Optimization and validation of the methods for the determination of polychlorinated biphenyls in soil

Authors

  • Agnieszka Hućko Uniwersytet Rzeszowski, Kolegium Nauk Przyrodniczych, Instytut Biotechnologii – student
  • Ewa Szpyrka Uniwersytet Rzeszowski, Kolegium Nauk Przyrodniczych, Instytut Biotechnologii

DOI:

https://doi.org/10.15584/pjsd.2024.28.1.9

Keywords:

polychlorinated biphenyls, soil, pollution, optimization, validation

Abstract

Polychlorinated biphenyls (PCBs) are synthetic aromatic compounds produced in large quantities around the world since the 1930s, the synthesis of which was banned in the 1970s. These compounds were widely used, among others, as dielectric fluids in capacitors and transformers, grease and plasticizers. Due to the properties of these compounds, such as resistance to chemical degradation and long half-life (from 3 to 40 years), they constitute persistent environmental pollutants. The highest amounts are found in the soil, but they can also be determined in the air, sediments, water, plants and even living organisms. The aim of the work was to optimize and validate the method for determining PCB congeners 10, 28, 138, 153 and 180 in soil. As part of the method optimization, three extraction reagents and two types of purification sorbents were tested. Validation was performed at two fortification levels to determine the recovery and precision of the method. The optimized and validated method was used to analyze the content of selected PCB congeners in real samples collected from the Podkarpacie region. Based on the conducted research, it was shown that the best reagent for the extraction of PCBs from soil is hexane, and the best sorbent for purification is Florisil. The concentration of PCB 10, 28, 52, 138 and 153 in the analyzed real samples was below the limit of quantification (LOQ<0.005 mg/kg). PCB 180 was determined at a level of 0.007 mg/kg in soil taken from the area next to the railway lines in Głuchów.

Downloads

References

Ahmad I., Weng J., Stromberg A.J., Hilt J.Z., Dziubla T. 2019. Fluorescence Based Detection of Poly Chlorinated Biphenyls (PCBs) in Water Using Hydrophobic Interaction. The Analyst. 144(2). 677-684. DOI:10.1039/c8an00867a.

Aken B.V., Correa P. A., Schnoor J. L. 2010. Phytoremediation of Polychlorinated Biphenyls: New Trends and Promises†. Environmental Science & Technology. 44(8). 2767-2776. DOI:10.1021/es902514d.

Elabbas L.E., Westerholm E., Roos R., Halldin K., Korkalainen M., Viluksela M., Håkansson H. 2013. Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) in foods: exposure and health hazards. Persistent Organic Pollutants and Toxic Metals in Foods. 215-260. DOI:10.1533/9780857098917.2.215.

Erickson M.D., Kaley R.G. 2010. Applications of polychlorinated biphenyls. Environmental Science and Pollution Research. 18(2). 135-151. DOI:10.1007/s11356-010-0392-1.

Jin W., Otake M., Eguchi A., Sakurai K., Nakaoka H., Watanabe M., Mori C. 2017. Dietary Habits and Cooking Methods Could Reduce Avoidable Exposure to PCBs in Maternal and Cord Sera. Scientific Reports. 7(1). DOI:10.1038/s41598-017-17656-9.

Kaw H.Y., Kannan N. 2016. A Review on Polychlorinated Biphenyls (PCBs) and Polybrominated Diphenyl Ethers (PBDEs) in South Asia with a Focus on Malaysia. Reviews of Environmental Contamination and Toxicology. 242. 153-181. DOI:10.1007/398_2016_14.

Kiani A., Arabameri M., Shariatifar N., Mehraie A., Tooryan F., Ghanbariasad A., Shahsavari S. 2023. Analysis of polychlorinated biphenyls (PCBs) in dairy products by modified QuEChERS/GC-QqQ-MS/MS method: A risk assessment study. Food Sci Nutr. 10.11(6). 2895-2906. DOI: 10.1002/fsn3.3269.

Kumar B., Verma V.K., Singh S.K., Kumar S., Sharma C.S., Akolkar A.B. 2014. Polychlorinated biphenyls in residential soils and their health risk and hazard in an industrial city in India. Journal of Public Health Research. 3(2). DOI:10.4081/jphr.2014.252.

Moukas A.I., Thomaidis N.S., Calokerinos A.C. 2014. Determination of polychlorinated biphenyls by liquid chromatography-atmospheric pressure photoionization-mass spectrometry. Journal of Mass Spectrometry. 49(11). 1096-1107. DOI:10.1002/jms.3427.

Olatunji O.S. 2019. Evaluation of selected polychlorinated biphenyls (PCBs) congeners and dichlorodiphenyltrichloroethane (DDT) in fresh root and leafy vegetables using GC-MS. Scientific Reports. 9(1). 538. DOI:10.1038/s41598-018-36996-8.

Rozporządzenie Ministra Gospodarki z dnia 24 czerwca 2002 r. w sprawie wymagań w zakresie wykorzystywania i przemieszczania substancji stwarzających szczególne zagrożenie dla środowiska oraz wykorzystywania i oczyszczania instalacji lub urządzeń, w których były lub są wykorzystywane substancje stwarzające szczególne zagrożenie dla środowiska. Dz.U. 2002 nr 96 poz. 860. [dok. elektr. https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20020960860/O/D20020860.pdf data wejścia 24.06.2024].

Rozporządzenie Ministra Środowiska z dnia 1 września 2016 r. w sprawie sposobu prowadzenia oceny zanieczyszczenia powierzchni ziemi. Dziennik Ustaw Rzeczypospolitej Polskiej 2016, Poz. 1395. [dok. elektr. http://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20160001395/O/D20161395.pdf data wejścia 24.06.2024].

Starek A. 2001. Polichlorowane bifenyle - toksykologia – ryzyko zdrowotne. Roczniki Państwowego Zakładu Higieny. 52(3). 187-201.

Vorkamp K., Odsbjerg L., Langeland M., Mayer P. 2016. Utilizing the partitioning properties of silicone for the passive sampling of polychlorinated biphenyls (PCBs) in indoor air. Chemosphere. 160. 280-286. DOI: 10.1016/j.chemosphere.2016.06.054.

Witczak A., Abdel-Gawad H. 2012. Comparison of organochlorine pesticides and polychlorinated biphenyls residues in vegetables, grain and soil from organic and conventional farming in Poland. Journal of Environmental Science and Health. Part B. 47(4). 343-354. DOI:10.1080/03601234.2012.646173.

Wojtowicz K., Jakubowicz P. 2019. Opracowanie metodyki oznaczania polichlorowanych bifenyli w próbkach gleb. Nafta-Gaz. 75. 420-429. DOI: 10.18668/NG.2019.07.06.

Published

2024-07-18