Economic and energy analysis of photovoltaic installation located in Rzeszów

Authors

  • Jakub Rąb Katedra Inżynierii Produkcji Rolno-Spożywczej, Uniwersytet Rzeszowski
  • Marek Lenart Katedra Inżynierii Produkcji Rolno-Spożywczej, Uniwersytet Rzeszowski
  • Miłosz Zardzewiały Katedra Inżynierii Produkcji Rolno-Spożywczej, Uniwersytet Rzeszowski https://orcid.org/0000-0002-8843-2814

DOI:

https://doi.org/10.15584/pjsd.2025.29.2.8

Keywords:

economic analysis, energy analysis, photovoltaics, prosumer installation, energy efficiency

Abstract

Rising electricity prices, the need to reduce greenhouse gas emissions, and the development of renewable energy sources justify the necessity of assessing the energy and economic efficiency of residential photovoltaic installations under Polish climatic conditions. In particular, it is important to determine the actual benefits resulting from their operation based on real data. The aim of this study was to perform an energy and economic analysis of a residential photovoltaic installation with a capacity of 3 kWp located in Rzeszów, including an assessment of energy production, the degree of household energy demand coverage, the level of self-consumption, and the profitability of the investment. The analysis was based on operational data from 2022–2023 provided by the prosumer. Monthly values of energy produced, fed into the grid, drawn from the grid, and consumed by the household were analyzed, as well as electricity purchase costs for scenarios with and without a PV installation. The results demonstrated a clear seasonal pattern in system operation and an average household energy demand coverage of 78.41%. The photovoltaic installation enabled a reduction in electricity costs by 31–34% over the analyzed period, while the payback period of the investment was estimated at approximately 8 years, confirming both its energy and economic viability.

Downloads

Download data is not yet available.

References

Adamkiewicz J. 2017. Zarys koncepcji zrównoważonego bezpieczeństwa energetycznego. Zesz. Nauk. Politechniki Śląskiej. Organizacja i Zarządzanie. 104. 103-114.

Alimi O.A., Meyer E.L., Olayiwola O.I. 2022. Solar Photovoltaic Modules’ Performance Reliability and Degradation Analysis-A Review. Energies. 15. 596.

Brodziński Z., Brodzińska K., Szadziun M. 2021. Photovoltaic Farms-Economic Efficiency of Investments in North-East Poland. Energies. 14(8). 2087.

Chrzan M., Pietruszczak D., Wiktorowski M. 2018. Wybrane zagadnienia projektowania instalacji elektrycznej typu OZE na przykładzie domowej elektrowni fotowoltaicznej. Autobusy: technika, eksploatacja, systemy transportowe. 19(12). 66-74.

Dunlop E.D., Halton D., O’Driscoll T. 2006. The performance of crystalline silicon photovoltaic solar modules after 22 years of continuous outdoor exposure. Progress in Photovoltaics: Research and Applications. 14(1). 53-64.

Eurostat 2023 [dok. elektr.: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_statistics_-_an_overview. data wejścia 06.01.2026].

Instytut Energetyki Odnawialnej (IEO). 2023. Rynek Fotowoltaiki w Polsce 2023. Warszawa.

Jordan D.C., Kurtz S.R. 2013. Photovoltaic Degradation Rates-An Analytical Review. Progress in Photovoltaics: Research and Applications. 21(1). 12-29.

Kleniewska M., Chojnicki B.H., Acosta M. 2016. Long-term total solar radiation variability at the Polish Baltic coast. Meteorology, Hydrology and Water Management. 4(2). 35-44.

Kumar A., Kumar K., Kaushik N., Sharma S., Mishra S. 2010. Renewable energy in India: current status and future potentials. Renewable and Sustainable Energy Reviews. 14(8). 2434-2442.

Luthander R., Widén J., Nilsson D., Palm J. 2015. Photovoltaic self-consumption in buildings: A review. Applied Energy. 142. 80-94.

Matuszko D. 2014. Long-term variability in solar radiation in Krakow based on measurements of sunshine duration. International Journal of Climatology. 34(1). 228-234.

Mularczyk A., Hysa B. 2015. Rozwój i perspektywy energii solarnej w Polsce i województwie śląskim. Zeszyty Naukowe. Organizacja i Zarządzanie/Politechnika Śląska. 86. 361-377.

Reich N. H., Mueller B., Armbruster A., van Sark W. G. J. H. M., Kiefer K., Reise C. 2012. Performance ratio revisited: is PR > 90% realistic? Progress in Photovoltaics: Research and Applications. 20(6). 717-726.

Sala K. 2018. Energetyka słoneczna jako czynnik rozwoju regionów i gmin w Polsce. Przedsiębiorczość-Edukacja. 14. 125-13.

Skoplaki E., Palyvos J. A. 2009. On the temperature dependence of photovoltaic module electrical performance: A review. Solar Energy. 83(5). 614-624.

Šúri M., Huld T. A., Dunlop E.D., Ossenbrink H.A. 2007. Potential of solar electricity generation in the European Union member states and candidate countries. Solar Energy. 81(10). 1295-1305.

World Commission on Environment and Development. 1987. Our common future. Oxford University Press.

Published

2025-12-29