Effects of hypericin-mediated photodynamic therapy on GM-CSF, MIF, VCAM-1 and ICAM-1 secretion in colorectal cancer cells in vitro
DOI:
https://doi.org/10.15584/ejcem.2023.2.2Keywords:
colorectal cancer, hypericin, photodynamic therapyAbstract
Introduction and aim. Photodynamic therapy with hypericin (HYP-PDT) is gaining importance as a potential treatment method for malignant neoplasms. The following study investigated whether HYP-PDT influences the secretion of certain factors of colon cancer cells in vitro.
Material and methods. Two colon cancer cell lines were used in this experiment: SW480 and SW620. The cells were properly prepared and then treated with photodynamic therapy with hypericin at concentrations of 0.25 µM and 0.5 µM and irradiation at the doses of 1 J/cm2 , 5 J/cm2 and 10 J/cm2 . After using HYP-PDT, changes in the concentrations of four factors: GM-CSF, MIF, VCAM-1 and ICAM-1 were analyzed in the test tubes.
Results. In the case of SW480 cells: a notable decrease in GM-CSF, MIF, VCAM-1 and ICAM-1 secretion was noted after HYP-PDT. In the case of SW620 cells, after HYP-PDT: no effect on GM-CSF secretion was noted; it inhibited the secretion of VCAM-1 and MIF and increased the secretion of ICAM-1.
Conclusion. Photodynamic therapy with hypericin shows immunomodulatory potential in an in vitro cell line experiments. This may indicate its possible ability to modify the course of malignant tumors and therefore requires further research.
Downloads
References
Nguyen LH, Goel A, Chung DC. Pathways of Colorectal Carcinogenesis. Gastroenterology. 2020;158(2):291-302. doi: 10.1053/j.gastro.2019.08.059.
Zhang W, Zhong W, Wang B, et al. ICAM-1-mediated adhesion is a prerequisite for exosome-induced T cell suppression. Dev Cell. 2022;57(3):329-343.e7. doi: 10.1016/j.devcel.2022.01.002.
Soumya MS, Gayathri Devi D, Shafeekh KM, Das S, Abraham A. Photodynamic therapeutic efficacy of symmetrical diiodinated squaraine in in vivo skin cancer models. Photodiagnosis Photodyn Ther. 2017;18:302-309. doi: 10.1016/j.pdpdt.2017.03.009.
Kleemann B, Loos B, Scriba TJ, Lang D, Davids LM. St John's Wort (Hypericum perforatum L.) photomedicine: hypericin-photodynamic therapy induces metastatic melanoma cell death. PLoS One. 2014;9(7):e103762.
Li MM, Cao J, Yang JC, et al. Effects of arginine-glycine-aspartic acid peptide-conjugated quantum dots-induced photodynamic therapy on pancreatic carcinoma in vivo. Int J Nanomedicine. 2017;12:2769-2779. doi: 10.2147/IJN.S130799.
Roh YJ, Kim JH, Kim IW, Na K, Park JM, Choi MG. Photodynamic Therapy Using Photosensitizer-Encapsulated Polymeric Nanoparticle to Overcome ATP-Binding Cassette Transporter Subfamily G2 Function in Pancreatic Cancer. Mol Cancer Ther. 2017;16(8):1487-1496. doi: 10.1158/1535-7163.MCT-16-0642.
Inoue K. 5-Aminolevulinic acid-mediated photodynamic therapy for bladder cancer. Int J Urol. 2017;24(2):97-101. doi: 10.1111/iju.13291.
Neupane J, Ghimire S, Shakya S, Chaudhary L, Shrivastava VP. Effect of light emitting diodes in the photodynamic therapy of rheumatoid arthritis. Photodiagnosis Photodyn Ther. 2010;7(1):44-49. doi: 10.1016/j.pdpdt.2009.12.006.
Lv T, Zhang JC, Miao F, Wang HW. Aminoleveulinate photodynamic therapy (ALA-PDT) for Bowen's disease in a SLE patient: Case report and literature review. Photodiagnosis Photodyn Ther. 2017;18:20-23. doi: 10.1016/j.pdpdt.2017.01.002.
Tandon YK, Yang MF, Baron ED. Role of photodynamic therapy in psoriasis: a brief review. Photodermatol Photoimmunol Photomed. 2008;24(5):222-230. doi: 10.1111/j.1600-0781.2008.00376.x.
Boen M, Brownell J, Patel P, Tsoukas MM. The Role of Photodynamic Therapy in Acne: An Evidence-Based Review. Am J Clin Dermatol. 2017;18(3):311-321. doi: 10.1007/s40257-017-0255-3.
Ogino T, Takeda M, Imaizumi H, Okushiba U. Photodynamic therapy for age-related macular degeneration in Japanese patients: results after one year. Jpn J Ophthalmol. 2007;51(3):210-215. doi: 10.1007/s10384-007-0436-3.
Goslinski T. Konopka K, Piskorz J, Kryjewski M, Wierzchowski M, Sobiak S. Prospects for Photodynamic Antimicrobial Chemotherapy-PACT. Postepy Mikrobiologii. 2008;47(4):447-456.
Kwiatkowski S, Knap B, Przystupski D, et al. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098-1107. doi: 10.1016/j.biopha.2018.07.049.
Kousis PC, Henderson BW, Maier PG, Gollnick SO. Photodynamic therapy enhancement of antitumor immunity is regulated by neutrophils. Cancer Res. 2007;67(21):10501-10510. doi: 10.1158/0008-5472.CAN-07-1778.
Rousset N, Vonarx V, Eléouet S, et al. Effects of photodynamic therapy on adhesion molecules and metastasis. J Photochem Photobiol B. 1999;52(1-3):65-73. doi: 10.1016/s1011-1344(99)00104-9.
Schreiber S, Gross S, Brandis A, et al. Local photodynamic therapy (PDT) of rat C6 glioma xenografts with Pd-bacteriopheophorbide leads to decreased metastases and increase of animal cure compared with surgery. Int J Cancer. 2002;99(2):279-285. doi: 10.1002/ijc.10299.
Thong PS, Olivo M, Kho KW, et al. Immune response against angiosarcoma following lower fluence rate clinical photodynamic therapy. J Environ Pathol Toxicol Oncol. 2008;27(1):35-42. doi: 10.1615/jenvironpatholtoxicoloncol.v27.i1.40.
Castano AP, Mroz P, Hamblin MR. Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer. 2006;6(7):535-545. doi: 10.1038/nrc1894.
Mokoena DR, George BP, Abrahamse H. Photodynamic Therapy Induced Cell Death Mechanisms in Breast Cancer. Int J Mol Sci. 2021;22(19):10506. doi: 10.3390/ijms221910506.
Kawczyk-Krupka A, Latos W, Oleś P, et al. The influence of 5-aminolevulinic photodynamic therapy on colon cancer cell interleukin secretion in hypoxia-like condition in vitro. Photodiagnosis Photodyn Ther. 2018;23:240-243. doi: 10.1016/j.pdpdt.2018.07.007.
Barathan M, Mariappan V, Shankar EM, Abdullah BJ, Goh KL, Vadivelu J. Hypericin-photodynamic therapy leads to interleukin-6 secretion by HepG2 cells and their apoptosis via recruitment of BH3 interacting-domain death agonist and caspases. Cell Death Dis. 2013;4(6):e697. doi: 10.1038/cddis.2013.219.
Volanti C, Gloire G, Vanderplasschen A, Jacobs N, Habraken Y, Piette J. Downregulation of ICAM-1 and VCAM-1 expression in endothelial cells treated by photodynamic therapy. Oncogene. 2004;23(53):8649-8658. doi: 10.1038/sj.onc.1207871.
Bhuvaneswari R, Gan YY, Soo KC, Olivo M. The effect of photodynamic therapy on tumor angiogenesis. Cell Mol Life Sci. 2009;66(14):2275-2283. doi: 10.1007/s00018-009-0016-4.
Verebová V, Beneš J, Staničová J. Biophysical Characterization and Anticancer Activities of Photosensitive Phytoanthraquinones Represented by Hypericin and Its Model Compounds. Molecules. 2020;25(23):5666. doi: 10.3390/molecules25235666.
Thomas C, Pardini RS. Oxygen dependence of hypericin-induced phototoxicity to EMT6 mouse mammary carcinoma cells. Photochem Photobiol. 1992;55(6):831-837. doi: 10.1111/j.1751-1097.1992.tb08531.x.
French CS, Smith JH, Virgin HI, Airth RL. Fluorescence-Spectrum Curves of Chlorophylls, Pheophytins, Phycoerythrins, Phycocyanins and Hypericin. Plant Physiol. 1956;31(5):369-374. doi: 10.1104/pp.31.5.369.
Durán N, Song PS. Hypericin and its photodynamic action. Photochem Photobiol. 1986;43(6):677-680. doi: 10.1111/j.1751-1097.1986.tb05646.x.
Koren H, Schenk GM, Jindra RH, et al. Hypericin in phototherapy. J Photochem Photobiol B. 1996;36(2):113-119. doi: 10.1016/s1011-1344(96)07357-5.
Weller M, Trepel M, Grimmel C, et al. Hypericin-induced apoptosis of human malignant glioma cells is light-dependent, independent of bcl-2 expression, and does not require wild-type p53. Neurol Res. 1997;19(5):459-470.
Ndhundhuma IM, Abrahamse H. Susceptibility of In Vitro Melanoma Skin Cancer to Photoactivated Hypericin versus Aluminium(III) Phthalocyanine Chloride Tetrasulphonate. Biomed Res Int. 2017;2017:5407012. doi: 10.1155/2017/5407012.
Xu L, Zhang X, Cheng W, et al. Hypericin-photodynamic therapy inhibits the growth of adult T-cell leukemia cells through induction of apoptosis and suppression of viral transcription. Retrovirology. 2019;16(1):5. doi: 10.1186/s12977-019-0467-0.
You MK, Kim HJ, Kook JH, Kim HA. St. John's Wort Regulates Proliferation and Apoptosis in MCF-7 Human Breast Cancer Cells by Inhibiting AMPK/mTOR and Activating the Mitochondrial Pathway. Int J Mol Sci. 2018;19(4):966. doi: 10.3390/ijms19040966.
Fadel M, Kassab K, Youssef T. Photodynamic efficacy of hypericin targeted by two delivery techniques to hepatocellular carcinoma cells. Lasers Med Sci. 2010;25(5):675-683. doi: 10.1007/s10103-010-0787-8.
Kılıç Süloğlu A, Selmanoğlu G, Akay MT. Alterations in dysadherin expression and F-actin reorganization: a possible mechanism of hypericin-mediated photodynamic therapy in colon adenocarcinoma cells. Cytotechnology. 2015;67(2):311-330. doi: 10.1007/s10616-013-9688-6.
Šemeláková M, Mikeš J, Jendželovský R, Fedoročko P. The pro-apoptotic and anti-invasive effects of hypericin-mediated photodynamic therapy are enhanced by hyperforin or aristoforin in HT-29 colon adenocarcinoma cells. J Photochem Photobiol B. 2012;117:115-125. doi: 10.1016/j.jphotobiol.2012.09.003.
Hu J, Song J, Tang Z, Wei S, Chen L, Zhou R. Hypericin-mediated photodynamic therapy inhibits growth of colorectal cancer cells via inducing S phase cell cycle arrest and apoptosis. Eur J Pharmacol. 2021;900:174071. doi: 10.1016/j.ejphar.2021.174071.
Pulendran B, Dillon S, Joseph C, Curiel T, Banchereau J, Mohamadzadeh M. Dendritic cells generated in the presence of GM-CSF plus IL-15 prime potent CD8+ Tc1 responses in vivo. Eur J Immunol. 2004;34(1):66-73. doi: 10.1002/eji.200324567.
Daro E, Pulendran B, Brasel K, et al. Polyethylene glycol-modified GM-CSF expands CD11b(high)CD11c(high) but notCD11b(low)CD11c(high) murine dendritic cells in vivo: a comparative analysis with Flt3 ligand. J Immunol. 2000;165(1):49-58. doi: 10.4049/jimmunol.165.1.49.
Hong IS. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types. Exp Mol Med. 2016 ;48(7):e242. doi: 10.1038/emm.2016.64.
Urdinguio RG, Fernandez AF, Moncada-Pazos A, et al. Immune-dependent and independent antitumor activity of GM-CSF aberrantly expressed by mouse and human colorectal tumors. Cancer Res. 2013;73(1):395-405. doi: 10.1158/0008-5472.CAN-12-0806.
Revoltella RP, Menicagli M, Campani D. Granulocyte-macrophage colony-stimulating factor as an autocrine survival-growth factor in human gliomas. Cytokine. 2012;57(3):347-359. doi: 10.1016/j.cyto.2011.11.016.
Su S, Liu Q, Chen J, et al. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell. 2014;25(5):605-620. doi: 10.1016/j.ccr.2014.03.021.
Du HY, Olivo M, Mahendran R, et al. Hypericin photoactivation triggers down-regulation of matrix metalloproteinase-9 expression in well-differentiated human nasopharyngeal cancer cells. Cell Mol Life Sci. 2007;64(7-8):979-988. doi: 10.1007/s00018-007-7030-1.
Groblewska M, Mroczko B, Szmitkowski M. Rola wybranych metaloproteinaz i ich inhibitorów w rozwoju raka jelita grubego [The role of selected matrix metalloproteinases and their inhibitors in colorectal cancer development]. Postepy Hig Med Dosw (Online). 2010;64:22-30.
Kim TD, Song KS, Li G, et al. Activity and expression of urokinase-type plasminogen activator and matrix metalloproteinases in human colorectal cancer. BMC Cancer. 2006;6:211. doi: 10.1186/1471-2407-6-211.
Chen Y, Zhao Z, Chen Y, et al. An epithelial-to-mesenchymal transition-inducing potential of granulocyte macrophage colony-stimulating factor in colon cancer. Sci Rep. 2017;7(1):8265. doi: 10.1038/s41598-017-08047-1.
He XX, Chen K, Yang J, et al. Macrophage migration inhibitory factor promotes colorectal cancer. Mol Med. 2009;15(1-2):1-10. doi: 10.2119/molmed.2008.00107.
Li Z, Ren Y, Wu QC, Lin SX, Liang YJ, Liang HZ. Macrophage migration inhibitory factor enhances neoplastic cell invasion by inducing the expression of matrix metalloproteinase 9 and interleukin-8 in nasopharyngeal carcinoma cell lines. Chin Med J (Engl). 2004;117(1):107-114.
Hudson JD, Shoaibi MA, Maestro R, Carnero A, Hannon GJ, Beach DH. A proinflammatory cytokine inhibits p53 tumor suppressor activity. J Exp Med. 1999;190(10):1375-1382. doi: 10.1084/jem.190.10.1375.
Wilson JM, Coletta PL, Cuthbert RJ, et al. Macrophage migration inhibitory factor promotes intestinal tumorigenesis. Gastroenterology. 2005;129(5):1485-1503. doi: 10.1053/j.gastro.2005.07.061.
Hussain F, Freissmuth M, Völkel D, et al. Human anti-macrophage migration inhibitory factor antibodies inhibit growth of human prostate cancer cells in vitro and in vivo. Mol Cancer Ther. 2013;12(7):1223-1234. doi: 10.1158/1535-7163.MCT-12-0988.
Yaddanapudi K, Rendon BE, Lamont G, et al. MIF Is Necessary for Late-Stage Melanoma Patient MDSC Immune Suppression and Differentiation. Cancer Immunol Res. 2016;4(2):101-112. doi: 10.1158/2326-6066.CIR-15-0070-T.
Gupta Y, Pasupuleti V, Du W, Welford SM. Macrophage Migration Inhibitory Factor Secretion Is Induced by Ionizing Radiation and Oxidative Stress in Cancer Cells. PLoS One. 2016;11(1):e0146482. doi: 10.1371/journal.pone.0146482.
Tan L, Ye X, Zhou Y, et al. Macrophage migration inhibitory factor is overexpressed in pancreatic cancer tissues and impairs insulin secretion function of β-cell. J Transl Med. 2014;12:92. doi: 10.1186/1479-5876-12-92.
Mittelbronn M, Platten M, Zeiner P, et al. Macrophage migration inhibitory factor (MIF) expression in human malignant gliomas contributes to immune escape and tumour progression. Acta Neuropathol. 2011;122(3):353-365. doi: 10.1007/s00401-011-0858-3.
Ding YB, Chen GY, Xia JG, Zang XW, Yang HY, Yang L. Association of VCAM-1 overexpression with oncogenesis, tumor angiogenesis and metastasis of gastric carcinoma. World J Gastroenterol. 2003;9(7):1409-1414. doi: 10.3748/wjg.v9.i7.1409.
Alexiou D, Karayiannakis AJ, Syrigos KN, et al. Serum levels of E-selectin, ICAM-1 and VCAM-1 in colorectal cancer patients: correlations with clinicopathological features, patient survival and tumour surgery. Eur J Cancer. 2001;37(18):2392-2397. doi: 10.1016/s0959-8049(01)00318-5.
Müller AM, Weichert A, Müller KM. E-cadherin, E-selectin and vascular cell adhesion molecule: immunohistochemical markers for differentiation between mesothelioma and metastatic pulmonary adenocarcinoma? Virchows Arch. 2002;441(1):41-46. doi: 10.1007/s00428-001-0563-z.
Maurer CA, Friess H, Kretschmann B, et al. Over-expression of ICAM-1, VCAM-1 and ELAM-1 might influence tumor progression in colorectal cancer. Int J Cancer. 1998;79(1):76-81.
Gulubova MV. Expression of cell adhesion molecules, their ligands and tumour necrosis factor alpha in the liver of patients with metastatic gastrointestinal carcinomas. Histochem J. 2002;34(1-2):67-77. doi: 10.1023/a:1021304227369.
Bui TM, Wiesolek HL, Sumagin R. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J Leukoc Biol. 2020;108(3):787-799. doi: 10.1002/JLB.2MR0220-549R.
Wee H, Oh HM, Jo JH, Jun CD. ICAM-1/LFA-1 interaction contributes to the induction of endothelial cell-cell separation: implication for enhanced leukocyte diapedesis. Exp Mol Med. 2009;41(5):341-348. doi: 10.3858/emm.2009.41.5.038.
Benedicto A, Romayor I, Arteta B. Role of liver ICAM-1 in metastasis. Oncol Lett. 2017;14(4):3883-3892. doi: 10.3892/ol.2017.6700.
Taftaf R, Liu X, Singh S, et al. ICAM1 initiates CTC cluster formation and trans-endothelial migration in lung metastasis of breast cancer. Nat Commun. 2021;12(1):4867. doi: 10.1038/s41467-021-25189-z.
Pan B, Bu X, Cao M, et al. Inactivation of ICAM1 inhibits metastasis and improves the prognosis of Ewing's sarcoma. J Cancer Res Clin Oncol. 2021;147(2):393-401. doi: 10.1007/s00432-020-03431-3.
Kawczyk-Krupka A, Czuba ZP, Kwiatek B, Kwiatek S, Krupka M, Sieroń K. The effect of ALA-PDT under normoxia and cobalt chloride (CoCl2)-induced hypoxia on adhesion molecules (ICAM-1, VCAM-1) secretion by colorectal cancer cells. Photodiagnosis Photodyn Ther. 2017;19:103-115. doi: 10.1016/j.pdpdt.2017.05.005.
Zhan Q, Yue W, Shaoshan H. The inhibitory effect of photodynamic therapy and of an anti-VCAM-1 monoclonal antibody on the in vivo growth of C6 glioma xenografts. Braz J Med Biol Res. 2011;44(5):489-490. doi: 10.1590/S0100-879X2011007500052.
Rousset N, Vonarx V, Eléouet S, et al. Effects of photodynamic therapy on adhesion molecules and metastasis. J Photochem Photobiol B. 1999;52(1-3):65-73. doi: 10.1016/s1011-1344(99)00104-9.
Majerník M, Jendželovský R, Babinčák M, et al. Novel Insights into the Effect of Hyperforin and Photodynamic Therapy with Hypericin on Chosen Angiogenic Factors in Colorectal Micro-Tumors Created on Chorioallantoic Membrane. Int J Mol Sci. 2019;20(12):3004. doi: 10.3390/ijms20123004.
Duval K, Grover H, Han LH, et al. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology (Bethesda). 2017;32(4):266-277.
Yee KK, Soo KC, Olivo M. Anti-angiogenic effects of Hypericin-photodynamic therapy in combination with Celebrex in the treatment of human nasopharyngeal carcinoma. Int J Mol Med. 2005;16(6):993-1002.
Blank M, Kostenich G, Lavie G, Kimel S, Keisari Y, Orenstein A. Wavelength-dependent properties of photodynamic therapy using hypericin in vitro and in an animal model. Photochem Photobiol. 2002;76(3):335-340.
Sanovic R, Verwanger T, Hartl A, Krammer B. Low dose hypericin-PDT induces complete tumor regression in BALB/c mice bearing CT26 colon carcinoma. Photodiagnosis Photodyn Ther. 2011;8(4):291-296. doi: 10.1016/j.pdpdt.2011.04.003.
Kleban J, Szilárdiová B, Mikes J, et al. Pre-treatment of HT-29 cells with 5-LOX inhibitor (MK-886) induces changes in cell cycle and increases apoptosis after photodynamic therapy with hypericin. J Photochem Photobiol B. 2006;84(2):79-88. doi: 10.1016/j.jphotobiol.2006.02.003.
Jendzelovský R, Mikes J, Koval' J, et al. Drug efflux transporters, MRP1 and BCRP, affect the outcome of hypericin-mediated photodynamic therapy in HT-29 adenocarcinoma cells. Photochem Photobiol Sci. 2009;8(12):1716-1723. doi: 10.1039/b9pp00086k.
Gyurászová K, Mikeš J, Halaburková A, Jendželovský R, Fedoročko P. YM155, a small molecule inhibitor of survivin expression, sensitizes cancer cells to hypericin-mediated photodynamic therapy. Photochem Photobiol Sci. 2016;15(6):812-821. doi: 10.1039/c5pp00438a.
Macejová M, Sačková V, Hradická P, Jendželovský R, Demečková V, Fedoročko P. Combination of photoactive hypericin and Manumycin A exerts multiple anticancer effects on oxaliplatin-resistant colorectal cells. Toxicol In Vitro. 2020;66:104860. doi: 10.1016/j.tiv.2020.104860.
Lin S, Yang L, Shi H, et al. Endoplasmic reticulum-targeting photosensitizer Hypericin confers chemo-sensitization towards oxaliplatin through inducing pro-death autophagy. Int J Biochem Cell Biol. 2017;87:54-68. doi: 10.1016/j.biocel.2017.04.001.
Lin S, Lei K, Du W, et al. Enhancement of oxaliplatin sensitivity in human colorectal cancer by hypericin mediated photodynamic therapy via ROS-related mechanism. Int J Biochem Cell Biol. 2016;71:24-34. doi: 10.1016/j.biocel.2015.12.003.
Khot MI, Perry SL, Maisey T, et al. Inhibiting ABCG2 could potentially enhance the efficacy of hypericin-mediated photodynamic therapy in spheroidal cell models of colorectal cancer. Photodiagnosis Photodyn Ther. 2018;23:221-229. doi: 10.1016/j.pdpdt.2018.06.027.
Šemeláková M, Jendželovský R, Fedoročko P. Drug membrane transporters and CYP3A4 are affected by hypericin, hyperforin or aristoforin in colon adenocarcinoma cells. Biomed Pharmacother. 2016;81:38-47. doi: 10.1016/j.biopha.2016.03.045.
Montanha MC, Silva LL, Pangoni FBB, et al. Response surface method optimization of a novel Hypericin formulation in P123 micelles for colorectal cancer and antimicrobial photodynamic therapy. J Photochem Photobiol B. 2017;170:247-255. doi: 10.1016/j.jphotobiol.2017.04.008.
Mühleisen L, Alev M, Unterweger H, et al. Analysis of Hypericin-Mediated Effects and Implications for Targeted Photodynamic Therapy. Int J Mol Sci. 2017;18(7):1388. doi: 10.3390/ijms18071388.
Tietze R, Lyer S, Dürr S, et al. Efficient drug-delivery using magnetic nanoparticles--biodistribution and therapeutic effects in tumour bearing rabbits. Nanomedicine. 2013;9(7):961-971. doi: 10.1016/j.nano.2013.05.001.
Sardoiwala MN, Kushwaha AC, Dev A, et al. Hypericin-Loaded Transferrin Nanoparticles Induce PP2A-Regulated BMI1 Degradation in Colorectal Cancer-Specific Chemo-Photodynamic Therapy. ACS Biomater Sci Eng. 2020;6(5):3139-3153. doi: 10.1021/acsbiomaterials.9b01844.
Torres-Martínez A, Bedrina B, Falomir E, et al. Non-Polymeric Nanogels as Versatile Nanocarriers: Intracellular Transport of the Photosensitizers Rose Bengal and Hypericin for Photodynamic Therapy. ACS Appl Bio Mater. 2021;4(4):3658-3669. doi: 10.1021/acsabm.1c00139.
Han X, Taratula O, Taratula O, et al. Biodegradable Hypericin-Containing Nanoparticles for Necrosis Targeting and Fluorescence Imaging. Mol Pharm. 2020;17(5):1538-1545.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 European Journal of Clinical and Experimental Medicine

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our open access policy is in accordance with the Budapest Open Access Initiative (BOAI) definition: this means that articles have free availability on the public Internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from having access to the Internet itself.
All articles are published with free open access under the CC-BY Creative Commons attribution license (the current version is CC-BY, version 4.0). If you submit your paper for publication by the Eur J Clin Exp Med, you agree to have the CC-BY license applied to your work. Under this Open Access license, you, as the author, agree that anyone may download and read the paper for free. In addition, the article may be reused and quoted provided that the original published version is cited. This facilitates freedom in re-use and also ensures that Eur J Clin Exp Med content can be mined without barriers for the research needs.




