyk J., Garczyńska M. 2016. Rozważania na temat zrównoważonej gospodarki odpadami. Polish Journal for Sustainable Development. 20. 105-117. https://doi.org/10.15584/ pjsd.2016.20.12.

Kostecka J., Pączka G. 2006. Possible use of earthworm Eisenia fetida (Sav.) biomass for breeding aquarium fish. European Journal of Soil Biology. 42. 231-236. https://doi.org/10.1016/ j.ejsobi.2006.07.029.

Kostecka J., Pączka G., Garczyńska M., Podolak-Machowska A., Dunin-Mugler C., Szura R. 2014. Wykorzystanie wermikompostowania do zagospodarowania odpadów organicznych w gospodarstwach domowych. Inżynieria i Ochrona Środowiska. 17(1). 21-30.

Lavelle P., Decanëns T., Aubert M., Barot S., Blouin S., Bureau F., Margerie P., Mora P., Rossi J.-P. 2006. Soil invertebrates and ecosystem services. European Journal of Soil Biology. 42(1). 3-15. https://doi.org/10.1016/ j.ejsobi.2006.10.002.

Pączka G., Mazur-Pączka A., Garczyńska M., Kostecka J., Butt K.R. 2021. Garlic (Allium sativum L.) cultivation using vermicompost-amended soil as aspect of sustainable plant production. Sustainability. 13. 13557: 1-11. https://doi.org/10.3390/ su132413557.

Raza S.T., Zhu B., Tang J.L., Ali Z., Anjum R., Bah H., Iqbal H., Ren X., Ahmad R. 2020. Nutrients recovery during vermicomposting of cow dung, pig manure and biochar for agricultural sustainability with gases emissions. Applied Sciences. 10(24). 8956. https://doi.org/10.3390/ app10248956.

Rodriguez-Quiroz G., Valenzuela-Quinonez W., Nava-Perez E. 2011. Vermicomposting as a nitrogen source in germinating kidney bean in trays. Journal of Plant Nutrition. 34. 1418-1423. https://doi.org/10.1080/01904167.2011.585200.

Shi Z., liu J., Tang Z., Zhao Y., Wang C. 2019. Vermiremediation of organically contaminated soils: Concepts, current status and future perspectives. Applied Soil of Ecology. 147. 103377. https://doi.org/10.1016/ j.apsoil.2019.103377.

Singh H., Pritpal Singh P., Hundal P. P. 2012. Vermicomposting of animal dung and its laboratory evaluation. Indian Journal of Science and Technology. 5(7). 3031-3035.

Sinha R. K., Herat S. 2009. Vermiculture and sustainable agriculture. American Euroasian Journal of Agricultural of Environmental Science. 5(S). 01-55.

Songin W. 1994. Produkcja kompostu koprolitowego w ogrodzie przydomowym i działkowym. Postępy Nauk Rolniczych. 1(94). 145-151.

Straka M. 2016. Logistics and chemical technology as effective means for the collection and treatment of biodegradable wastes. Przemysł Chemiczny. 1. 127-131. https://doi.org/10.15199/62.2016.8.27.

Studium uwarunkowań i kierunków zagospodarowania przestrzennego gminy Zaleszany - Część I - Uwarunkowania zagospodarowania przestrzennego. [dok. elektr. https://www.zaleszany.pl/asp/pliki/download/20190424_zalacznik_1.1_teskt_uwarunkowan.pdf. data wejścia 21.05.2025].

Struktura użytkowania terenu w gminie Zaleszany. [dok. elektr. https://www.zaleszany.pl/asp /pliki/download/20190424_zalacznik_1.1_teskt_uwarunkowan.pdf. data wejścia 21.05.2025].

Usmani Z., Kumar V., Gupta P., Gupta G., Rani R., Chandra A. 2019. Enhanced soil fertility, plant growth promotion and microbial enzymatic activities of vermicomposted fly ash. Scientific Reports. 9. 10455. 1-16. https://doi.org/ 10.1038/s41598-019-46821-5.

Published

2025-06-30