Methods of singlet oxygen generation and detection for understanding photodynamic processes

Authors

DOI:

https://doi.org/10.15584/ejcem.2018.3.9

Keywords:

Photodynamic therapy, lifetime of singlet oxygen, photosensitizing agent

Abstract

Introduction. Photodynamic therapy (PDT) is a clinically approved therapeutic procedure that exerts selective cytotoxic activity toward malignant cells.

Aim. Our goal is to present the PDT procedure which involves administration of a photosensitizing agent followed by irradiation at a wavelength corresponding to the absorbance band of the photosensitizer and energy transfer to ground state oxygen to generate cytotoxic singlet oxygen

Material and methods. Analysis of literature.

Results. In this paper we described the basics of PDT and lifetime of singlet oxygen in different media. 

Downloads

Download data is not yet available.

References

Weishaupt KR, Gomer CJ, Dougherty TJ. Identification of singlet oxygen as the cytotoxic agen in photo-inactivation of a murine tumor. Cancer Res. 1976;36:2326-2329.

DeRosa MC, Crutchley RJ. Photosensitized singlet oxygen and its applications. Coord Chem Rev. 2002;233-234:351-371.

Fisher AM, Rucker N, Wong S, Gomer CJ. Differential photosensitivity in wild-type and mutant p53 human colon carcinoma cell lines. J Photochem Photobiol B. 1998;42(2):104-107.

Niedre MJ, Secord AJ, Patterson MS, Wilson BC. In vitro tests of the validity of singlet oxygen luminescence measurements as a dose metric in photodynamic therapy. Cancer Res. 2003;63(22):7986-7994.

Baier J, Maisch T, Maier M, Engel E, Landthaler M, Bäumler W. Singlet oxygen generation by UVA light exposure of endogenous photosensitizers. Biophysical Journal. 2006;91(4):1452-1459.

Moseley H. Light distribution and calibration of commercial PDT LED arrays. Photochem Photobiol Sci. 2005;4(11):911-914.

Juzeniene A, Juzenas P, Ma LW, Iani V, Moan J. Effectiveness of different light sources for 5-aminolevulinic acid photodynamic therapy. Lasers Med Sci. 2004;19(3):139-149.

Szeimies RM, Morton CA, Sidoroff A, Braathen LR. Photodynamic therapy for non-melanoma skin cancer. Acta Derm Venereol. 2005;85(6):483-490.

Dickey DJ, Xiao Z, Partridge KJ, Moore RB, Tulip J. Fractionated PDT light delivery system based on fiber optic switching technology. Therapeutic Laser Applications and Laser-Tissue Interactions. Proc. 2003;SPIE 5142. doi: 10.1117/12.499868.

Brancaleon L, Moseley H. Laser and non-laser light sources for photodynamic therapy. Lasers Med Sci. 2002;17:173-186.

Schlothauer J, Hackbarth S, Röder B. A new benchmark for time-resolved detection of singlet oxygen luminescence - revealing the evolution of lifetime in living cells with low dose illumination. Laser Phys Lett. 2009;6(3):216-221.

Jiménez-Banzo A, Sagristà ML, Mora M, Nonell S. Kinetics of singlet oxygen photosensitization in human skin fibroblasts. Free Radic Biol Med. 2008;44(11):1926-1934.

Hatz S, Lambert JD, Ogilby PR. Measuring the lifetime of singlet oxygen in a single cell: addressing the issue of cell viability. Photochem Photobiol Sci. 2007;6(10):1106-1116.

Niedre M, Patterson MS, Wilson BC. Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo. Photochem Photobiol. 2002;75(4):382-391.

Oelckers S, Ziegler T, Michler I, Röder B. Time-resolved detection of singlet oxygen luminescence in red-cell ghost suspensions: concerning a signal component that can be attributed to 1O2 luminescence from the inside of a native membrane. J Photochem Photobiol B. 1999;53(1-3):121-127.

Abrahamse H, Hamblin MR. New photosensitizers for photodynamic therapy. Biochem J. 2016;473(4):347-364.

Allison RR, Sibata CH. Oncologic photodynamic therapy photosensitizers: a clinical review.

Dysart JS, Patterson MS. Characterization of Photofrin photobleaching for singlet oxygen dose estimation during photodynamic therapy of MLL cells in vitro. Phys Med Biol. 2005;50(11):2597-2616.

Foote CS. Mechanisms of photosensitized oxidation. There are several different types of photosensitized oxidation which may be important in biological systems. Science. 1968;162(3857):963-970.

Battersby AR. Tetrapyrroles: the pigments of life. Nat Prod Rep. 2000;17(6):507-526.

Bhowmik BB, Ganguly P. Photophysics of xanthene dyes in surfactant solution. Spectrochim Acta A Mol Biomol Spectrosc. 2005;61(9):1997-2003.

Usacheva MN, Teichert MC, Biel MA. Comparison of the methylene blue and toluidine blue photobactericidal efficacy against gram-positive and gram-negative microorganisms. Lasers Surg Med. 2001;29(2):165-173.

Usacheva MN, Teichert MC, Biel MA. The role of the methylene blue and toluidine blue monomersand dimers in the photoinactivation of bacteria. J Photochem Photobiol B. 2003;71:87-98.

Kamkaew A, Lim SH, Lee HB, Kiew LV, Chung LY, Burgess K. BODIPY dyes in photodynamic therapy. Chem Soc Rev. 2013;42(1):77-88.

Yogo T, Urano Y, Ishitsuka Y, Maniwa F, Nagano T. Highly efficient and photostable photosensitizer based on BODIPY chromophore. J Am Chem Soc. 2005;127(35):12162-12163.

Theodossiou TA, Hothersall JS, De Witte PA, Pantos A, Agostinis P. The multifaceted photocytotoxic profile of hypericin. Mol Pharm. 2009;6(6):1775-1789.

Liu X, Jiang C, Li Y, et al. Evaluation of hypericin: effect of aggregation on targeting biodistribution. J Pharm Sci. 2015;104(1):215-222.

Zhenjun D, Lown JW. Hypocrellins and their use in photosensitization. Photochem Photobiol. 1990;52(3):609-616.

Bernd A. Visible light and/or UVA offer a strong amplification of the anti-tumor effect of curcumin. Phytochem Rev. 2014;13:183-189.

Makdoumi K, Bäckman A, Mortensen J, Crafoord S. Evaluation of antibacterial efficacy of photo-activated riboflavin using ultraviolet light (UVA). Graefes Arch Clin Exp Ophthalmol. 2010;248(2):207-212.

Schweitzer C, Schmidt R. Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev. 2003;103(5):1685-1757.

Kiryu C, Makiuchi M, Miyazaki J, Fujinaga T, Kakinuma K. Physiological production of singlet molecular oxygen in the myeloperoxidase-H2O2-chloride system. FEBS Lett. 1999;443(2):154-158.

Fischer BB, Hideg E, Krieger-Liszkay A. Production, detection, and signaling of singlet oxygen in photosynthetic organisms. Antioxid Redox Signal. 2013;18(16):2145-2162.

Dickinson BC, Chang CJ. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol. 2011;7(8):504-511.

Kim IW, Park JM, Roh YJ, Kim JH, Choi MG, Hasan T. Direct measurement of singlet oxygen by using a photomultiplier tube-based detection system. J Photochem Photobiol B. 2016;159:14-23.

Gemmell NR, McCarthy A, Liu B, et al. Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector. Opt Express. 2013;21(4):5005-5013.

Kim IW, Kim JH, Park JM, Choi MG. Abstract 4922: The feasibility of evaluation method for the newly developed Photomultiplier-tube-based singlet oxygen detection system in photodynamic therapy. Cancer Res. 2014;74(19):4922.

Downloads

Published

2018-09-30

How to Cite

Ożóg, Łukasz, & Aebisher, D. (2018). Methods of singlet oxygen generation and detection for understanding photodynamic processes. European Journal of Clinical and Experimental Medicine, 16(3), 228–232. https://doi.org/10.15584/ejcem.2018.3.9

Issue

Section

REVIEW PAPERS

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >>