Harnessing the gut-brain axis in the treatment of type 2 diabetes mellitus and obesity
DOI:
https://doi.org/10.15584/ejcem.2025.4.24Keywords:
diabetes, gut-brain axis, obesityAbstract
Introduction and aim. The most common metabolic disorders include type 2 diabetes (T2DM) and obesity. Their prevalence has increased in recent years. Due to their widespread prevalence and the fact that they increase the risk of cardiovascular disease, morbidity, and mortality, they pose a significant economic burden to the healthcare system. In this review, we will focus primarily on the role of gut hormone signaling produced by enteroendocrine cells (EECs), which are part of the gut-brain axis. Furthermore we will summarize applications of these mechanisms in novel therapies for T2DM and obesity.
Material and method. Literature data analysis was performed using the following databases: PubMed (MEDLINE), Scopus, Web of Science and Google Scholar. The review included articles in Polish and English published between 2000 and 2024.
Analysis of the literature. EECs are specialized transepithelial cells present throughout the intestine. The best-studied EEC subtype is the L cell, which secretes glucagon-like peptide-1 (GLP-1). GLP-1 regulates insulin secretion and contributes to satiety by increasing insulin secretion and inhibiting glucagon secretion. Significant progress in the use of intestinal hormones in the treatment of T2DM and obesity has led to the development of effective therapies for both of these conditions, such as GLP-1 analogs.
Conclusion. The growing understanding of biochemical processes, hormonal signaling, and the development of new technologies contribute to the continuation of research on new, more effective therapies that use mechanisms of action of the gut-brain axis. Despite these achievements, the need for new and more effective treatments is constantly growing, and requires innovative strategies and their potential combination with existing therapies.
Downloads
References
Huang X, Wu Y, Ni Y, Xu H, He Y. Global, regional, and national burden of type 2 diabetes mellitus caused by high BMI from 1990 to 2021, and forecasts to 2045: analysis from the global burden of disease study 2021. Front Public Health. 2025;13:1515797. doi: 10.3389/fpubh.2025.1515797
Ong KL, Stafford LK, McLaughlin SA, et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023; 402(10397):203-234. doi: 10.1016/S0140-6736(23)01301-6.
International Diabetes Federation: IDF Diabetes Atlas-9th edition. https://diabetesatlas.org/media/uploads/sites/3/2025/02/IDF-Atlas-9th-Edition-EN.pdf. Accessed April 21, 2021.
World Health Organization (WHO): Obesity and Overweight, 2020. https://iris.who.int/bitstream/handle/10665/332070/9789240005105-eng.pdf. Accessed April 21, 2021.
Wachsmuth HR, Weninger SN, Duca FA. Role of the gut-brain axis in energy and glucose metabolism. Exp Mol Med. 2022;54(4):377-392. doi: 10.1038/s12276-021-00677-w.
Longo S, Rizza S, Federici M. Microbiota-gut-brain axis: relationships among the vagus nerve, gut microbiota, obesity, and diabetes. Acta Diabetol. 2023;60(8):1007-1017. doi: 10.1007/s00592-023-02088-x
Nwako JG, McCauley HA. Enteroendocrine cells regulate intestinal homeostasis and epithelial function. Mol Cell Endocrinol. 2024;593:112339. doi: 10.1016/j.mce.2024.112339
Hunne B, Stebbing MJ, McQuade RM, Furness JB. Distributions and relationships of chemically defined enteroendocrine cells in the rat gastric mucosa. Cell and Tissue Research. 2019;378(1):33-48. doi: 10.1007/s00441-019-03029-3
Richards P, Thornberry NA, Pinto S. The gut-brain axis: Identifying new therapeutic approaches for type 2 diabetes, obesity, and related disorders. Mol Metab. 2021;46:101175. doi: 10.1016/j.molmet.2021.101175
Movahednasab M, Dianat-Moghadam H, Khodadad S, et al. GLP-1-based therapies for type 2 diabetes: from single, dual and triple agonists to endogenous GLP-1 production and L-cell differentiation. Diabetol Metab Syndr. 2025;17(1):60. doi: 10.1186/s13098-025-01623-w
Raven LM, Brown C, Greenfield JR. Considerations of delayed gastric emptying with peri-operative use of glucagon-like peptide-1 receptor agonists. Med J Aust. 2024;220(1):14-16. doi: 10.5694/mja2.52170.
Yusta B, Baggio LL, Koehler J, et al. GLP-1R agonists modulate enteric immune responses through the intestinal intraepithelial lymphocyte GLP-1R. Diabetes. 2015;64(7):2537-2549. doi:10.2337/db14-1577
Yusta B, Matthews D, Koehler JA, et al. Localization of glucagon-like peptide-2 receptor expression in the mouse. Endocrinology. 2019;160(8):1950-1963. doi:10.1210/en.2019-00398
Richards P, Parker HE, Adriaenssens AE, et al. Identification and characterization of GLP-1 receptor-expressing cells using a new transgenic mouse model. Diabetes. 2014;63(4):1224-1233. doi: 10.2337/db13-1440
Zheng Z, Zong Y, Ma Y, et al. Glucagon-like peptide-1 receptor: mechanisms and advances in therapy. Signal Transduct Target Ther. 2024;9(1):234. doi: 10.1038/s41392-024-01931-z
Heiss CN, Olofsson LE. The role of the gut microbiota in development, function and disorders of the central nervous system and the enteric nervous system. J Neuroendocrinol. 2019;31(5):e12684. doi: 10.1111/jne.12684
Davies JS. Ghrelin mediated hippocampal neurogenesis. Vitam Horm. 2022;118:337-367. doi: 10.1016/bs.vh.2021.12.003
Kotta AS, Kelling AS, Corleto KA, Sun Y, Giles ED. Ghrelin and Cancer: Examining the Roles of the Ghrelin Axis in Tumor Growth and Progression. Biomolecules. 2022;12(4):483. doi: 10.3390/biom12040483
Bai L, Mesgarzadeh S, Ramesh KS, et al. Genetic identification of vagal sensory neurons that control feeding. Cell. 2019;179(5):1129-1143. doi: 10.1016/j.cell.2019.10.031
Warrilow A, Turner M, Naumovski N, Somerset S. Role of cholecystokinin in satiation: a systematic review and meta-analysis. Br J Nutr. 2023;129(12):2182-2190. doi: 10.1017/S0007114522000381
Holst JJ. The incretin system in healthy humans: the role of GIP and GLP-1. Metabolism. 2019;96:46-55. doi: 10.1016/j.metabol.2019.04.014
Adriaenssens AE, Biggs EK, Darwish T, et al. Glucose-dependent insulinotropic polypeptide receptor-expressing cells in the hypothalamus regulate food intake. Cell Metab. 2019;30(5):987-996. doi: 10.1016/j.cmet.2019.07.013
Prescott SL, Umans BD, Williams EK, et al. An airway protection program revealed by sweeping genetic control of vagal afferents. Cell. 2020;181(3):574-589. doi: 10.1016/j.cell.2020.03.004
Kupari J, Häring M, Agirre E, et al. An atlas of vagal sensory neurons and their molecular specialization. Cell Rep. 2019;27(8):2508-2523. doi: 10.1016/j.celrep.2019.04.096
Drokhlyansky E, Smillie CS, Van Wittenberghe N, et al. The human and mouse enteric nervous system at single cell resolution. Cell. 2020;182(6):1606-1622. doi: 10.1016/j.cell.2020.08.003
Wong C, Lee MH, Yaow CYL, et al. Glucagon-Like Peptide-1 Receptor Agonists for Non-Alcoholic Fatty Liver Disease in Type 2 Diabetes: A Meta-Analysis. Front Endocrinol (Lausanne). 2021;12:609110. doi: 10.3389/fendo.2021.609110
Moore PW, Malone K, VanValkenburg D, et al. GLP-1 Agonists for Weight Loss: Pharmacology and Clinical Implications. Adv Ther. 2023;40(3):723-742. doi: 10.1007/s12325-022-02394-w
Roberts-Thomson KM, Parker L, Betik AC, et al. Oral and intravenous glucose administration elicit opposing microvascular blood flow responses in skeletal muscle of healthy people: role of incretins. J Physiol. 2022;600(7):1667-1681. doi: 10.1113/JP282428
Shaefer CF Jr, Kushner P, Aguilar R. User's guide to mechanism of action and clinical use of GLP-1 receptor agonists. Postgrad Med. 2015;127(8):818-826. doi: 10.1080/00325481.2015.1090295
Nauck MA, Quast DR, Wefers J, Pfeiffer AFH. The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: A pathophysiological update. Diabetes Obes Metab. 2021;23 (3):5-29. doi: 10.1111/dom.14496.
Holst JJ, Gasbjerg LS, Rosenkilde MM. The Role of Incretins on Insulin Function and Glucose Homeostasis. Endocrinology. 2021;162(7):bqab065. doi: 10.1210/endocr/bqab065
Holst JJ, Knop FK, Vilsbøll T, et al. Loss of incretin effect is a specific, important, and early characteristic of type 2 diabetes. Diabetes Care. 2011;34(2):251-257. doi: 10.2337/dc11-s227
Godsland IF, Johnston DG, Alberti K, Oliver N. The importance of intravenous glucose tolerance test glucose stimulus for the evaluation of insulin secretion. Sci Rep. 2024;14(1):7451. doi: 10.1038/s41598-024-54584-x
Nauck MA, Meier JJ. Management of endocrine disease: Are all GLP-1 agonists equal in the treatment of type 2 diabetes? Eur J Endocrinol. 2019;181(6):R211-R234. doi: 10.1530/EJE-19-0566
Choe HJ, Nauck MA, Moon JH. Metabolic Consequences of Glucagon-Like Peptide-1 Receptor Agonist Shortage: Deterioration of Glycemic Control in Type 2 Diabetes. Endocrinol Metab (Seoul). 2025;40(1):156-160. doi: 10.3803/EnM.2024.2150
Zander M, Madsbad S, Madsen JL, Holst JJ. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet. 2002;359(9309):824-830. doi: 10.1016/S0140-6736(02)07952-7
Matuszek B, Lenart-Lipińska M, Nowakowski A. Incretin hormones in the treatment of type 2 diabetes. Part II. Incretins - new possibilities for pharmacotherapy of type 2 diabetes. Endokrynol Pol. 2008;59(4):322-329.
Zhao X, Wang M, Wen Z, et al. GLP-1 Receptor Agonists: Beyond Their Pancreatic Effects. Front Endocrinol (Lausanne). 2021;12:721135. doi: 10.3389/fendo.2021.721135
Dankner R, Murad H, Agay N, Olmer L, Freedman LS. Glucagon-Like Peptide-1 Receptor Agonists and Pancreatic Cancer Risk in Patients With Type 2 Diabetes. JAMA Netw Open. 2024;7(1):e2350408. doi: 10.1001/jamanetworkopen.2023.50408
Nreu B, Dicembrini I, Tinti F, Mannucci E, Monami M. Pancreatitis and pancreatic cancer in patients with type 2 diabetes treated with glucagon-like peptide-1 receptor agonists: an updated meta-analysis of randomized controlled trials. Minerva Endocrinol (Torino). 2023;48(2):206-213. doi: 10.23736/S2724-6507.20.03219-8
DeFronzo RA, Ratner RE, Han J, et al. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care. 2005;28(5):1092-1100. doi: 10.2337/diacare.28.5.1092
Fineman MS, Mace KF, Diamant M, et al. Clinical relevance of anti-exenatide antibodies: safety, efficacy and cross-reactivity with long-term treatment. Diabetes Obes Metab. 2012;14(6):546-554. doi: 10.1111/j.1463-1326.2012.01561.x
Leon N, LaCoursiere R, Yarosh D, Patel RS. Lixisenatide (Adlyxin): A Once-Daily Incretin Mimetic Injection for Type-2 Diabetes. P T. 2017;42(11):676-711.
Christensen M, Knop FK, Holst JJ, Vilsboll T. Lixisenatide, a novel GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus. IDrugs. 2009;12(8):503-513.
Trujillo JM, Nuffer W. GLP-1 receptor agonists for type 2 diabetes mellitus: recent developments and emerging agents. Pharmacotherapy. 2014;34(11):1174-1186. doi: 10.1002/phar.1507
Mahapatra MK, Karuppasamy M, Sahoo BM. Semaglutide, a glucagon like peptide-1 receptor agonist with cardiovascular benefits for management of type 2 diabetes. Rev Endocr Metab Disord. 2022;23(3):521-539. doi: 10.1007/s11154-021-09699-1
Elbrønd B, Jakobsen G, Larsen S, et al. Pharmacokinetics, pharmacodynamics, safety, and tolerability of a single-dose of NN2211, a long-acting glucagon-like peptide 1 derivative, in healthy male subjects. Diabetes Care. 2002;25(8):1398-1404. doi: 10.2337/diacare.25.8.1398
Jimenez-Solem E, Rasmussen MH, Christensen M, Knop FK. Dulaglutide, a long-acting GLP-1 analog fused with an Fc antibody fragment for the potential treatment of type 2 diabetes. Curr Opin Mol Ther. 2010;12(6):790-797.
Brønden A, Naver SV, Knop FK, Christensen M. Albiglutide for treating type 2 diabetes: an evaluation of pharmacokinetics/pharmacodynamics and clinical efficacy. Expert Opin Drug Metab Toxicol. 2015;11(9):1493-1503. doi: 10.1517/17425255.2015.1068288
Bush MA, Matthews JE, De Boever EH, et al. Safety, tolerability, pharmacodynamics and pharmacokinetics of albiglutide, a long-acting glucagon-like peptide-1 mimetic, in healthy subjects. Diabetes Obes Metab. 2009;11(5):498-505. doi: 10.1111/j.1463-1326.2008.00992.x
Geiser JS, Heathman MA, Cui X, et al. Clinical Pharmacokinetics of Dulaglutide in Patients with Type 2 Diabetes: Analyses of Data from Clinical Trials. Clin Pharmacokinet. 2016;55(5):625-634. doi: 10.1007/s40262-015-0338-3
Grunberger G, Forst T, Fernandez Lando L, et al. Early fasting glucose measurements can predict later glycaemic response to once weekly dulaglutide. Diabet Med. 2016;33(3):391-394. doi: 10.1111/dme.12833
Lau J, Bloch P, Schäffer L, et al. Discovery of the Once-Weekly Glucagon-Like Peptide-1 (GLP-1) Analogue Semaglutide. J Med Chem. 2015;58(18):7370-7380. doi: 10.1021/acs.jmedchem.5b00726
Granhall C, Donsmark M, Blicher TM, et al. Safety and pharmacokinetics of single and multiple ascending doses of the novel oral human GLP-1 analogue, oral semaglutide, in healthy subjects and subjects with type 2 diabetes. Clin Pharmacokinet. 2019;58(6):781-791. doi: 10.1007/s40262-018-0728-4
Williams DL. Minireview: finding the sweet spot: peripheral versus central glucagon-like peptide 1 action in feeding and glucose homeostasis. Endocrinology. 2009;150(7):2997-3001. doi: 10.1210/en.2009-0220
Jalleh RJ, Marathe CS, Rayner CK, et al. Physiology and Pharmacology of Effects of GLP-1-based Therapies on Gastric, Biliary and Intestinal Motility. Endocrinology. 2024;166(1):bqae155. doi: 10.1210/endocr/bqae155
Owens DR, Monnier L, Bolli GB. Differential effects of GLP-1 receptor agonists on components of dysglycaemia in individuals with type 2 diabetes mellitus. Diabetes Metab. 2013;39(6):485-496. doi: 10.1016/j.diabet.2013.09.004
Aroda VR, Henry RR, Han J, et al. Efficacy of GLP-1 receptor agonists and DPP-4 inhibitors: meta-analysis and systematic review. Clin Ther. 2012;34(6):1247-1258. doi: 10.1016/j.clinthera.2012.04.013
Rosenstock J, Fonseca VA, Gross JL, et al. Advancing basal insulin replacement in type 2 diabetes inadequately controlled with insulin glargine plus oral agents: a comparison of adding albiglutide, a weekly GLP-1 receptor agonist, versus thrice-daily prandial insulin lispro. Diabetes Care. 2014;37(8):2317-2325. doi: 10.2337/dc14-0001
Yang CY, Chen YR, Ou HT, Kuo S. Cost-effectiveness of GLP-1 receptor agonists versus insulin for the treatment of type 2 diabetes: a real-world study and systematic review. Cardiovasc Diabetol. 2021;20(1):21. doi: 10.1186/s12933-020-01211-4
Popoviciu MS, Păduraru L, Yahya G, et al. Emerging Role of GLP-1 Agonists in Obesity: A Comprehensive Review of Randomised Controlled Trials. Int J Mol Sci. 2023;24(13):10449. doi: 10.3390/ijms241310449
Rosenberg J, Jacob J, Desai P, Park J, Donovan L, Kim JY. Incretin Hormones: Pathophysiological Risk Factors and Potential Targets for Type 2 Diabetes. J Obes Metab Syndr. 2021;30(3):233-247. doi: 10.7570/jomes21053
Iqbal J, Wu HX, Hu N, et al. Effect of glucagon-like peptide-1 receptor agonists on body weight in adults with obesity without diabetes mellitus-a systematic review and meta-analysis of randomized control trials. Obes Rev. 2022;23(6):e13435. doi: 10.1111/obr.13435
Bettge K, Kahle M, Abd El Aziz MS, Meier JJ, Nauck MA. Occurrence of nausea, vomiting and diarrhoea reported as adverse events in clinical trials studying glucagon-like peptide-1 receptor agonists: A systematic analysis of published clinical trials. Diabetes Obes Metab. 2017;19(3):336-347. doi: 10.1111/dom.12824
Liu QK. Mechanisms of action and therapeutic applications of GLP-1 and dual GIP/GLP-1 receptor agonists. Front Endocrinol (Lausanne). 2024;15:1431292. doi: 10.3389/fendo.2024.1431292
Hernandez AF, Green JB, Janmohamed S, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet. 2018;392(10157):1519-1529. doi: 10.1016/S0140-6736(18)32261-X
Pratley RE, Nauck MA, Barnett AH, et al. Once-weekly albiglutide versus once-daily liraglutide in patients with type 2 diabetes inadequately controlled on oral drugs (HARMONY 7): a randomised, openlabel, multicentre, non-inferiority phase 3 study. Lancet Diabetes Endocrinol. 2014;2(4):289-297. doi: 10.1016/S2213-8587(13)70214-6
Hannon TS, Arslanian SA. Obesity in Adolescents. N Engl J Med. 2023;389(3):251-261. doi: 10.1056/NEJMcp2102062
Kołakowska K, Miłkowska U, Piech GM, Lis I. The impact of GLP-1 analogues on cardiovascular risk, Biuletyn Głównej Biblioteki Lekarskiej. 2024;57(383):169-180. doi: 10.2478/bgbl-2024-0030
Evans M, Kuodi P, Akunna CJ, et al. Cardiovascular and renal outcomes of GLP-1 receptor agonists vs. DPP-4 inhibitors and basal insulin in type 2 diabetes mellitus: A systematic review and meta-analysis. Diab Vasc Dis Res. 2023;20(6):14791641231221740. doi: 10.1177/14791641231221740
Sienicka A, Kubasik K, Pisula A. The glucagon-like peptide-1 analogues therapy in the non-diabetic patients. Prospects in Pharmaceutical Sciences. 2023;21(1):9-14.
Kopp KO, Glotfelty EJ, Li Y, Greig NH. Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: Implications for neurodegenerative disease treatment. Pharmacol Res. 2022;186:106550. doi: 10.1016/j.phrs.2022.106550
De Giorgi R, Ghenciulescu A, Yotter C, Taquet M, Koychev I. Glucagon-like peptide-1 receptor agonists for major neurocognitive disorders. J Neurol Neurosurg Psychiatry. 2025;96(9):870-883. doi: 10.1136/jnnp-2024-335593
Hong CT, Chen JH, Hu CJ. Role of glucagon-like peptide-1 receptor agonists in Alzheimer's disease and Parkinson's disease. J Biomed Sci. 2024;31(1):102. doi: 10.1186/s12929-024-01090-x
Vergès B, Aboyans V, Angoulvant D, et al. Protection against stroke with glucagon-like peptide-1 receptor agonists: a comprehensive review of potential mechanisms. Cardiovasc Diabetol. 2022;21(1):242. doi: 10.1186/s12933-022-01686-3
Detka J, Głombik K. Insights into a possible role of glucagon-like peptide-1 receptor agonists in the treatment of depression. Pharmacol Rep. 2021;73(4):1020-1032. doi: 10.1007/s43440-021-00274-8
Jing F, Zou Q, Pu Y. GLP-1R agonist liraglutide attenuates pain hypersensitivity by stimulating IL-10 release in a nitroglycerin-induced chronic migraine mouse model. Neurosci Lett. 2023;812:137397. doi: 10.1016/j.neulet.2023.137397
Sharma A, Verma S. Mechanisms by Which Glucagon-Like-Peptide-1 Receptor Agonists and Sodium-Glucose Cotransporter-2 Inhibitors Reduce Cardiovascular Risk in Adults With Type 2 Diabetes Mellitus. Can J Diabetes. 2020;44(1):93-102. doi: 10.1016/j.jcjd.2019.09.003
Park B, Bakbak E, Teoh H, et al. GLP-1 receptor agonists and atherosclerosis protection: the vascular endothelium takes center stage. Am J Physiol Heart Circ Physiol. 2024;326(5):H1159-H1176. doi: 10.1152/ajpheart.00574.2023
Cena H, Chiovato L, Nappi RE. Obesity, Polycystic Ovary Syndrome, and Infertility: A New Avenue for GLP-1 Receptor Agonists. J Clin Endocrinol Metab. 2020;105(8):e2695-2709. doi: 10.1210/clinem/dgaa285
Newsome PN, Buchholtz K, Cusi K, et al. A Placebo-Controlled Trial of Subcutaneous Semaglutide in Nonalcoholic Steatohepatitis. N Engl J Med. 2021;384(12):1113-1124. doi: 10.1056/NEJMoa2028395.
Summary for Patients: Efficacy and Safety of Glucagon-Like Peptide-1 Receptor Agonists for Weight Loss Among Adults Without Diabetes. Ann Intern Med. 2025;178(2):I19. doi: 10.7326/ANNALS-24-01590-PS
Sodhi M, Rezaeianzadeh R, Kezouh A, Etminan M. Risk of Gastrointestinal Adverse Events Associated With Glucagon-Like Peptide-1 Receptor Agonists for Weight Loss. JAMA. 2023;330(18):1795-1797. doi: 10.1001/jama.2023.19574
Gettman L. New Drug: Tirzepatide (Mounjaro™). Sr Care Pharm. 2023;38(2):50-62. doi: 10.4140/TCP.n.2023.50
Chavda VP, Ajabiya J, Teli D, Bojarska J, Apostolopoulos V. Tirzepatide, a New Era of Dual-Targeted Treatment for Diabetes and Obesity: A Mini-Review. Molecules. 2022;27(13):4315. doi: 10.3390/molecules27134315
Syed YY. Tirzepatide: First Approval. Drugs. 2022;82(11):1213-1220. doi: 10.1007/s40265-022-01746-8
Abdi Beshir S, Ahmed Elnour A, Soorya A, et al. A narrative review of approved and emerging anti-obesity medications. Saudi Pharm J. 2023;31(10):101757. doi: 10.1016/j.jsps.2023.101757
Forzano I, Varzideh F, Avvisato R, Jankauskas SS, Mone P, Santulli G. Tirzepatide: A Systematic Update. Int J Mol Sci. 2022;23(23):14631. doi: 10.3390/ijms232314631
Frías JP, Davies MJ, Rosenstock J, et al. Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes. N Engl J Med. 2021;385(6):503-515. doi: 10.1056/NEJMoa2107519
Rosenstock J, Wysham C, Frías JP, et al. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomised, phase 3 trial. Lancet. 2021;398(10295):143-155. doi: 10.1016/S0140-6736(21)01324-6
Loomba R, Hartman ML, Lawitz EJ, et al. Tirzepatide for Metabolic Dysfunction-Associated Steatohepatitis with Liver Fibrosis. N Engl J Med. 2024;391(4):299-310. doi: 10.1056/NEJMoa2401943
Malhotra A, Grunstein RR, Fietze I, et al. Tirzepatide for the Treatment of Obstructive Sleep Apnea and Obesity. N Engl J Med. 2024;391(13):1193-1205. doi: 10.1056/NEJMoa2404881
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 European Journal of Clinical and Experimental Medicine

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our open access policy is in accordance with the Budapest Open Access Initiative (BOAI) definition: this means that articles have free availability on the public Internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from having access to the Internet itself.
All articles are published with free open access under the CC-BY Creative Commons attribution license (the current version is CC-BY, version 4.0). If you submit your paper for publication by the Eur J Clin Exp Med, you agree to have the CC-BY license applied to your work. Under this Open Access license, you, as the author, agree that anyone may download and read the paper for free. In addition, the article may be reused and quoted provided that the original published version is cited. This facilitates freedom in re-use and also ensures that Eur J Clin Exp Med content can be mined without barriers for the research needs.




